The Origin of Spirula Spirula (Linne, 1758)

Total Page:16

File Type:pdf, Size:1020Kb

The Origin of Spirula Spirula (Linne, 1758) Journal of Life Sciences 12 (2018) 30-46 D doi: 10.17265/1934-7391/2018.01.004 DAVID PUBLISHING The Origin of Spirula spirula (Linne, 1758) E. O. Heyfetz Nachman mi Braslaw 14/3, Yaffo 6808998, Israel Abstract: The article presents evidence regarding the origin of Spirula from spiral-shelled forms. The geological age of the species is revised from the Miocene to the Jurassic. The causes of the reorientation of the shell are elucidated. The mode of life of the mollusk is specified. The influence of the theory on facts perception is shown. Key words: Buoyancy, chambers, distribution and geological age, guard, keels, mode of life, origin, orientation of the shell, phragmacone, proostracum, Spirula L. 1. Introduction concern with the subject of work, were excluded. In spite of such limitation a number of facts, The spiral shell has been appeared many times unnoticed earlier, were found. It is natural that the during evolution of different shelled animals. There signs, seeming negligible ones, acquire importance by are many foraminifers, sessile bristleworm Spirorbis; another putting of the question, and in contrary: the gastropods; some bivalves (Exogirus, Gryphea, consideration of question from a “conventional” jewelbox clams, the rudist Toucasia, the extinct standpoint could just obstruct or even to distort Pliocenian cockle Prosodacna and so on). facts—that will be shown below. This moment is not In cephalopods external planispiral shell appears ever taken into account in the scientific periodic, independently in nautilids, ammonits and relying on authority of a specialist in such or another secondarily—in females of Argonauta. The results of branch. these processes are on hand: shell compaction as adaptation to the greater maneuverability (at the 2. Morphological expense of the speed). The other deal that on the way 2.1 Spirula and Familiar Forms to this solution was temporary rejection from active mode of life—pass from the straight shell to the bent Spirula is a relict cephalopod with internal spiral one and only afterwards—to the spiral one. shell. Currently belemnite-like Belemnoseina with Even more problematic appears the postulated bent chambered part of the shell (phragmocone) are tendency of internal shell spiralization, whose clear accepted for the ancestral group. example is spirula. The given article provides Such a standpoint could not be based empirically: arguments in favor of the contrary standpoint. In in contrast from belemnites, which are guiding fossils, contrast to lookthrough works, it represents no more belemnoseines are extremely rare, since their guard than spread out proof of the correspondent thesis. For consists not from the calcite, but from less stable this reason the author stands just on the certain aspects, aragonite [1]. The other deal intuitive ground: without pretending of the complete description of presence of specific endocochlear appendages in Spirula and familiar forms. Furthermore, in the course belemnoseines, permitting their approach with of arguments elaboration, those losing immediate ammonites, seems to be more important sign than spiral shape of shell, as was mentioned above, Corresponding author: E. O. Heyfetz, independent appearing independently in different mollusc groups researcher, research field: paleontologyand hydrobiology. and a number of other shelled animals. Correspondent The Origin of Spirula spirula (Linne, 1758) 31 Fig. 1 The origin of Spirula due to the current version. 32 The Origin of Spirula spirula (Linne, 1758) Fig. 2 The shells of the families Belopteridae (A) Belemnopsidae (B) and Spirulirostridae (C)—from the “fundamentals of paleontology. version was defined also by opposite spiral orientation utile volume of the body cavity, and, in contrast, the (see below). production of phragmocone leads to insignificant Meanwhile, the normal tendency in the evolution of increase of spending on shell building and to mollusc with the internal shell is its reduction up to its reduction of the utile volume of cavity, aggravated in complete disappearance. Apparent exceptions, like the bent and spiral form by the bending of shell, guard, increasing material spending, decrease the whose alternative is a simple increase of the working volume, i.e. the force of buoyancy of phragmocone diameter, like in belemnites. Meanwhile, cephalopods’ shell. the most bent forms of belemnoseines (e.g. From the phragmocone function as such it was Spirulirostra) possess a massive guard, reducing the assumed that the process of internal shell spiralization assumed adaptation to zero. was connected with development of passive buoyancy Furthermore, guards of belemnoseines are means. This is the classical version of the sepiae sufficiently more changeable than the phragmocones evolution [2] that obviously disregards with benthic (Fig. 2). mode of life of the majority of cuttlefishes. Since natural selection preserves only favorable In addition, from all the standpoints the most changes, the guard would reflect evolutional tendency efficient