Safety Data Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Safety Data Sheet SAFETY DATA SHEET Regulation (EC) No 1907/2006 (REACH), Article 31 Revision date: 18-Apr-2017 . Version: 3 1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING 1.1. Product Identifier Product code: CESSULFSOL Product name: Cesium Sulfate Solution, Caesium Sulfate Solution REACH Registration Number: See Section 3 Synonyms: Cs2SO4, Cesium Sulphate, Caesium Sulfate 1.2. Relevant identified uses of the substance or mixture and uses advised against Recommended use: Catalyst, Industrial Products Identified Uses and corresponding Exposure Scenarios (ES): ES1: industrial use as a component in a catalyst ES2: industrial use as a catalyst ES3: Formulation at industrial sites Uses advised against: No information available. 1.3. Details of the supplier of the safety data sheet Cabot Specialty Fluids C/O Cabot Corporation 4400 North Point Parkway Suite 200 Alpharetta, Georgia30022 United States PHONE+1 678 297 1300 E-mail: [email protected] E-mail address: [email protected] 1.4. Emergency telephone number Emergency Telephone Number: 24H/7d service UK: CHEMTREC: (+44)-870-8200418 US: CHEMTREC: 1-800-424-9300 or 1-703-527-3887 Canada: CANUTEC 1-613-996-6666 International CHEMTREC: +1 703-741-5970 or +1-703-527-3887 2. HAZARDS IDENTIFICATION 2.1. Classification of the substance or mixture ___________________________________________________________________________________________ Page 1 / 12 Product code: CESSULFSOL Product name: Cesium Sulfate Solution, Caesium Revision date: 18-Apr-2017 Sulfate Solution ___________________________________________________________________________________________ Acute toxicity - Oral Category 4 - (H302) Reproductive toxicity Category 2 - (H361f) Specific target organ toxicity (repeated exposure) Category 2 - (H373) 2.2. Label Elements Signal Word: WARNING Hazard statements: H302 - Harmful if swallowed H361f - Suspected of damaging fertility H373 - May cause damage to organs (kidneys, adrenals) through prolonged or repeated exposure Precautionary statements: P201 - Obtain special instructions before use P202 - Do not handle until all safety precautions have been read and understood P260 - Do not breathe mist/spray P280 - Wear protective gloves and eye/face protection P308 + P313 - IF exposed or concerned: Get medical advice/attention P301 + P312 - IF SWALLOWED: Call a POISON CENTER if you feel unwell P330 - Rinse mouth P264 - Wash face, hands and any exposed skin thoroughly after handling P270 - Do not eat, drink or smoke when using this product P405 - Store locked up P501 - Dispose of contents/container in accordance with local, regional, national and international regulations 2.3. Other Hazards Principle Routes of Exposure: Eye contact, Skin Contact Eye Contact: Dried product may cause mechanical irritation. Skin Contact: None expected based on component data. Inhalation: Due to its liquid state, this material is not expected to be a significant inhalation hazard. Aerosols or dried product may be irritating to respiratory tract. Reproductive Effects: Male Reproductive System. See Section 11. Carcinogenicity: Does not contain any substances listed by IARC (International Agency for Research on Cancer), NTP (National Toxicology Program), OSHA (Occupational Safety and Health Administration), ACGIH (American Conference of Governmental Industrial Hygienists) or ___________________________________________________________________________________________ Page 2 / 12 Product code: CESSULFSOL Product name: Cesium Sulfate Solution, Caesium Revision date: 18-Apr-2017 Sulfate Solution ___________________________________________________________________________________________ EU (European Union). See also Section 11. Target Organ Effects: Respiratory system, Eyes, Skin, Kidney, Adrenal gland Medical Conditions Aggravated by Kidney disorders, Adrenal gland disorders Exposure: Potential Environmental Effects: None known. See also Section 12. 