Sulfate Salts in Gasoline and Ethanol Fuels – Historical Perspective and Analysis of Available Data Robert L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MATERIAL SAFETY DATA SHEET Potassium Sulfate
MATERIAL SAFETY DATA SHEET Potassium sulfate Section 1 Chemical Product and Company Identification MSDS Name: Potassium sulfate Catalog Numbers: P/6960/53, P/6960/60, P/6960/65, P/7000/53, P/7000/60, P/7000/65 Synonyms: Dipotassium sulfate; Potassium sulfate (2:1); Sulfuric acid, dipotassium salt. Company Identification: Fisher Scientific UK Bishop Meadow Road, Loughborough Leics. LE11 5RG For information in Europe, call: (01509) 231166 Emergency Number, Europe: 01509 231166 Section 2 Composition, Information on Ingredients CAS# Chemical Name: % EINECS# 7778805 Potassium sulfate >99 2319155 Hazard Symbols: None listed Risk Phrases: None listed Section 3 Hazards Identification EMERGENCY OVERVIEW Not available Potential Health Effects Eye: Dust may cause mechanical irritation. Skin: Low hazard for usual industrial handling. Ingestion: May cause gastrointestinal irritation with nausea, vomiting and diarrhea. Inhalation: Inhalation of dust may cause respiratory tract irritation. Chronic: Not expected to be a chronic hazard. Section 4 First Aid Measures Eyes: In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Get medical aid. Skin: In case of contact, flush skin with plenty of water. Remove contaminated clothing and shoes. Get medical aid if irritation develops and persists. Wash clothing before reuse. Ingestion: If swallowed, do not induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Get medical aid. Inhalation: If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid. Notes to Treat symptomatically and supportively. Physician: Section 5 Fire Fighting Measures General As in any fire, wear a selfcontained breathing apparatus in pressuredemand, Information: MSHA/NIOSH (approved or equivalent), and full protective gear. -
Standard X-Ray Diffraction Powder Patterns
NBS MONOGRAPH 25 — SECTION 1 Standard X-ray Diffraction U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scien- tific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. -
Managing Potassium for Organic Crop Production by Robert Mikkelsen an Adequate K Supply Is Essential for Both Organic and Conventional Crop Production
NORTH AMERICA Managing Potassium for Organic Crop Production By Robert Mikkelsen An adequate K supply is essential for both organic and conventional crop production. Potas- sium is involved in many plant physiological reactions, including osmoregulation, protein synthesis, enzyme activation, and photosynthate translocation. The K balance on many farms is negative, where more K is removed in harvested crops than is returned again to the soil. An overview of commonly used K fertilizers for organic production is provided. otassium is an essential nutrient for plant growth, but it often receives less attention than N and P in many crop Pproduction systems. Many regions of the U.S.A. and all of the Canadian provinces remove more K during harvest than is returned to the soil in fertilizer and manure (Figure 1). In the U.S.A., an average of only 3 units of K is replaced as fertilizer and manure for every 4 units of K removed in crops, resulting in a depletion of nutrients from the soil and increasing occur- rences of deficiency in many places. Potassium is the soil cation required in the largest amount by plants, regardless of nutrient management philosophy. 1,400 Removal 1,200 Hay and forage crops can remove hundreds of pounds of K from the soil Manure each year, placing a heavy demand on soil resources. 1,000 Fertilizer Large amounts of K are required to maintain plant health 800 and vigor. Some specific roles of K in the plant include os- moregulation, internal cation/anion balance, enzyme activa- 600 tion, proper water relations, photosynthate translocation, and 400 protein synthesis. -
Sodium Chloride (Halite, Common Salt Or Table Salt, Rock Salt)