mean to increase buoyancy would be the in the first turn. Meanwhile, as was said above, in the reduction of guard. First and foremost, it would give boundaries of suborder of Belemnoseina the guard significant economy of material plus increase of the does not show inclination to reduction. In such a way, The Origin of Spirula spirula (Linne, 1758) 33 the conclusion about belemnoseines’ shell negatively: “…Among the most ancient coleoid there spiralization does not correspond both with relative are no one spirally coiled form. The impossibility of variability of its parts, and with needs of the molluscs. the coleoid origin from spirally coiled forms may be Both absence of any traces of guard and protoconch reinforced by logical arguments. in Spirula are not evident in favor of the accepted Proostracum—straight supportive structure, version. Questions about their traces were asked commeasurable by the length with the body—would repeatedly. Both Naef and Bruun emphasize that the not appear in animals with spirally coiled shell” [5]. juvenile Spirula completely lacks any traces of The spread objection as such is the evident about protoconch [2, 3]. Chun in after consideration of importance of the problem. The other deal, how lightful organ of Spirula initially accepted it for probative the arguments mentioned are. vestigial guard [4]. Later he established the real The internal shell bending in familiars of Spirula function of the organ that was interpreted before as an Bizikov considers as a juvenile adaptation to adheasing disc. Warnke and Boletzky (2009) accept planctonic mode of life [5]. for the remnant of guard a thin membrane, developing To this argument the mentioned contradiction on the ventral (i.e., anti-guard) side of initial chambers between the function of guard and phragmocone is of Spirula shell. applied. The robust capitulum, enveloping the first Bizikov elaborates the theoretical grounding of the phragmocone chambers from the ventral side (Fig. 3) current version. The author dwells on the question of is evident that the guard formation even preceded the coleoids’ origin from the spiral forms, and solves it phragmocone bending. Fig. 3 The comparative shell morphology of Belemnitida and Belemnoseina. 34 The Origin of Spirula spirula (Linne, 1758) Fig. 4 The pair of keels on the juvenile whorls of the shell of Spirula (drawn from the object). In the process of further shell growth the mantle Such a suggestion permits to look on the facts more sack, stretched on the phragmocone, lost the contact closely. Let us consider the shell, whose juvenile with its concave part and ceased to produce the guard bubble–like chambers differ so sharply from on the ventral side (Figs. 2 and 3)—in contrast to that barrel–like adult ones. On the internal (e.g. anti-guard) of belemnites. side of the juvenile whorl there is a pair of keels with The given peculiarity is preserved also in furrow between them (like runners). Externally it belemnoseines with straighten shell and their resembles siphuncle, nevertheless, considering descendants, true cuttlefishes, where bending of sections either samples with broken chambers it may phragmocone could not be obstacle for guards’ be easily ascertain that the given formations are development. This suggests that the straighten forms completely independent (Fig. 4). originated from the bent ones, and not on the contrary. In contrast to the guard of belemnoseines and Correspondingly, both absence of specific sepiids, that is no more than overflow, the keels are appendages, and the spiral shape of shell are clearly separated from the phragmocone. Appearing interpreted as the evidence of neothenic origin of the on the 2-nd chamber after protoconch they are mollusc [5]. smoothen towards 12-th, reaching 0.3 mm in height. The Origin of Spirula spirula (Linne, 1758) 35 Fig. 5 Cross-section of the juvenile whorl. 24—ventral rib. From 2. Due to their position and geometrically correct Naef—combination of membrane with keels. shape, they represent a kind of sheath that enveloped In such a way, the internal side of whorls, formerly external part of the previous whorl. contacting with previous ones, bears a whole number The given structure was not described in of evidences of its past significance, vividly showing details—that may be explained by its small size and that Spirula comes not from forms not with bent, but “obscure significance”. Naef restricts himself by with tightly spiral shell. mentioning of ventral rib of periostracum on the 2.2 The Ammonite Features of Spirula juvenile part of the shell [2], putting the drawing of first three chambers’ section, but with no detail A whole number of signs closing Spirula with description of the formation. ectocochlear molluscs are overlooked when it is Sometimes between the ventral sides of the considered from the standpoint of the current version. protoconch and the following chamber thin membrane Thus, the internal shell of Spirula is not inscribed in is preserved. It was described by Branco, 1880 and the contours of body, but is projected out on both Appelöf, 1893 and currently it was re-discovered by ventral and dorsal sides of the body.