3. COMPOSITION/INFORMATION ON INGREDIENTS 3.1 Substances Not Applicable 3.2 Mixtures Chemical name EC No: CAS No weight-% Classification Classification according REACH according to to Regulation (EC) No. registration Directive 1272/2008 [CLP] number 67/548/EEC or 1999/45/EC Water 231-791-2 7732-18-5 50 - - * Cesium Sulfate 233-662-6 10294-54-9 50 - Acute Tox. 4 - H302; ** Repro 2 - H361f; STOT RE 2 - H373 Other Information: The hyphen (-) means "not applicable" * Exempt ** Pre-registered 4. FIRST AID MEASURES 4.1. Description of first aid measures Skin Contact Wash thoroughly with soap and water. Remove contaminated clothing and shoes. Seek medical attention if symptoms develop. Eye contact Flush immediately with large amounts of water for 15 minutes. Seek medical attention if symptoms develop. Inhalation If cough, shortness of breath or other breathing problems occur, move to fresh air. Seek medical attention if symptoms persist. If necessary, restore normal breathing through standard first aid measures. Ingestion Do not induce vomiting. If conscious, give several glasses of water. Never give anything by mouth to an unconscious person. Seek medical attention. 4.2. Most important symptoms and effects, both acute and delayed ___________________________________________________________________________________________ Page 3 / 12 Product code: CESSULFSOL Product name: Cesium Sulfate Solution, Caesium Revision date: 18-Apr-2017 Sulfate Solution ___________________________________________________________________________________________ Symptoms: The most important known symptoms and effects are described in Section 2 and/or in Section 11. 4.3. Indication of any immediate medical attention and special treatment needed Note to physicians: Treat symptomatically. 5. FIRE-FIGHTING MEASURES 5.1. Extinguishing media Suitable Extinguishing Media: Use extinguishing measures that are appropriate to local circumstances and the surrounding environment. Carbon dioxide (CO2). Foam. Dry chemical. Water. Unsuitable Extinguishing Media: None. 5.2. Special hazards arising from the substance or mixture Specific hazards arising from the None. chemical: Hazardous combustion products: Sulphur oxides. Oxides of Cesium. 5.3. Advice for firefighters Special protective equipment for Wear suitable protective equipment. In the event of fire, wear self-contained breathing fire-fighters apparatus. Risk of Dust Explosion: Not Applicable: This product is an aqueous solution. 6. ACCIDENTAL RELEASE MEASURES 6.1. Personal precautions, protective equipment and emergency procedures Personal precautions: Avoid formation of mist and aerosols. Ensure adequate ventilation. Use personal protective equipment. See also Section 8. For emergency responders: Use personal protection recommended in Section 8. 6.2. Environmental precautions Environmental Precautions: Contain spilled material on land, if safe to do so. Local authorities should be advised if significant spillages cannot be contained. See also Section 13. 6.3. Methods and material for containment and cleaning up Methods for containment: Prevent further leakage or spillage if safe to do so. Methods for cleaning up: Soak up with inert absorbent material. Pick up and transfer to properly labeled containers. See Section 13. 6.4. Reference to other sections Reference to other sections See section 8 for more information. See section 13 for more information. ___________________________________________________________________________________________ Page 4 / 12 Product code: CESSULFSOL Product name: Cesium Sulfate Solution, Caesium Revision date: 18-Apr-2017 Sulfate Solution ___________________________________________________________________________________________ 7. HANDLING AND STORAGE 7.1. Precautions for safe handling Advice on safe handling: Avoid contact with skin and eyes. Avoid formation of mist and aerosols. Do not breathe aerosols or dust from dried material. Provide appropriate exhaust ventilation at machinery and at places where dust, aerosol, or mist can be generated. Avoid ingestion. Avoid prolonged or repeated exposure. General hygiene considerations: Handle in accordance with good industrial hygiene and safety practice. 7.2. Conditions for safe storage, including any incompatibilities Storage Conditions: Keep containers tightly closed in a cool, well-ventilated place. Keep in properly labeled containers. Do not store together with strong oxidizing agents. Incompatible materials: Strong oxidizing agents. Aluminum. Magnesium. Strong acids. 7.3. Specific end use(s) Risk Management Measures (RMM) See Exposure Scenarios. 8. EXPOSURE CONTROLS/PERSONAL PROTECTION 8.1. Control parameters Exposure guidelines: There are no exposure limits identified for this product. Derived No Effect Level (DNEL) Exposure via oral route is unlikely under normal foreseeable conditions of uses. DNEL - INHALATION for workers: 0.95 mg/m3 DNEL - DERMAL for workers: 0.14 mg/kg bw/d Predicted No Effect Concentration No information available. (PNEC) 8.2. Exposure controls Engineering Controls: Ensure adequate ventilation to minimize exposures. Provide appropriate exhaust ventilation at machinery and at places where dust, aerosol, or mist can be generated. Personal protective equipment [PPE] Respiratory Protection: Approved respirator may be necessary if local exhaust ventilation is not adequate. Respiratory protection in accordance with EN 149 and OSHA 1910.134. Hand Protection: Wear suitable gloves (in accordance with EN 374 and OSHA 1910.138): Nitrile rubber gloves. PVC or rubber gloves. Eye/face Protection: Eye / face protection in accordance with EN
