The Celestial Sphere
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Basic Principles of Celestial Navigation James A
Basic principles of celestial navigation James A. Van Allena) Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242 ͑Received 16 January 2004; accepted 10 June 2004͒ Celestial navigation is a technique for determining one’s geographic position by the observation of identified stars, identified planets, the Sun, and the Moon. This subject has a multitude of refinements which, although valuable to a professional navigator, tend to obscure the basic principles. I describe these principles, give an analytical solution of the classical two-star-sight problem without any dependence on prior knowledge of position, and include several examples. Some approximations and simplifications are made in the interest of clarity. © 2004 American Association of Physics Teachers. ͓DOI: 10.1119/1.1778391͔ I. INTRODUCTION longitude ⌳ is between 0° and 360°, although often it is convenient to take the longitude westward of the prime me- Celestial navigation is a technique for determining one’s ridian to be between 0° and Ϫ180°. The longitude of P also geographic position by the observation of identified stars, can be specified by the plane angle in the equatorial plane identified planets, the Sun, and the Moon. Its basic principles whose vertex is at O with one radial line through the point at are a combination of rudimentary astronomical knowledge 1–3 which the meridian through P intersects the equatorial plane and spherical trigonometry. and the other radial line through the point G at which the Anyone who has been on a ship that is remote from any prime meridian intersects the equatorial plane ͑see Fig. -
AIM: Latitude and Longitude
AIM: Latitude and Longitude Latitude lines run east/west but they measure north or south of the equator (0°) splitting the earth into the Northern Hemisphere and Southern Hemisphere. Latitude North Pole 90 80 Lines of 70 60 latitude are 50 numbered 40 30 from 0° at 20 Lines of [ 10 the equator latitude are 10 to 90° N.L. 20 numbered 30 at the North from 0° at 40 Pole. 50 the equator ] 60 to 90° S.L. 70 80 at the 90 South Pole. South Pole Latitude The North Pole is at 90° N 40° N is the 40° The equator is at 0° line of latitude north of the latitude. It is neither equator. north nor south. It is at the center 40° S is the 40° between line of latitude north and The South Pole is at 90° S south of the south. equator. Longitude Lines of longitude begin at the Prime Meridian. 60° W is the 60° E is the 60° line of 60° line of longitude west longitude of the Prime east of the W E Prime Meridian. Meridian. The Prime Meridian is located at 0°. It is neither east or west 180° N Longitude West Longitude West East Longitude North Pole W E PRIME MERIDIAN S Lines of longitude are numbered east from the Prime Meridian to the 180° line and west from the Prime Meridian to the 180° line. Prime Meridian The Prime Meridian (0°) and the 180° line split the earth into the Western Hemisphere and Eastern Hemisphere. Prime Meridian Western Eastern Hemisphere Hemisphere Places located east of the Prime Meridian have an east longitude (E) address. -
Prime Meridian ×
This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more × security, comfort and the best experience on this site. Encyclopedic Entry prime meridian For the complete encyclopedic entry with media resources, visit: http://education.nationalgeographic.com/encyclopedia/prime-meridian/ The prime meridian is the line of 0 longitude, the starting point for measuring distance both east and west around the Earth. The prime meridian is arbitrary, meaning it could be chosen to be anywhere. Any line of longitude (a meridian) can serve as the 0 longitude line. However, there is an international agreement that the meridian that runs through Greenwich, England, is considered the official prime meridian. Governments did not always agree that the Greenwich meridian was the prime meridian, making navigation over long distances very difficult. Different countries published maps and charts with longitude based on the meridian passing through their capital city. France would publish maps with 0 longitude running through Paris. Cartographers in China would publish maps with 0 longitude running through Beijing. Even different parts of the same country published materials based on local meridians. Finally, at an international convention called by U.S. President Chester Arthur in 1884, representatives from 25 countries agreed to pick a single, standard meridian. They chose the meridian passing through the Royal Observatory in Greenwich, England. The Greenwich Meridian became the international standard for the prime meridian. UTC The prime meridian also sets Coordinated Universal Time (UTC). UTC never changes for daylight savings or anything else. Just as the prime meridian is the standard for longitude, UTC is the standard for time. -