Recommended publications
  • Nautiloid Shell Morphology
    MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOWER STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOIVER 1964 STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS EXOFFICIO THEHONORABLEJACKM.CAMPBELL ................................ Governor of New Mexico LEONARDDELAY() ................................................... Superintendent of Public Instruction APPOINTEDMEMBERS WILLIAM G. ABBOTT ................................ ................................ ............................... Hobbs EUGENE L. COULSON, M.D ................................................................. Socorro THOMASM.CRAMER ................................ ................................ ................... Carlsbad EVA M. LARRAZOLO (Mrs. Paul F.) ................................................. Albuquerque RICHARDM.ZIMMERLY ................................ ................................ ....... Socorro Published February 1 o, 1964 For Sale by the New Mexico Bureau of Mines & Mineral Resources Campus Station, Socorro, N. Mex.—Price $2.50 Contents Page ABSTRACT ....................................................................................................................................................... 1 INTRODUCTION
    [Show full text]
  • Cephalopoda) Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies
    New Eocene coleoid (Cephalopoda) diversity from statolith remains: taxonomic assignation, fossil record analysis, and new data for calibrating molecular phylogenies. Pascal Neige, Hervé Lapierre, Didier Merle To cite this version: Pascal Neige, Hervé Lapierre, Didier Merle. New Eocene coleoid (Cephalopoda) diversity from sta- tolith remains: taxonomic assignation, fossil record analysis, and new data for calibrating molecu- lar phylogenies.. PLoS ONE, Public Library of Science, 2016, 11 (5), pp.e0154062. 10.1371/jour- nal.pone.0154062. hal-01319404 HAL Id: hal-01319404 https://hal.archives-ouvertes.fr/hal-01319404 Submitted on 23 May 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCH ARTICLE New Eocene Coleoid (Cephalopoda) Diversity from Statolith Remains: Taxonomic Assignation, Fossil Record Analysis, and New Data for Calibrating Molecular Phylogenies Pascal Neige1*, Hervé Lapierre2, Didier Merle3 1 Univ. Bourgogne Franche-Comté, CNRS, Biogéosciences, 6 bd Gabriel, 21000, Dijon, France, a11111 2 Département Histoire de la Terre, (MNHN, CNRS, UPMC-Paris6), Paris, France, 3 Département Histoire de la Terre, Sorbonne Universités (CR2P—MNHN, CNRS, UPMC-Paris6), Paris, France * [email protected] Abstract OPEN ACCESS New coleoid cephalopods are described from statolith remains from the Middle Eocene Citation: Neige P, Lapierre H, Merle D (2016) New (Middle Lutetian) of the Paris Basin.