Recommended publications
  • The Determination of Sulfate and Sulfide Sulfur in Rocks Or Minerals
    The Determination of Sulfate and Sulfide Sulfur in Rocks or Minerals By ANGELINA C. VLISIDIS CONTRIBUTIONS TO GEOCHEMISTRY GEOLOGICAL SURVEY BULLETIN 1214-D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 15 cents (paper cover) CONTENTS Page Abstract_____--__-___-_______-__---____,__-_-__-_---_-_______-_- Dl Introduction. ______________________________________________________ 1 Preparations. _________._.-.__-_-.__.._-_---__----.________._.._____ 2 Standard samples____________________________________________ 2 Reagents. _______________.-_-___-____-__-_-__-_-___-_______-_- 2 Procedure._______________________________________________________ 2 Results__ __________-______-_____----__--_--_----_-_-_-___-___--_ 3 References.._ _____________________________________________________ 5 TABLE Page TABLE 1. Results of sulfide and sulfate sulfur analyses in which varying amounts of a sulfate standard were added to sulfide minerals.. _ D4 m 209-517 66 CONTRIBUTIONS TO GEOCHEMISTRY THE DETERMINATION OF SULFATE AND SULFIDE SULFUR IN ROCKS OR MINERALS By ANGELINA C. VLISEDIS , ABSTRACT A method for the determination of sulfate and sulfide sulfur that occur together in rocks or minerals is presented. All the sulfate sulfur is converted to barium sulfate in an inert atmosphere to prevent oxidation of any sulfide sulfur. Cadmium chloride is added to precipitate any sulfide ion that may be liberated. The sulfate sulfur is then measured indirectly by the determination of the barium and is therefore unaffected by any. subsequent oxidation of the sulfide sulfur.
    [Show full text]
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Sulfur and Tennessee Row Crops
    W 435 SULFUR AND TENNESSEE ROW CROPS Sulfur (S) deficiencies have become more common in recent years. This publication outlines the importance and role of S in higher plants, summarizes recent research, and defines the University of Tennessee’s current S recommendations for row crops. Tyson B. Raper1, Angela T. McClure2, Frank Yin3 and Blake Brown4 1Assistant Professor, Cotton and Small Grains Specialist, Department of Plant Sciences 2Associate Professor, Corn and Soybean Specialist, Department of Plant Sciences 3Associate Professor, Cropping Systems Agronomist, Department of Plant Sciences 4Director, AgResearch and Education Center at Milan INTRODUCTION Sulfur (S) deficiencies have become more common in recent years due to a reduction in S deposition. Research at the University of Tennessee has begun to answer several key questions on crop response to applications of this nutrient. The objective of this publication is to outline the importance of S and the role it plays within higher plants, describe why the deficiencies are becoming more common, summarize recent research and define the University of Tennessee’s current S recommendations for Tennessee row crops. THE ROLE AND IMPORTANCE OF SULFUR IN HIGHER PLANTS Sulfur is an important nutrient in living systems; it is contained within four common amino acids that assist in the synthesis, structure and function of proteins (Brosnan & Brosnan, 2006). In plant nutrition, S is classified as a macronutrient since it is required in quantities much larger than most micronutrients. Within the macronutrient classification, S falls within the secondary nutrient subclassification along with calcium and magnesium. Although S isn’t a primary macronutrient, it is occasionally referred to as the fourth major nutrient (Stewart, 2010), and if contained within a fertilizer, the S percentage is commonly listed as the fourth Figure 1: Most S containing fertilizers have four number in the fertilizer analysis or grade numbers reported in the analysis or grade, with the first (Figure 1).
