Aspergillus Flavus: Human Pathogen, Allergen and Mycotoxin Producer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of Aspergillus Flavus Soil and Corn Kernel Populations from Eight Mississippi River States Jorge A
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 11-13-2017 Characterization of Aspergillus Flavus Soil and Corn Kernel Populations From Eight Mississippi River States Jorge A. Reyes Pineda Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Agricultural Science Commons, Agriculture Commons, and the Plant Pathology Commons Recommended Citation Reyes Pineda, Jorge A., "Characterization of Aspergillus Flavus Soil and Corn Kernel Populations From Eight Mississippi River States" (2017). LSU Master's Theses. 4350. https://digitalcommons.lsu.edu/gradschool_theses/4350 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CHARACTERIZATION OF ASPERGILLUS FLAVUS SOIL AND CORN KERNEL POPULATIONS FROM EIGHT MISSISSIPPI RIVER STATES A Thesis Submitted to the Graduate Faculty of the Louisiana State University Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Plant Pathology and Crop Physiology by Jorge A. Reyes Pineda B.S., Universidad Nacional de Agricultura-Honduras 2011 December 2017 ACKNOWLEDGEMENTS I first thank God who gave me the strength and perseverance to complete the requirements for this degree, and second, I thank my family. Without their unconditional support and encouragement, I would have never been able to achieve this endeavor. I would like to thank my advisory committee, Drs. -
Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
Aspergillus Penicillioides Speg. Implicated in Keratomycosis
Polish Journal of Microbiology ORIGINAL PAPER 2018, Vol. 67, No 4, 407–416 https://doi.org/10.21307/pjm-2018-049 Aspergillus penicillioides Speg. Implicated in Keratomycosis EULALIA MACHOWICZ-MATEJKO1, AGNIESZKA FURMAŃCZYK2 and EWA DOROTA ZALEWSKA2* 1 Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Lublin, Poland 2 Department of Plant Pathology and Mycology, University of Life Sciences in Lublin, Lublin, Poland Submitted 9 November 2017, revised 6 March 2018, accepted 28 June 2018 Abstract The aim of the study was mycological examination of ulcerated corneal tissues from an ophthalmic patient. Tissue fragments were analyzed on potato-glucose agar (PDA) and maltose (MA) (Difco) media using standard laboratory techniques. Cultures were identified using classi- cal and molecular methods. Macro- and microscopic colony morphology was characteristic of fungi from the genus Aspergillus (restricted growth series), most probably Aspergillus penicillioides Speg. Molecular analysis of the following rDNA regions: ITS1, ITS2, 5.8S, 28S rDNA, LSU and β-tubulin were carried out for the isolates studied. A high level of similarity was found between sequences from certain rDNA regions, i.e. ITS1-5.8S-ITS2 and LSU, what confirmed the classification of the isolates to the species A. penicillioides. The classification of our isolates to A. penicillioides species was confirmed also by the phylogenetic analysis. K e y w o r d s: Aspergillus penicillioides, morphology, genetic characteristic, cornea Introduction fibrosis has already been reported (Bossche et al. 1988; Sandhu et al. 1995; Hamilos 2010; Gupta et al. 2015; Fungi from the genus Aspergillus are anamorphic Walicka-Szyszko and Sands 2015). -
ABSTRACT LEWIS, MARY HUNT. Genetic Structure of Soil
ABSTRACT LEWIS, MARY HUNT. Genetic Structure of Soil Populations of Aspergillus Section Flavi and Efficacy of Biocontrol of Aflatoxin Contamination in Corn. (Under the direction of Dr. Ignazio Carbone and Dr. Peter S. Ojiambo). Corn is contaminated with aflatoxin, a carcinogenic mycotoxin, when aflatoxigenic strains within Aspergillus section Flavi infect corn kernels. Biocontrol using non- aflatoxigenic strains of A. flavus have been shown to have the greatest potential to control aflatoxin contamination in corn. However, factors that influence the efficacy of biocontrol agents in different locations are not fully understood. One factor affecting the effectiveness biocontrol could be the genetic structure of the native soil populations of Aspergillus section Flavi. In this study, we investigated how the genetic structure of native soil populations of Aspergillus section Flavi could impact the effectiveness of two commercially available biological control products in different locations in the southeastern US. Field trials were conducted in Alabama, Georgia and North Carolina in the 2012 and 2013 growing seasons. Biocontrol products AF36 and Afla-Guard® were applied to the corn at the VT stage. Soil samples were collected prior to and 1-week after biocontrol application and at harvest to determine the genetic structure of soil populations. In all states, A. flavus (61-100%) was the most dominant species within section Flavi, with A. parasiticus (<35%) being the second- most frequently isolated species. A. nomius, A. caelatus and A. tamarii were detected only in Alabama, but at very low frequencies (<5%). Multi-locus sequence typing revealed that prior to biocontrol application in North Carolina in 2012, 48% of the isolates were the same haplotype as the biocontrol strain Afla-Guard, which belongs to lineage IB, while only 6% were of the same haplotype as AF36, which belongs to lineage IC. -