Civil Twilight Duration (Sunset to Solar Depression
Civil Twilight Duration (sunset to solar depression 6°) at the Prime Meridian, Sea Level, Northern Hemisphere (March 1, 2007 to March 31, 2008) Mar 1 Mar 15 Mar 29 Apr 12 Apr 26 May 10 May 24 7 Jun 21 Jun Jul 5 Jul 19 Aug 2 Aug 16 Aug 30 Sep 13 Sep 27 11 Oct 25 Oct Nov 8 Nov 22 Dec 6 Dec 20 Jan 3 Jan 17 Jan 31 14 Feb 28 Feb Mar 13 Mar 27 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Civil Twilight Duration (daytime temporal minutes after sunset) after minutes temporal (daytime Duration Civil Twilight 23.5° N 30° N 100 40° N 45° N 105 50° N 55° N 58° N 59° N 110 60° N 61° N Northward Equinox North Solstice 115 Southward Equinox South Solstice 120 Analysis by Dr. Irv Bromberg, University of Toronto, Canada http://www.sym454.org/twilight/ Civil Twilight Duration (sunset to solar depression 6°) at the Prime Meridian, Sea Level, Southern Hemisphere (March 1, 2007 to March 31, 2008) Mar 1 Mar 15 Mar 29 Apr 12 Apr 26 May 10 May 24 7 Jun 21 Jun Jul 5 Jul 19 Aug 2 Aug 16 Aug 30 Sep 13 Sep 27 11 Oct 25 Oct Nov 8 Nov 22 Dec 6 Dec 20 Jan 3 Jan 17 Jan 31 14 Feb 28 Feb Mar 13 Mar 27 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 23.5° S 30° S Civil Twilight Duration (daytime temporal minutes after sunset) after minutes temporal (daytime Duration Civil Twilight 100 40° S 45° S 50° S 55° S 105 58° S 59° S 110 60° S 61° S Northward Equinox North Solstice 115 Southward Equinox South Solstice 120 Analysis by Dr. -
Coordinates James R
Coordinates James R. Clynch Naval Postgraduate School, 2002 I. Coordinate Types There are two generic types of coordinates: Cartesian, and Curvilinear of Angular. Those that provide x-y-z type values in meters, kilometers or other distance units are called Cartesian. Those that provide latitude, longitude, and height are called curvilinear or angular. The Cartesian and angular coordinates are equivalent, but only after supplying some extra information. For the spherical earth model only the earth radius is needed. For the ellipsoidal earth, two parameters of the ellipsoid are needed. (These can be any of several sets. The most common is the semi-major axis, called "a", and the flattening, called "f".) II. Cartesian Coordinates A. Generic Cartesian Coordinates These are the coordinates that are used in algebra to plot functions. For a two dimensional system there are two axes, which are perpendicular to each other. The value of a point is represented by the values of the point projected onto the axes. In the figure below the point (5,2) and the standard orientation for the X and Y axes are shown. In three dimensions the same process is used. In this case there are three axis. There is some ambiguity to the orientation of the Z axis once the X and Y axes have been drawn. There 1 are two choices, leading to right and left handed systems. The standard choice, a right hand system is shown below. Rotating a standard (right hand) screw from X into Y advances along the positive Z axis. The point Q at ( -5, -5, 10) is shown. -
Paper 2017026
IMMC2017026 Page 1 of 18 (+4) From Eliminating Irrelevant Factors to Determining the Meeting Venue—A Computational Approach —“I’m feeling tired.” ※ Abstract International meetings are increasingly common in business and academic communities due to globalisation and the demand of cooperation in all kinds of industries. Therefore, a problem of paramount importance is to decide the host city for such meetings. The organiser of these international meetings may first receive the list of all attendees and where they are from and then choose the optimal host city in consideration of the productivity in the meeting. To study the effect of different factors to the productivity of attendees from different countries, we can first refer to the result of the International Olympiad in Informatics (IOI) as its nature is similar to the meeting mentioned above, and each contestant has already been assigned a score. We calculate the difference of a country’s relative ranking and its average relative ranking in the three most recent years to isolate the effect of factors that varies each year from those that have a permanent effect. We then forcibly do linear regression on this measure of performance against different factors, including time zone difference, temperature difference, sunshine duration difference, flight distance, and elevation difference between a contestant’s home city and the host city. Student’s t-test then show that we have no evidence to reject the null hypothesis that the regressions of productivity against temperature difference, sunshine duration difference and elevation difference each has zero slope. Then we focus on minimising the total time difference between contestants’ home cities and the host city, and also minimising the flight distance in order to lower the cost with the premise that we do not violate the former constraint. -
Celestial Coordinate Systems