    [Show full text]
  • Introduction to Chemistry
    Introduction to Chemistry Author: Tracy Poulsen Digital Proofer Supported by CK-12 Foundation CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook Introduction to Chem... materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based Authored by Tracy Poulsen collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and 8.5" x 11.0" (21.59 x 27.94 cm) distribution of high-quality educational content that will serve both as core text as well as provide Black & White on White paper an adaptive environment for learning. 250 pages ISBN-13: 9781478298601 Copyright © 2010, CK-12 Foundation, www.ck12.org ISBN-10: 147829860X Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made Please carefully review your Digital Proof download for formatting, available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share grammar, and design issues that may need to be corrected. Alike 3.0 Unported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc- sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), We recommend that you review your book three times, with each time focusing on a different aspect. which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms. Check the format, including headers, footers, page 1 numbers, spacing, table of contents, and index. 2 Review any images or graphics and captions if applicable.
    [Show full text]
  • A Novel Exchange Method to Access Sulfated Molecules Jaber A
    www.nature.com/scientificreports OPEN A novel exchange method to access sulfated molecules Jaber A. Alshehri, Anna Mary Benedetti & Alan M. Jones* Organosulfates and sulfamates are important classes of bioactive molecules but due to their polar nature, they are both difcult to prepare and purify. We report an operationally simple, double ion- exchange method to access organosulfates and sulfamates. Inspired by the novel sulfating reagent, TriButylSulfoAmmonium Betaine (TBSAB), we developed a 3-step procedure using tributylamine as the novel solubilising partner coupled to commercially available sulfating agents. Hence, in response to an increasing demand for complementary methods to synthesise organosulfates, we developed an alternative sulfation route based on an inexpensive, molecularly efcient and solubilising cation exchanging method using of-the-shelf reagents. The disclosed method is amenable to a range of diferentially substituted benzyl alcohols, benzylamines and aniline and can also be performed at low temperature for sensitive substrates in good to excellent isolated yield. Organosulfates and sulfamates contain polar functional groups that are important for the study of molecu- lar interactions in the life sciences, such as: neurodegeneration1; plant biology2; neural stem cells3; heparan binding4; and viral infection5. Recent total syntheses including 11-saxitoxinethanoic acid6, various saccharide assemblies7–10, and seminolipid11 have all relied on the incorporation of a highly polar organosulfate motif. Importantly, the frst in class organosulfate containing antibiotic, Avibactam12, has led to the discovery of other novel β-lactamase inhibitors 13,14. Despite the importance of the sulfate group, there remain difculties with the ease of their synthesis to enable further biological study. Our own interest in developing sulfated molecules resulted from a medicinal chemistry challenge to reliably synthesise sulfated glycomimetics 15–18.
    [Show full text]
  • Sulfur Dioxide in Workplace Atmospheres (Bubbler)
    Withdrawn Provided For Historical Reference Only SULFUR DIOXIDE IN WORKPLACE ATMOSPHERES (BUBBLER) ♦ Method Number: ID-104 Matrix: Air OSHA PEL Sulfur Dioxide (Final Rule Limit): 2 ppm (Time Weighted Limit) 5 ppm (Short-Term Exposure Limit) Sulfur Dioxide (Transitional Limit): 5 ppm (Time Weighted Limit) Collection Device: A calibrated personal sampling pump is used to draw a known volume of air through a midget-fritted glass bubbler containing 10 to 15 mL of 0.3 N hydrogen peroxide. Recommended Air Volume: 15 to 60 L Recommended Sampling Rate: 1 L/min Analytical Procedure: Samples are directly analyzed with no sample preparation by ion chromatography as total sulfate. Detection Limit Qualitative: 0.0041 ppm (60-L air volume) Quantitative: 0.010 ppm (60-L air volume) Precision and Accuracy Validation Level: 2.5 to 10.0 ppm (60-L air volume) CVT 0.012 Bias -0.046 Overall Error ±7% Method Classification: Validated Method Chemist: Ted Wilczek, Edward Zimowski Date (Date Revised): 1981 (December, 1989) Commercial manufacturers and products mentioned in this method are for descriptive use only and do not constitute endorsements by USDOL-OSHA. Similar products from other sources can be substituted. Branch of Inorganic Methods Development OSHA Technical Center Salt Lake City, Utah 1 of 9 Note: OSHA no longer uses or supports this method (November 2019). Withdrawn Provided For Historical Reference Only 1. Introduction This method describes the collection and analysis of airborne sulfur dioxide (SO2) using midget-fritted glass bubblers (MFGBs) in the workplace. It is applicable for both short-term (STEL) and time weighted average (TWA) exposure evaluations.