    [Show full text]
  • Cambrian Cephalopods
    BULLETIN 40 Cambrian Cephalopods BY ROUSSEAU H. FLOWER 1954 STATE BUREAU OF MINES AND MINERAL RESOURCES NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY CAMPUS STATION SOCORRO, NEW MEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Eugene Callaghan, Director THE REGENTS MEMBERS Ex OFFICIO The Honorable Edwin L. Mechem ...................... Governor of New Mexico Tom Wiley ......................................... Superintendent of Public Instruction APPOINTED MEMBERS Robert W. Botts ...................................................................... Albuquerque Holm 0. Bursum, Jr. ....................................................................... Socorro Thomas M. Cramer ........................................................................ Carlsbad Frank C. DiLuzio ..................................................................... Los Alamos A. A. Kemnitz ................................................................................... Hobbs Contents Page ABSTRACT ...................................................................................................... 1 FOREWORD ................................................................................................... 2 ACKNOWLEDGMENTS ............................................................................. 3 PREVIOUS REPORTS OF CAMBRIAN CEPHALOPODS ................ 4 ADEQUATELY KNOWN CAMBRIAN CEPHALOPODS, with a revision of the Plectronoceratidae ..........................................................7
    [Show full text]
  • Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda)
    GFF ISSN: 1103-5897 (Print) 2000-0863 (Online) Journal homepage: http://www.tandfonline.com/loi/sgff20 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei To cite this article: Harry Mutvei (2016): Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda), GFF, DOI: 10.1080/11035897.2016.1227364 To link to this article: http://dx.doi.org/10.1080/11035897.2016.1227364 Published online: 21 Sep 2016. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sgff20 Download by: [Dr Harry Mutvei] Date: 21 September 2016, At: 11:07 GFF, 2016 http://dx.doi.org/10.1080/11035897.2016.1227364 Siphuncular Structure in the Extant Spirula and in Other Coleoids (Cephalopoda) Harry Mutvei Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden ABSTRACT ARTICLE HISTORY The shell wall in Spirula is composed of prismatic layers, whereas the septa consist of lamello-fibrillar nacre. Received 13 May 2016 The septal neck is holochoanitic and consists of two calcareous layers: the outer lamello-fibrillar nacreous Accepted 23 June 2016 layer that continues from the septum, and the inner pillar layer that covers the inner surface of the septal KEYWORDS neck. The pillar layer probably is a structurally modified simple prisma layer that covers the inner surface of Siphuncular structures; the septal neck in Nautilus. The pillars have a complicated crystalline structure and contain high amount of connecting rings; Spirula; chitinous substance.
    [Show full text]
  • Organic Carbon Isotope Chemostratigraphy of Late Jurassic Early Cretaceous Arctic Canada
    University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Geography, Earth and Environmental Sciences Finding the VOICE: organic carbon isotope chemostratigraphy of Late Jurassic Early Cretaceous Arctic Canada Galloway, JM http://hdl.handle.net/10026.1/15324 10.1017/s0016756819001316 Geological Magazine Cambridge University Press (CUP) All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Proof Delivery Form Geological Magazine Date of delivery: Journal and vol/article ref: geo 1900131 Number of pages (not including this page): 15 This proof is sent to you on behalf of Cambridge University Press. Please check the proofs carefully. Make any corrections necessary on a hardcopy and answer queries on each page of the proofs Please return the marked proof within 2 days of receipt to: [email protected] Authors are strongly advised to read these proofs thoroughly because any errors missed may appear in the final published paper. This will be your ONLY chance to correct your proof. Once published, either online or in print, no further changes can be made. To avoid delay from overseas, please send the proof by airmail or courier. If you have no corrections to make, please email [email protected] to save having to return your paper proof. If corrections are light, you can also send them by email, quoting both page and line number.