The Evolution of Secondary Metabolism Regulation and Pathways in the Aspergillus Genus
THE EVOLUTION OF SECONDARY METABOLISM REGULATION AND PATHWAYS IN THE ASPERGILLUS GENUS By Abigail Lind Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Informatics August 11, 2017 Nashville, Tennessee Approved: Antonis Rokas, Ph.D. Tony Capra, Ph.D. Patrick Abbot, Ph.D. Louise Rollins-Smith, Ph.D. Qi Liu, Ph.D. ACKNOWLEDGEMENTS Many people helped and encouraged me during my years working towards this dissertation. First, I want to thank my advisor, Antonis Rokas, for his support for the past five years. His consistent optimism encouraged me to overcome obstacles, and his scientific insight helped me place my work in a broader scientific context. My committee members, Patrick Abbot, Tony Capra, Louise Rollins-Smith, and Qi Liu have also provided support and encouragement. I have been lucky to work with great people in the Rokas lab who helped me develop ideas, suggested new approaches to problems, and provided constant support. In particular, I want to thank Jen Wisecaver for her mentorship, brilliant suggestions on how to visualize and present my work, and for always being available to talk about science. I also want to thank Xiaofan Zhou for always providing a new perspective on solving a problem. Much of my research at Vanderbilt was only possible with the help of great collaborators. I have had the privilege of working with many great labs, and I want to thank Ana Calvo, Nancy Keller, Gustavo Goldman, Fernando Rodrigues, and members of all of their labs for making the research in my dissertation possible. -
Molecular Identification of Fungi
Molecular Identification of Fungi Youssuf Gherbawy l Kerstin Voigt Editors Molecular Identification of Fungi Editors Prof. Dr. Youssuf Gherbawy Dr. Kerstin Voigt South Valley University University of Jena Faculty of Science School of Biology and Pharmacy Department of Botany Institute of Microbiology 83523 Qena, Egypt Neugasse 25 [email protected] 07743 Jena, Germany [email protected] ISBN 978-3-642-05041-1 e-ISBN 978-3-642-05042-8 DOI 10.1007/978-3-642-05042-8 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009938949 # Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany, kindly supported by ‘leopardy.com’ Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to Prof. Lajos Ferenczy (1930–2004) microbiologist, mycologist and member of the Hungarian Academy of Sciences, one of the most outstanding Hungarian biologists of the twentieth century Preface Fungi comprise a vast variety of microorganisms and are numerically among the most abundant eukaryotes on Earth’s biosphere. -
Paula Cristina Azevedo Rodrigues S L T I F U N O N R T O I S P T
Universidade do Minho Escola de Engenharia m o f r o f e Paula Cristina Azevedo Rodrigues s l t i f u n o n r t o i s p t e a c i h s i c n l e a d i g n i c r x a e o s t m d a l n f m o a o c m d l Mycobiota and aflatoxigenic profile of n o a t a e n a s t o Portuguese almonds and chestnuts from e i o t u i c g b u u o production to commercialisation t d c r o y o r M P p s e u g i r d o R o d e v e z A a n i t s i r C a l u a P 0 1 0 2 | o h n i M U November 2010 Universidade do Minho Escola de Engenharia Paula Cristina Azevedo Rodrigues Mycobiota and aflatoxigenic profile of Portuguese almonds and chestnuts from production to commercialisation Dissertation for PhD degree in Chemical and Biological Engineering Supervisors Professor Doutor Nelson Lima Doutor Armando Venâncio November 2010 The integral reproduction of this thesis or parts thereof is authorized only for research purposes provided a written declaration for permission of use Universidade do Minho, November 2010 Assinatura: THIS THESIS WAS PARTIALLY SUPPORTED BY FUNDAÇÃO PARA A CIÊNCIA E A TECNOLOGIA AND THE EUROPEAN SOCIAL FUND THROUGH THE GRANT REF . SFRH/BD/28332/2006, AND BY FUNDAÇÃO PARA A CIÊNCIA E A TECNOLOGIA AND POLYTECHNIC INSTITUTE OF BRAGANÇA THROUGH THE GRANT REF . -
Taxonomy, Chemodiversity, and Chemoconsistency of Aspergillus, Penicillium, and Talaromyces Species
View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Dec 20, 2017 brought to you by CORE provided by Online Research Database In Technology Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species Frisvad, Jens Christian Published in: Frontiers in Microbiology Link to article, DOI: 10.3389/fmicb.2014.00773 Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Frisvad, J. C. (2015). Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species. Frontiers in Microbiology, 5, [773]. DOI: 10.3389/fmicb.2014.00773 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. MINI REVIEW ARTICLE published: 12 January 2015 doi: 10.3389/fmicb.2014.00773 Taxonomy, chemodiversity, and chemoconsistency of Aspergillus, Penicillium, and Talaromyces species Jens C. Frisvad* Section of Eukaryotic Biotechnology, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark Edited by: Aspergillus, Penicillium, and Talaromyces are among the most chemically inventive of Jonathan Palmer, United States all fungi, producing a wide array of secondary metabolites (exometabolites). -
The Phylogeny of Plant and Animal Pathogens in the Ascomycota
Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus. -
DNA Fingerprinting Analysis of Petromyces Alliaceus (Aspergillus Section Flavi)