    [Show full text]
  • Sodium Sulfate - Wikipedia, the Free Encyclopedia Page 1 of 7
    Sodium sulfate - Wikipedia, the free encyclopedia Page 1 of 7 Sodium sulfate From Wikipedia, the free encyclopedia Sodium sulfate is the sodium salt of Sodium sulfate sulfuric acid. When anhydrous, it is a white crystalline solid of formula Na2SO4 known as the mineral thenardite; the decahydrate Na2SO4·10H2O has been known as Glauber's salt or, historically, sal mirabilis since the 17th century. Another Other names solid is the heptahydrate, which transforms Thenardite (mineral) to mirabilite when cooled. With an annual Glauber's salt (decahydrate) production of 6 million tonnes, it is a major Sal mirabilis (decahydrate) commodity chemical and one of the most Mirabilite (decahydrate) damaging salts in structure conservation: when it grows in the pores of stones it can Identifiers achieve high levels of pressure, causing CAS number 7757-82-6 , structures to crack. 7727-73-3 (decahydrate) Sodium sulfate is mainly used for the PubChem 24436 manufacture of detergents and in the Kraft ChemSpider 22844 process of paper pulping. About two-thirds UNII 36KCS0R750 of the world's production is from mirabilite, the natural mineral form of the decahydrate, RTECS number WE1650000 and the remainder from by-products of Jmol-3D images Image 1 chemical processes such as hydrochloric (http://chemapps.stolaf.edu/jmol/jmol.php? acid production. model=%5BNa%2B%5D.%5BNa%2B% 5D.%5BO-%5DS%28%5BO-%5D%29% 28%3DO%29%3DO) Contents SMILES InChI ■ 1History ■ 2 Physical and chemical properties Properties ■ 3 Production Molecular Na2SO4 ■ 3.1 Natural sources formula
    [Show full text]
  • Sulfate in Well Water 08/02/2019R Environmental Health Division
    Sulfate Health Risks for Animals . Anion exchange is the most common method of removing large quantities of Sulfate occurs naturally in most of Minnesota’s Animals are also sulfate from water for commercial, groundwater. Higher levels of sulfate are sensitive to high livestock, and public supplies. It is not common in the western part of the state. At levels of sulfate. commonly used for individual household high levels, sulfate can give water a bitter or In young animals, water treatment. It is a process that medicinal taste and can have laxative effects. high levels may replaces negatively charged ions (such as You can find out the level of sulfate in your be associated sulfate) with sodium chloride or potassium water by having the water tested at a with severe, chronic diarrhea and even death. chloride (salts). Animals tend to get used to sulfate over time. laboratory. Adsorptive media filtration has a charged Diluting water high in sulfate with water low in media bed that can force ions of the sulfate can help avoid problems of diarrhea opposite charge (such as sulfate) to be Health Risks for Humans and dehydration in young animals and animals pulled out of the water and attach to the not used to drinking high sulfate water. People who are not media. used to water with high Contact a veterinarian or your county office of sulfate can get diarrhea the Minnesota Extension Service for more Learn more about these treatment options at and dehydration from information. the “Home Water Treatment” webpage. drinking the water. Note that water softeners, carbon filters, and Infants are often more Ways to Treat Sulfate sediment filters do not remove sulfate.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Sodium Dodecyl Sulphate