    [Show full text]
  • Vita Scientia Revista De Ciências Biológicas Do CCBS
    Volume III - Encarte especial - 2020 Vita Scientia Revista de Ciências Biológicas do CCBS © 2020 Universidade Presbiteriana Mackenzie Os direitos de publicação desta revista são da Universidade Presbiteriana Mackenzie. Os textos publicados na revista são de inteira responsabilidade de seus autores. Permite-se a reprodução desde que citada a fonte. A revista Vita Scientia está disponível em: http://vitascientiaweb.wordpress.com Dados Internacionais de Catalogação na Publicação (CIP) Vita Scientia: Revista Mackenzista de Ciências Biológi- cas/Universidade Presbiteriana Mackenzie. Semestral ISSN:2595-7325 UNIVERSIDADE PRESBITERIANA MACKENZIE Reitor: Marco Túllio de Castro Vasconcelos Chanceler: Robinson Granjeiro Pro-Reitoria de Graduação: Janette Brunstein Pro-Reitoria de Extensão e Cultura: Marcelo Martins Bueno Pro-Reitoria de Pesquisa e Pós-Graduação: Felipe Chiarello de Souza Pinto Diretora do Centro de Ciências Biológicas e da Saúde: Berenice Carpigiani Coordenador do Curso de Ciências Biológicas: Adriano Monteiro de Castro Endereço para correspondência Revista Vita Scientia Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie Rua da Consolação 930, São Paulo (SP) CEP 01302907 E-mail: [email protected] Revista Vita Scientia CONSELHO EDITORIAL Adriano Monteiro de Castro Camila Sachelli Ramos Fabiano Fonseca da Silva Leandro Tavares Azevedo Vieira Patrícia Fiorino Roberta Monterazzo Cysneiros Vera de Moura Azevedo Farah Carlos Eduardo Martins EDITORES Magno Botelho Castelo Branco Waldir Stefano CAPA Bruna Araujo PERIDIOCIDADE Publicação semestral IDIOMAS Artigos publicados em português ou inglês Universidade Presbiteriana Mackenzie, Revista Vita Scientia Rua da Consolaçãoo 930, Edíficio João Calvino, Mezanino Higienópolis, São Paulo (SP) CEP 01302-907 (11)2766-7364 Apresentação A revista Vita Scientia publica semestralmente textos das diferentes áreas da Biologia, escritos em por- tuguês ou inglês: Artigo resultados científicos originais.
    [Show full text]
  • First Record of Non-Mineralized Cephalopod Jaws and Arm Hooks
    Klug et al. Swiss J Palaeontol (2020) 139:9 https://doi.org/10.1186/s13358-020-00210-y Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access First record of non-mineralized cephalopod jaws and arm hooks from the latest Cretaceous of Eurytania, Greece Christian Klug1* , Donald Davesne2,3, Dirk Fuchs4 and Thodoris Argyriou5 Abstract Due to the lower fossilization potential of chitin, non-mineralized cephalopod jaws and arm hooks are much more rarely preserved as fossils than the calcitic lower jaws of ammonites or the calcitized jaw apparatuses of nautilids. Here, we report such non-mineralized fossil jaws and arm hooks from pelagic marly limestones of continental Greece. Two of the specimens lie on the same slab and are assigned to the Ammonitina; they represent upper jaws of the aptychus type, which is corroborated by fnds of aptychi. Additionally, one intermediate type and one anaptychus type are documented here. The morphology of all ammonite jaws suggest a desmoceratoid afnity. The other jaws are identifed as coleoid jaws. They share the overall U-shape and proportions of the outer and inner lamellae with Jurassic lower jaws of Trachyteuthis (Teudopseina). We also document the frst belemnoid arm hooks from the Tethyan Maastrichtian. The fossils described here document the presence of a typical Mesozoic cephalopod assemblage until the end of the Cretaceous in the eastern Tethys. Keywords: Cephalopoda, Ammonoidea, Desmoceratoidea, Coleoidea, Maastrichtian, Taphonomy Introduction as jaws, arm hooks, and radulae are occasionally found Fossil cephalopods are mainly known from preserved (Matern 1931; Mapes 1987; Fuchs 2006a; Landman et al. mineralized parts such as aragonitic phragmocones 2010; Kruta et al.