71376, 71386 Sodium chloride (Halite, Common Salt or Table Salt, Rock Salt) CAS number: 7647-14-5 Product Description: Molecular formula: NaCl Appearance: white powder (crystalline) Molecular weight: 58.44 g/mol Density of large crystals: 2.17 g/ml1 Melting Point: 804°C1 Density: 1.186 g/ml (5 M in water)2 2 Solubility: 1 M in H2O, 20°C, complete, clear, colorless 2 pH: 5.0-8.0 (1 M in H2O, 25°C) Store at room temperature Sodium chloride is geologically stable. If kept dry, it will remain a free-flowing solid for years. Traces of magnesium or calcium chloride in commercial sodium chloride adsorb moisture, making it cake. The trace moisture does not harm the material chemically in any way. 71378 BioUltra 71386 BioUltra for molecular biology, 5 M Solution The products are suitable for different applications like purification, precipitation, crystallisation and other applications which require tight control of elemental content. Trace elemental analyses have been performed for all qualities. The molecular biology quality is also tested for absence of nucleases. The Certificate of Analysis provides lot-specific results. Much of the sodium chloride is mined from salts deposited from evaporation of brine of ancient oceans, or recovered from sea water by solar evaporation. Due to the presence of trace hygroscopic minerals, food-grade salt has a small amount of silicate added to prevent caking; as a result, concentrated solutions of "table salt" are usually slightly cloudy in appearance. 71376 and 71386 do not contain any anti-caking agent. Applications: Sodium chloride is a commonly used chemical found in nature and in all body tissue, and is considered an essential nutrient. -
Writing Total and Net Ionic Equations
WRITING TOTAL AND NET IONIC EQUATIONS http://www.csun.edu/~hcchm001/FreshChemHandouts.html 1. Write the overall equation including the correct designations for the physical state of the substances (s, l, g, aq). Balance this equation. Most of these kinds of equations are double displacement reactions: AX + BY 6 AY + BX 2. For the total ionic equations, write strong electrolytes in solution in the form of aqueous ions. (a) Strong acids. The common strong acids and their aqueous ions are: HI Hydroiodic acid H+-(aq) + I (aq) HBr Hydrobromic acid H+-(aq) + Br (aq) HCl Hydrochloric acid H+-(aq) + Cl (aq) +- HNO33Nitric acid H (aq) + NO (aq) +- HClO44Perchloric acid H (aq) + ClO (aq) +-2 H24SO Sulfuric acid 2 H (aq) + SO4(aq) (b) Strong bases. Strong bases are the hydroxides of the alkali (Group IA) and alkaline earth (Group IIA) metals ions which are sufficiently soluble. The common strong bases and their aqueous ions are: LiOH Lithium hydroxide Li+-(aq) + OH (aq) NaOH Sodium hydroxide Na+-(aq) + OH (aq) KOH Potassium hydroxide K+-(aq) + OH (aq) +2 - Sr(OH)2Strontium hydroxide Sr (aq) + 2 OH (aq) +2 - Ba(OH)2 Barium hydroxide Ba (aq) + 2 OH (aq) (c) Soluble salts. Determinations of the solubility of a salt may be made by reference to SOLUBILITIES OF IONIC COMPOUNDS. Soluble salts are written as their aqueous ions: NaCl(aq) Sodium chloride Na+-(aq) + Cl (aq) +-2 K24SO (aq) Potassium sulfate 2 K (aq) + SO4(aq) +-2 Li23CO (aq) Lithium carbonate 2 Li (aq) + CO3(aq) +-3 Na34PO (aq) Sodium phosphate 3 Na (aq) + PO4(aq) +-2 (NH42) SO4(aq) Ammonium sulfate 2 NH4(aq) + SO4 (aq) 3. -
Ammonia As a Refrigerant