Celestial Coordinate Systems Craig Lage Department of Physics, New York University, [email protected] January 6, 2014 1 Introduction This document reviews briefly some of the key ideas that you will need to understand in order to identify and locate objects in the sky. It is intended to serve as a reference document. 2 Angular Basics When we view objects in the sky, distance is difficult to determine, and generally we can only indicate their direction. For this reason, angles are critical in astronomy, and we use angular measures to locate objects and define the distance between objects. Angles are measured in a number of different ways in astronomy, and you need to become familiar with the different notations and comfortable converting between them. A basic angle is shown in Figure 1. θ Figure 1: A basic angle, θ. We review some angle basics. We normally use two primary measures of angles, degrees and radians. In astronomy, we also sometimes use time as a measure of angles, as we will discuss later. A radian is a dimensionless measure equal to the length of the circular arc enclosed by the angle divided by the radius of the circle. A full circle is thus equal to 2π radians. A degree is an arbitrary measure, where a full circle is defined to be equal to 360◦. When using degrees, we also have two different conventions, to divide one degree into decimal degrees, or alternatively to divide it into 60 minutes, each of which is divided into 60 seconds. These are also referred to as minutes of arc or seconds of arc so as not to confuse them with minutes of time and seconds of time. -
Positional Astronomy Coordinate Systems
Positional Astronomy Observational Astronomy 2019 Part 2 Prof. S.C. Trager Coordinate systems We need to know where the astronomical objects we want to study are located in order to study them! We need a system (well, many systems!) to describe the positions of astronomical objects. The Celestial Sphere First we need the concept of the celestial sphere. It would be nice if we knew the distance to every object we’re interested in — but we don’t. And it’s actually unnecessary in order to observe them! The Celestial Sphere Instead, we assume that all astronomical sources are infinitely far away and live on the surface of a sphere at infinite distance. This is the celestial sphere. If we define a coordinate system on this sphere, we know where to point! Furthermore, stars (and galaxies) move with respect to each other. The motion normal to the line of sight — i.e., on the celestial sphere — is called proper motion (which we’ll return to shortly) Astronomical coordinate systems A bit of terminology: great circle: a circle on the surface of a sphere intercepting a plane that intersects the origin of the sphere i.e., any circle on the surface of a sphere that divides that sphere into two equal hemispheres Horizon coordinates A natural coordinate system for an Earth- bound observer is the “horizon” or “Alt-Az” coordinate system The great circle of the horizon projected on the celestial sphere is the equator of this system. Horizon coordinates Altitude (or elevation) is the angle from the horizon up to our object — the zenith, the point directly above the observer, is at +90º Horizon coordinates We need another coordinate: define a great circle perpendicular to the equator (horizon) passing through the zenith and, for convenience, due north This line of constant longitude is called a meridian Horizon coordinates The azimuth is the angle measured along the horizon from north towards east to the great circle that intercepts our object (star) and the zenith. -
Exercise 1.0 the CELESTIAL EQUATORIAL COORDINATE
Exercise 1.0 THE CELESTIAL EQUATORIAL COORDINATE SYSTEM Equipment needed: A celestial globe showing positions of bright stars. I. Introduction There are several different ways of representing the appearance of the sky or describing the locations of objects we see in the sky. One way is to imagine that every object in the sky is located on a very large and distant sphere called the celestial sphere . This imaginary sphere has its center at the center of the Earth. Since the radius of the Earth is very small compared to the radius of the celestial sphere, we can imagine that this sphere is also centered on any person or observer standing on the Earth's surface. Every celestial object (e.g., a star or planet) has a definite location in the sky with respect to some arbitrary reference point. Once defined, such a reference point can be used as the origin of a celestial coordinate system. There is an astronomically important point in the sky called the vernal equinox , which astronomers use as the origin of such a celestial coordinate system . The meaning and significance of the vernal equinox will be discussed later. In an analogous way, we represent the surface of the Earth by a globe or sphere. Locations on the geographic sphere are specified by the coordinates called longitude and latitude . The origin for this geographic coordinate system is the point where the Prime Meridian and the Geographic Equator intersect. This is a point located off the coast of west-central Africa. To specify a location on a sphere, the coordinates must be angles, since a sphere has a curved surface. -