    [Show full text]
  • 06 Pavia.Pmd
    Bollettino della Società Paleontologica Italiana, 45 (2-3), 2006, 217-226. Modena, 15 gennaio 2007217 Lissoceras monachum (Gemmellaro), a ghost Ammonitida of the Tethyan Bathonian Giulio PAVIA G. Pavia, Dipartimento di Scienze della Terra, via Valperga Caluso 35, I-10124 Torino (Italy); [email protected] KEY-WORDS - Systematics, Ammonitida, Lissoceras, Bathonian, Tethys. ABSTRACT - L. monachum has been frequently recorded in the Upper Bajocian and Lower Bathonian, but references in literature differ in morphological details as they are based on a juvenile and poorly-preserved holotype. In addition, the type of L. monachum comes from a bed affected by taphonomical condensation mixing fossils from Early and Middle Bathonian times, i.e. the biochronological meaning of Gemmellaro’s taxon cannot be specified with biostratigraphic criteria from the type-locality. These references are here revised and refused on the basis of two topotypes recently sampled at Monte Erice in western Sicily, which allow a precise morphological definition of L. monachum by means of architectural and sutural characteristics. The only acceptable biostratigraphic datum comes from a Lower Bathonian specimen from southern France. The differences from L. ferrifex, L. magnum, and L. ventriplanum are discussed. Finally, the suture-line of topotype PU111502 of L. monachum and those specimens from the Upper Bajocian of the Venetian Alps, here named L. aff. monachum, support the phyletic relationships between L. ferrifex and L. magnum through transitional forms of L. monachum aged for the Tethyan Early Bathonian. RIASSUNTO - [Lissoceras monachum (Gemmellaro), un Ammonitida fantasma del Batoniano Tetideo] - L’ammonite Lissoceras monachum, della famiglia medio- e tardo-giurassica Lissoceratidae, risulta ripetutamente citata nella letteratura sistematica relativa al Baiociano superiore e al Batoniano inferiore.
    [Show full text]
  • Training Workshop on the Taxonomy of Marine Molluscs Mauritius, October 2017
    Training workshop on the taxonomy of marine molluscs Mauritius, October 2017 Introduction IOC Biodiversity and MOI organized a regional workshop in Mauritius in October 2017 for 4 days. The main objective of the workshop were (i) to train regional marine biologists to the taxonomy of molluscs, (ii) to build capacities in the description and identification of molluscs, (iii) to assess the mollusc biodiversity and its evolution in tropical marine ecosystems. Figure 1: Le Bouchon sampling site Material and Methods About 20 participants attended the workshop with about half of them from Mauritius and the others from Madagascar, Comoros, Kenya and Tanzania. The workshop was led by an Australian expert. The workshop followed these 3 steps: - Day 1: Formal classroom training about taxonomy, molluscs and shells features. Generals information slide about molluscs were projected. - Day 2: Field sampling in Mauritius at Le Bouchon (South-east coast). The sampling was performed in various biotopes provided at the location: beach, rocky shore, mangrove and lagoon. Lagoon itself provided various environments (live coral, rubbles, sand, grass, silt). Some samplers were on foot and other snorkelling. The only method used was hand picking of shells during one hour. Shells were either dead (empty or crabbed) or alive with limitation of 1 specimen per species. The objective of the sampling was not quantitative but qualitative. The shells have been washed and put to dry in the lab after the field collection. - Day 3-4: Analysis of the samples sorted and numbered by kind and appearance. Participants had to write a description of as many species as they could in group of 2-3.