1791 Tullie Circle, NE. Atlanta, Georgia 30329-2305, USA www.ashrae.org ASHRAE Position Document on Ammonia as a Refrigerant Approved by ASHRAE Board of Directors February 1, 2017 Expires February 1, 2020 ASHRAE S H A P I N G T O M O R R O W ’ S B U I L T E N V I R O N M E N T T O D A Y © 2017 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. COMMITTEE ROSTER The ASHRAE Position Document on “Ammonia as a Refrigerant” was developed by the Society’s Refrigeration Committee. Position Document Committee formed on January 8, 2016 with Dave Rule as its chair. Dave Rule, Chair Georgi Kazachki IIAR Dayton Phoenix Group Alexandria, VA, USA Dayton, OH, USA Ray Cole Richard Royal Axiom Engineers, Inc. Walmart Monterey, CA, USA Bentonville, Arkansas, USA Dan Dettmers Greg Scrivener IRC, University of Wisconsin Cold Dynamics Madison, WI, USA Meadow Lake, SK, Canada Derek Hamilton Azane Inc. San Francisco, CA, USA Other contributors: M. Kent Anderson Caleb Nelson Consultant Azane, Inc. Bethesda, MD, USA Missoula, MT, USA Cognizant Committees The chairperson of Refrigerant Committee also served as ex-officio members: Karim Amrane REF Committee AHRI Bethesda, MD, USA i © 2017 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. HISTORY of REVISION / REAFFIRMATION / WITHDRAWAL -
Effects of Different Sources of Fertilizer Nitrogen on Growth and Nutrition of Western Hemlock Seedlings
Effects of Different Sources U.S. Department of Agriculture Forest Service Pacific Northwest Forest of FertiIizer Nitrogen and Range Experiment Station Research Paper PNW-267 on Growth and Nutrition oJ February 1980 Western Hemlock Seedlings ---. --_. ------------------------ , I _J Authors M. A. RADWAN is Principal Plant Physiologist and DEAN S. DeBELL is Principal Silviculturist with the Forest Service, u.S. Department of Agriculture, Pacific Northwest Forest and Range Experiment Station, Forestry Sciences Laboratory, Olympia, Washington. En gl ish Equivalents 1 liter 0.2642 gallon 1 kilogram = 2.2046 pound 1 gram = 0.0353 ounce 1 centimeter = 0.3937 inch 1 kilogram per hectare 1.1206 pounds per acre (9/50C) + 32 = of EFFECTS OF DIFFERENT SOURCES OF FERTILIZER NITROGEN ON GROWTH AND NUTRITION OF WESTERN HEMLOCK Reference Abstract Radwan, M. A. , and Dean S. DeBell. 1980. Effects of different sources of fertilizer nitrogen on growth and nutrition of western hemlock seedlings. USDA For. Servo Res. Pap. PNW-267, 15 p. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon. Twelve different nitrogen (N) fertilizer treatments were tested on potted western hemlock (Tsuga heterophylla (Raf. ) Sarg.) seedlings. Fertilizers affected soil N and pH, and growth and foliar chemical com position of seedlings. Ura plus N-Serve and sulfur-coated urea appear more promising for promoting growth than other fertilizers tested. Results, however, do not explain reported variability in response of hemlock stands to N fertilization. Keywords: Nitrogen fertilizer response, seedling growth, western hemlock, Tsuga heterophylla. RESEARCH SUMMARY Research Paper PNW-267 1980 The following fertilization treatments were applied in the spring to potted, 4-year-old western hemlock (Tsuga heterophylla (Raf. -
Self-Diffusion of Sodium, Chloride and Iodide Ions in Methanol-Water Mixture
Self-Diffusion of Sodium, Chloride and Iodide Ions in Methanol-Water Mixture E. Hawlicka* Institute of Applied Radiation Chemistry, Technical University, Wroblewskiego 15, 93-590, Lodz, Poland Z. Naturforsch. 41 a, 939-943 (1986); received April 25, 1986 The self-diffusion coefficients of Na+, C l- and I- in methanol-water solutions at 35 ± 0.01 °C have been measured in their dependence on the salt molarity in the range 1 • 10-4— 1 • 10-2 mol dm -3. The ionic self-diffusion coefficients in infinitely diluted solutions have been computed. The influence of the solvent composition on the solvation of the ions is discussed. A preferential hydration of Na+, Cl - and I “ ions in water-methanol mixtures has been found. In spite of the great interest in the porperties of aqueous solution with a Nal(Tl) scintillation crystal water-organic solvent electrolyte solutions, data on of the well-type (2 x 2"). the ionic mobilities in such systems are scarce. For the self-diffusion measurements the open-end Usually the ionic mobility is calculated from the capillary method was used. The details of the equivalent conductance and the transference num experimental procedure have been described in [6], ber. Ionic transference numbers have been reported The labelling of the sodium ions with 22Na or for water and 17 organic solvents [1], but only for a 24Na and the iodide ions with i25I or 1311, respective few water-organic solvents mixtures. ly, did not make any difference in the results. Similar information can be obtained from the ionic self-diffusion coefficients, which have been reported for a few water-organic solvent systems Results [2-5], The aim of the present work was to determine the All self-diffusion experiments have been carried self-diffusion coefficients of sodium, chloride and out at 25.0 ± 0.05 °C. -