276 1039 DNA fingerprinting analysis of Petromyces alliaceus (Aspergillus section Flavi) Cesaria E. McAlpin and Donald T. Wicklow Abstract: The objective of this study was to evaluate the ability of the Aspergillus flavus pAF28 DA probe to pro duce DA fingerprints for distinguishing among genotypes of Petromyces alliaceus (Aspergillus section Flavi), a fun gus considered responsible for the ochratoxin A contamination that is occasionally observed in California fig orchards. P alliaceus (14 isolates), Petromyces albertensis (one isolate), and seven species of Aspergillus section Circumdati (14 isolates) were analyzed by DA fingerprinting using a repetitive sequence DNA probe pAF28 derived from A. flavus. The presence of hybridization bands with the DA probe and with the P alliaceus or P albertensis genomic DA in dicates a close relationship between A. flavus and P alliaceus. Twelve distinct DA fingerprint groups or genotypes were identified among the 15 isolates of Petromyces. Conspecificity of P alliaceus and P albertensis is suggested based on DA fingerprints. Species belonging to Aspergillus section Circumdati hybridized only slightly at the 7.0-kb region with the repetitive DA probe, unlike the highly polymorphic hybridization patterns obtained from P alliaceus and A. jZavus, suggesting very little homology of the probe to Aspergillus section Circumdati genomic DNA. The pAF28 DA probe offers a tool for typing and monitoring specific P alliaceus clonal populations and for estimating the genotypic diversity of P alliaceus in orchards, -
Clinical and Laboratory Profile of Chronic Pulmonary Aspergillosis
Original article 109 Clinical and laboratory profile of chronic pulmonary aspergillosis: a retrospective study Ramakrishna Pai Jakribettua, Thomas Georgeb, Soniya Abrahamb, Farhan Fazalc, Shreevidya Kinilad, Manjeshwar Shrinath Baligab Introduction Chronic pulmonary aspergillosis (CPA) is a type differential leukocyte count, and erythrocyte sedimentation of semi-invasive aspergillosis seen mainly in rate. In all the four dead patients, the cause of death was immunocompetent individuals. These are slow, progressive, respiratory failure and all patients were previously treated for and not involved in angio-invasion compared with invasive pulmonary tuberculosis. pulmonary aspergillosis. The predisposing factors being Conclusion When a patient with pre-existing lung disease compromised lung parenchyma owing to chronic obstructive like chronic obstructive pulmonary disease or old tuberculosis pulmonary disease and previous pulmonary tuberculosis. As cavity presents with cough with expectoration, not many studies have been conducted in CPA with respect to breathlessness, and hemoptysis, CPA should be considered clinical and laboratory profile, the study was undertaken to as the first differential diagnosis. examine the profile in our population. Egypt J Bronchol 2019 13:109–113 Patients and methods This was a retrospective study. All © 2019 Egyptian Journal of Bronchology patients older than 18 years, who had evidence of pulmonary Egyptian Journal of Bronchology 2019 13:109–113 fungal infection on chest radiography or computed tomographic scan, from whom the Aspergillus sp. was Keywords: chronic pulmonary aspergillosis, immunocompetent, laboratory isolated from respiratory sample (broncho-alveolar wash, parameters bronchoscopic sample, etc.) and diagnosed with CPA from aDepartment of Microbiology, Father Muller Medical College Hospital, 2008 to 2016, were included in the study. -
Taxonomy and Evolution of Aspergillus, Penicillium and Talaromyces in the Omics Era – Past, Present and Future
Computational and Structural Biotechnology Journal 16 (2018) 197–210 Contents lists available at ScienceDirect journal homepage: www.elsevier.com/locate/csbj Taxonomy and evolution of Aspergillus, Penicillium and Talaromyces in the omics era – Past, present and future Chi-Ching Tsang a, James Y.M. Tang a, Susanna K.P. Lau a,b,c,d,e,⁎, Patrick C.Y. Woo a,b,c,d,e,⁎ a Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong b Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong c State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong d Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong e Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong article info abstract Article history: Aspergillus, Penicillium and Talaromyces are diverse, phenotypically polythetic genera encompassing species im- Received 25 October 2017 portant to the environment, economy, biotechnology and medicine, causing significant social impacts. Taxo- Received in revised form 12 March 2018 nomic studies on these fungi are essential since they could provide invaluable information on their Accepted 23 May 2018 evolutionary relationships and define criteria for species recognition. With the advancement of various biological, Available online 31 May 2018 biochemical and computational technologies, different approaches have been adopted for the taxonomy of Asper- gillus, Penicillium and Talaromyces; for example, from traditional morphotyping, phenotyping to chemotyping Keywords: Aspergillus (e.g. lipotyping, proteotypingand metabolotyping) and then mitogenotyping and/or phylotyping. Since different Penicillium taxonomic approaches focus on different sets of characters of the organisms, various classification and identifica- Talaromyces tion schemes would result.