A Modern Approach to Sundial Design
SARENA ANISSA DR. JASON ROBERTSON ZACHARIAS AUFDENBERG A Modern Approach to Sundials DEPARTMENT OF PHYSICAL SCIENCES INTRODUCTION TO VERTICAL SUNDIALS TYPES OF VERTICAL SUNDIALS RESULTS Gnomon: casts the shadow onto the sundial face Reclining Dials A small scale sundial model printed out and proved to be correct as far as the hour lines go, and only a Reclining dials are generally oriented along a north-south line, for example they face due south for a minor adjustment to the gnomon length was necessary in order for the declination lines to be Nodus: the location along the gnomon that marks the time and date on the dial plate sundial in the Northern hemisphere. In such a case the dial surface would have no declination. Reclining validated. This was possible since initial calibration fell on a date near the vernal equinox, therefore the sundials are at an angle from the vertical, and have gnomons directly parallel with Earth’s rotational axis tip of the shadow should have fell just below the equinox declination line. angular distance of the gnomon from the dial face Style Height: which is visually represented in Figure 1a). Shown in Figure 3 is the final sundial corrected for the longitude of Daytona Beach, FL. If the dial were Substyle Line: line lying in the dial plane perpendicularly behind the style 1b) 1a) not corrected for longitude, the noon line would fall directly vertical from the gnomon base. For verti- cal dials, the shortest shadow will be will the sun has its lowest altitude in the sky. For the Northern Substyle Angle: angle that the substyle makes with the noon-line hemisphere, this is the Winter Solstice declination line. -
5 Transformation Between the International Terrestrial Refer
IERS Technical Note No. 36 5 Transformation between the International Terrestrial Refer- ence System and the Geocentric Celestial Reference System 5.1 Introduction The transformation to be used to relate the International Terrestrial Reference System (ITRS) to the Geocentric Celestial Reference System (GCRS) at the date t of the observation can be written as: [GCRS] = Q(t)R(t)W (t) [ITRS]; (5.1) where Q(t), R(t) and W (t) are the transformation matrices arising from the mo- tion of the celestial pole in the celestial reference system, from the rotation of the Earth around the axis associated with the pole, and from polar motion respec- tively. Note that Eq. (5.1) is valid for any choice of celestial pole and origin on the equator of that pole. The definition of the GCRS and ITRS and the procedures for the ITRS to GCRS transformation that are provided in this chapter comply with the IAU 2000/2006 resolutions (provided at <1> and in Appendix B). More detailed explanations about the relevant concepts, software and IERS products corresponding to the IAU 2000 resolutions can be found in IERS Technical Note 29 (Capitaine et al., 2002), as well as in a number of original subsequent publications that are quoted in the following sections. The chapter follows the recommendations on terminology associated with the IAU 2000/2006 resolutions that were made by the 2003-2006 IAU Working Group on \Nomenclature for fundamental astronomy" (NFA) (Capitaine et al., 2007). We will refer to those recommendations in the following as \NFA recommenda- tions" (see Appendix A for the list of the recommendations). -
Determining True North on Mars by Using a Sundial on Insight D
Determining True North on Mars by Using a Sundial on InSight D. Savoie, A. Richard, M. Goutaudier, N. Onufer, M. Wallace, D. Mimoun, K. Hurst, N. Verdier, P. Lognonné, N. Mäki, et al. To cite this version: D. Savoie, A. Richard, M. Goutaudier, N. Onufer, M. Wallace, et al.. Determining True North on Mars by Using a Sundial on InSight. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.215:2. hal-01977462 HAL Id: hal-01977462 https://hal.sorbonne-universite.fr/hal-01977462 Submitted on 10 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Determining true North on Mars by using a sundial on InSight D. Savoiea,∗, A. Richardb,∗∗, M. Goutaudierb, N.P. Onuferc, M.C. Wallacec, D. Mimoune, K. Hurstc, N. Verdierf, P. Lognonnéd, J.N. Makic, B. Banerdtc aSYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 61 avenue de l’Observatoire 75014 Paris, France bPalais de la Découverte, Av. Franklin D. Roosevelt, 75008 Paris, France cNASA Jet Propulsion Laboratory, Pasadena, California dInstitut de Physique du Globe de Paris, Université Paris Diderot, Paris, France eInstitut Supérieur de l’Aéronautique et de l’Espace, ISAE, Toulouse, France fFrench National Space Agency, CNES, Paris, France Abstract In this work, we demonstrate the possibility to determine the true North direction on Mars by using a gnomon on the InSight mission.