Preparing to Manufacture Hydrogen Peroxide
PREPARING TO MANUFACTURE HYDROGEN PEROXIDE Part of the Hydrogen Peroxide Propulsion Guide The early laboratory preparation of hydrogen peroxide was based on the technique that Thenard used during the initial preparation of hydrogen peroxide. In this technique, barium nitrate, purified by recrystallization, was decomposed by heating in air in a porcelain retort. The resulting oxide was further oxidized by heating in a stream of oxygen to a dull red heat. The barium peroxide which formed was then dampened, ground, and dissolved in hydrochloric acid (nitric acid was used in Thenard’s initial experiments). A slight excess of sulfuric acid was then added to precipitate barium sulfate and regenerate hydrochloric acid. The procedure of barium peroxide solution and sulfate precipitation was repeated several times in the same solution to increase the peroxide concentration (concentrations of up to 33 percent by weight hydrogen peroxide could be achieved in this manner). The concentrated solution containing water, hydrogen peroxide, and hydrochloric acid, along with accumulated impurities, was cooled with ice and saturated with barium peroxide; iron and manganese impurities in the solution were then precipitated out as phosphates. The hydrochloric acid was removed by the addition of silver sulfate and the sulfate ion was removed by the subsequent addition of barium oxide. Further concentration was accomplished by vacuum distillation until “no further density increase occurs.” Thenard reported that 100 w/o hydrogen peroxide (on the basis of density data and the measurement of the volume of oxygen released) could be obtained by this technique. The first record of commercial production of hydrogen peroxide appeared in the 1865 to 1875 period. -
PUBLISHED UNITED STATES COURT of APPEALS for the FOURTH CIRCUIT ZENECA, INCORPORATED, Plaintiff-Appellant, V. DONNA E. SHALALA
PUBLISHED UNITED STATES COURT OF APPEALS FOR THE FOURTH CIRCUIT ZENECA, INCORPORATED, Plaintiff-Appellant, v. DONNA E. SHALALA, in her official capacity as Secretary of Health and Human Services; JANE HENNEY, M.D., Commissioner of the Food No. 99-2329 and Drug Administration, Defendant-Appellees, v. GENSIA SICOR PHARMACEUTICALS, INCORPORATED, Movant-Appellee. Appeal from the United States District Court for the District of Maryland, at Baltimore. William M. Nickerson, District Judge. (CA-99-307-WMN) Argued: April 5, 2000 Decided: May 17, 2000 Before NIEMEYER, Circuit Judge, HAMILTON, Senior Circuit Judge, and Roger J. MINER, Senior Circuit Judge of the United States Court of Appeals for the Second Circuit, sitting by designation. _________________________________________________________________ Affirmed by published opinion. Senior Judge Hamilton wrote the opinion, in which Judge Niemeyer and Senior Judge Miner joined. COUNSEL Anthony Craig Roth, MORGAN, LEWIS & BOCKIUS, L.L.P., Washington, D.C., for Appellant. Gerald Cooper Kell, Senior Trial Counsel, Office of Consumer Litigation, UNITED STATES DEPARTMENT OF JUSTICE, Washington, D.C., for Appellees Sha- lala and Henney; David Glenn Adams, VENABLE, BAETJER, HOWARD & CIVILETTI, L.L.P., Washington, D.C., for Appellee Gensia Sicor. ON BRIEF: Stephen P. Mahinka, MORGAN, LEWIS & BOCKIUS, L.L.P., Washington, D.C., for Appellant. David W. Ogden, Acting Assistant Attorney General, Office of Consumer Liti- gation, UNITED STATES DEPARTMENT OF JUSTICE, Washing- ton, D.C.; Barbara J. Stradling, Associate Chief Counsel for Enforcement, FOOD AND DRUG ADMINISTRATION, Washing- ton, D.C., for Appellees Shalala and Henney. James N. Czaban, VEN- ABLE, BAETJER, HOWARD & CIVILETTI, L.L.P., Washington, D.C., for Appellee Gensia Sicor. -