    SAFETY DATA SHEET Creation Date 24-Nov-2010 Revision Date 18-Jan-2018 Revision Number 5 1. Identification Product Name SDS Micropellets (sodium dodecyl sulfate) Cat No. : BP8200-100; BP8200-5; BP8200-500; BP8200-10 CAS-No 151-21-3 Synonyms Sodium lauryl sulfate; SDS; Dodecyl Sodium Sulfate Recommended Use Laboratory chemicals. Uses advised against Not for food, drug, pesticide or biocidal product use Details of the supplier of the safety data sheet Company Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100 Emergency Telephone Number CHEMTRECÒ, Inside the USA: 800-424-9300 CHEMTRECÒ, Outside the USA: 001-703-527-3887 2. Hazard(s) identification Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute oral toxicity Category 4 Skin Corrosion/irritation Category 2 Serious Eye Damage/Eye Irritation Category 1 Combustible dust Yes Label Elements Signal Word Danger Hazard Statements May form combustible dust concentrations in air Harmful if swallowed Causes skin irritation Causes serious eye damage ______________________________________________________________________________________________ Page 1 / 7 SDS Micropellets (sodium dodecyl sulfate) Revision Date 18-Jan-2018 ______________________________________________________________________________________________ Precautionary Statements Prevention Wash face, hands and any exposed skin thoroughly after handling Do not eat, drink or smoke when using this product Wear protective gloves/protective clothing/eye protection/face protection Skin IF ON SKIN: Wash with plenty of soap and water If skin irritation occurs: Get medical advice/attention Take off contaminated clothing and wash before reuse Eyes IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.
    [Show full text]
  • Sulfate Salts in Gasoline and Ethanol Fuels – Historical Perspective and Analysis of Available Data Robert L
    Sulfate Salts in Gasoline and Ethanol Fuels – Historical Perspective and Analysis of Available Data Robert L. McCormick and Teresa L. Alleman National Renewable Energy Laboratory Janet Yanowitz Ecoengineering, Inc. NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5400-69001 September 2017 Contract No. DE-AC36-08GO28308 Sulfate Salts in Gasoline and Ethanol Fuels – Historical Perspective and Analysis of Available Data Robert L. McCormick and Teresa L. Alleman National Renewable Energy Laboratory Janet Yanowitz Ecoengineering, Inc. Prepared under Task No. VTOP.10335.04.01.03 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. National Renewable Energy Laboratory Technical Report 15013 Denver West Parkway NREL/TP-5400-69001 Golden, CO 80401 September 2017 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • 5. POTENTIAL for HUMAN EXPOSURE 5.1 OVERVIEW Sulfur
    SULFUR DIOXIDE 111 5. POTENTIAL FOR HUMAN EXPOSURE 5.1 OVERVIEW Sulfur dioxide has been identified in at least 16 of the 1,467 current or former EPA National Priorities List (NPL) hazardous wastes sites (HazDat 1998). However, the number of sites evaluated for sulfur dioxide is not known. The frequency of these sites within the United States can be seen in Figure 5-l. Atmospheric sulfur dioxide is formed as a by-product of the combustion of fuel from power generation and industrial activities, and by the oxidation of reduced gases in the atmosphere. Volcanic activity also contributes to the levels of atmospheric sulfur dioxide. The atmospheric lifetime of sulfur dioxide is about 10 days (IARC 1992). Sulfur dioxide is oxidized rapidly by both homogeneous and heterogeneous reactions and is removed from the atmosphere by precipitation and by dry deposition on surfaces, mainly as sulfuric acid. Inhalation of sulfur dioxide, by the general population residing near industrial sources and by workers exposed to sulfur dioxide, is generally the main route of human exposure to the chemical. It should be noted that the amount of sulfur dioxide detected by chemical analysis is not necessarily the amount that is bioavailable. 5. 2 RELEASES TO THE ENVIRONMENT Releases of sulfur dioxide to the environment from large processing facilities are not required to be reported to the Toxics Release Inventory (TRI). Releases of sulfur dioxide are not required to be reported under SARA Section 3 13. Consequently, there are no data for this compound in the current TRI. Sulfur dioxide has been identified in a variety of environmental media (air, surface water, groundwater, soil, and sediment) collected at 16 of the 1,467 NPL hazardous waste sites (HazDat 1998).
    [Show full text]