    [Show full text]
  • Upon the Systematics of the Mesozoic Ammonitida
    bodoA0)30e?f% 80060060660)6 od6<$03f)0b 80V)8oO, 160,^1, 1999 BULLETIN OF THE GEORGIAN ACADEMY OF SCIENCES,' 160, J* 1, 1999 PALEONTOLOGY I.Kvantaliani, Corr. Member of the Academy M.Topchishvili, T.Lominadze, M.Sharikadze Upon the Systematics of the Mesozoic Ammonitida Presented January 25, 1999 ABSTRACT. Systematics of the ammonoids highest taxa is based on the septa! line onto-phylogcny and the indexing of septal line elements isfounded on the homol­ ogy. Basing on the septal line development alongside with already known suborders (Ammonitina, Pcrisphinctina (emend.), Haploccratina, Ancyloccratina) wc have stated two new suborders Olcostcphanina and Cardioccratina. Key words: systematics. homology. Ammonitida. Systematics and phytogeny of the highest taxa of the Jurassic-Cretaceous Ammonitida are described in a number of works f 1-9]. Analysis of (he ontogenesis of septal lines (and some other signs) allowed N.Bcsnosov and 1. Michailova |2.3| to establish four suborders within the order of Ammonitida - Ammonitina Hyatt. 1889: Haploceratina Bcsnosov ct Michailova. 1983: Ancyloccratina Wiedmann. 1966 and Pcrisphinctina Bcsnosov cl Michailova. 1983, A. new suborder of Pcrisphinctina J3J. identified by N. Bcsnosov and I. Michailova in 1983. and phylogenetically closely related to it systematics of taxons arc of special interest. In turn, the suborder of Pcrisphinctina comprises four supcrfamilics (33 families): Stephanoceratoidea Ncumayr. 1875: Pcrisphinctoidca Stcinmann. 1890: Desmoceratoidca Zittcl. 1895 and Hoplitoidca H. Douville, 1890 [3j. Within the super- family of Perisphinctoidea s. lato the family of Olcostephanidae Pavlov. 1892. was previ­ ously mentioned. Earlier, on the basis of morphogenctic study of shells of some represen­ tatives of various families of Pcrisphinctidac |4-6}.
    [Show full text]
  • The Biology and Ecology of the Common Cuttlefish (Sepia Officinalis)
    Supporting Sustainable Sepia Stocks Report 1: The biology and ecology of the common cuttlefish (Sepia officinalis) Daniel Davies Kathryn Nelson Sussex IFCA 2018 Contents Summary ................................................................................................................................................. 2 Acknowledgements ................................................................................................................................. 2 Introduction ............................................................................................................................................ 3 Biology ..................................................................................................................................................... 3 Physical description ............................................................................................................................ 3 Locomotion and respiration ................................................................................................................ 4 Vision ................................................................................................................................................... 4 Chromatophores ................................................................................................................................. 5 Colour patterns ................................................................................................................................... 5 Ink sac and funnel organ
    [Show full text]
  • Ommastrephidae 199
    click for previous page Decapodiformes: Ommastrephidae 199 OMMASTREPHIDAE Flying squids iagnostic characters: Medium- to Dlarge-sized squids. Funnel locking appara- tus with a T-shaped groove. Paralarvae with fused tentacles. Arms with biserial suckers. Four rows of suckers on tentacular clubs (club dactylus with 8 sucker series in Illex). Hooks never present hooks never on arms or clubs. One of the ventral pair of arms present usually hectocotylized in males. Buccal connec- tives attach to dorsal borders of ventral arms. Gladius distinctive, slender. funnel locking apparatus with Habitat, biology, and fisheries: Oceanic and T-shaped groove neritic. This is one of the most widely distributed and conspicuous families of squids in the world. Most species are exploited commercially. Todarodes pacificus makes up the bulk of the squid landings in Japan (up to 600 000 t annually) and may comprise at least 1/2 the annual world catch of cephalopods.In various parts of the West- ern Central Atlantic, 6 species of ommastrephids currently are fished commercially or for bait, or have a potential for exploitation. Ommastrephids are powerful swimmers and some species form large schools. Some neritic species exhibit strong seasonal migrations, wherein they occur in huge numbers in inshore waters where they are accessable to fisheries activities. The large size of most species (commonly 30 to 50 cm total length and up to 120 cm total length) and the heavily mus- cled structure, make them ideal for human con- ventral view sumption. Similar families occurring in the area Onychoteuthidae: tentacular clubs with claw-like hooks; funnel locking apparatus a simple, straight groove.
    [Show full text]