Delayed Ettringite Formation
Ettringite Formation and the Performance of Concrete In the mid-1990’s, several cases of premature deterioration of concrete pavements and precast members gained notoriety because of uncertainty over the cause of their distress. Because of the unexplained and complex nature of several of these cases, considerable debate and controversy have arisen in the research and consulting community. To a great extent, this has led to a misperception that the problems are more prevalent than actual case studies would indicate. However, irrespective of the fact that cases of premature deterioration are limited, it is essential to address those that have occurred and provide practical, technically sound solutions so that users can confidently specify concrete in their structures. Central to the debate has been the effect of a compound known as ettringite. The objectives of this paper are: Fig. 1. Portland cements are manufactured by a process that combines sources of lime (such as limestone), silica and • to define ettringite and its form and presence in concrete, alumina (such as clay), and iron oxide (such as iron ore). Appropriately proportioned mixtures of these raw materials • to respond to questions about the observed problems and the are finely ground and then heated in a rotary kiln at high various deterioration mechanisms that have been proposed, and temperatures, about 1450 °C (2640 °F), to form cement compounds. The product of this process is called clinker • to provide some recommendations on designing for durable (nodules at right in above photo). After cooling, the clinker is concrete. interground with about 5% of one or more of the forms of Because many of the questions raised relate to cement character- calcium sulfate (gypsum shown at left in photo) to form portland cement. -
Salt Effect on Vapor-Liquid Equilibria for Acetone-Water System'
SALT EFFECT ON VAPOR-LIQUID EQUILIBRIA FOR ACETONE-WATER SYSTEM' E1ZO SADA, TOSHIO OHNO** AND SHIGEHARU KITO Department of Chemical Engineering, Nagoya University, Nagoya, Japan Vapor-liquid equilibrium data of acetone-water system saturated with sodium chloride, potassium chloride, sodium nitrate, and calcium chloride dihydrate are determined under atmospheric pressure. These vapor-liquid equilibrium data are correlated by a method which gives approximately the behavior of salt in the liquid. The standard deviation of correlated results is 2.32%. To carry out this correlation, the vapor pressures of aqueous solutions saturated with salts are also determined. Investigations concerned with the effect of salt the portion between Cx and Hj is brought to the addition on the vapor-liquid equilibria of binary- vapor pressure of sample solution. Whenthe system systems are of theoretical and industrial importance, attains equilibrium (about one hour is needed), and not a little knowledge of vapor-liquid equilibrium the heights of Hl5 H2, and H3 aremeasured, and the data in this field is already available2}. However, vapor pressure is calculated from the following most investigations are limited to presentation of equation. P '---(Hi-H,W+(Hg-H,W experimental data with no attempt to develop a cor- LO -% r relation. Among these, only a few correlations />*" (1) are proposed, for example, by Johnson and Furter5), As the density of sample solution is usually an order and Hashitani and Hirata3). In this paper, the vapor-liquid equilibrium data of magnitude lower than for mercury, it does not decrease the accuracy of measurementto use the for the acetone-water system saturated with each density of pure water at measuring temperature in of four kinds of salt, i.e.