Stratospheric Dynamical Response and Ozone Feedbacks in The
Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Stratospheric Dynamical Response and Ozone Feedbacks 10.1002/2017JD026912 in the Presence of SO2 Injections Special Section: Simulations of Stratospheric Jadwiga H. Richter1 , Simone Tilmes1,2 , Michael J. Mills2 , Joseph J. Tribbia1 , Sulfate Aerosol Geoengineering 3 4,5 2 1 with the Whole Atmosphere Ben Kravitz , Douglas G. MacMartin , Francis Vitt , and Jean-Francois Lamarque Community Climate Model (WACCM) 1Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA, 2Atmospheric Chemistry, Observations, and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO, USA, 3Pacific This article is a companion to Northwest National Laboratory, Richland, WA, USA, 4Mechanical and Aerospace Engineering, Cornell University, Ithaca, Kravitz et al. (2017) NY, USA, 5Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA https://doi.org/10.1002/2017JD026874, MacMartin et al. (2017) https://doi.org/10.1002/2017JD026868, Tilmes et al. (2017) Abstract Injections of sulfur dioxide into the stratosphere are among several proposed methods of solar https://doi.org/10.1002/2017JD026888, radiation management. Such injections could cool the Earth’s climate. However, they would significantly and Mills et al. (2017) alter the dynamics of the stratosphere. We explore here the stratospheric dynamical response to sulfur https://doi.org/10.1002/2017JD027006. dioxide injections ∼5 km above the tropopause at multiple latitudes (equator, 15∘S, 15∘N, 30∘S and 30∘N) using a fully coupled Earth system model, Community Earth System Model, version 1, with the Whole Key Points: Atmosphere Community Climate Model as its atmospheric component (CESM1(WACCM)).
[Show full text]