A Modern Approach to Sundial Design
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
E a S T 7 4 T H S T R E E T August 2021 Schedule
E A S T 7 4 T H S T R E E T KEY St udi o key on bac k SEPT EM BER 2021 SC H ED U LE EF F EC T IVE 09.01.21–09.30.21 Bolld New Class, Instructor, or Time ♦ Advance sign-up required M O NDA Y T UE S DA Y W E DNE S DA Y T HURS DA Y F RII DA Y S A T URDA Y S UNDA Y Atthllettiic Master of One Athletic 6:30–7:15 METCON3 6:15–7:00 Stacked! 8:00–8:45 Cycle Beats 8:30–9:30 Vinyasa Yoga 6:15–7:00 6:30–7:15 6:15–7:00 Condiittiioniing Gerard Conditioning MS ♦ Kevin Scott MS ♦ Steve Mitchell CS ♦ Mike Harris YS ♦ Esco Wilson MS ♦ MS ♦ MS ♦ Stteve Miittchellll Thelemaque Boyd Melson 7:00–7:45 Cycle Power 7:00–7:45 Pilates Fusion 8:30–9:15 Piillattes Remiix 9:00–9:45 Cardio Sculpt 6:30–7:15 Cycle Beats 7:00–7:45 Cycle Power 6:30–7:15 Cycle Power CS ♦ Candace Peterson YS ♦ Mia Wenger YS ♦ Sammiie Denham MS ♦ Cindya Davis CS ♦ Serena DiLiberto CS ♦ Shweky CS ♦ Jason Strong 7:15–8:15 Vinyasa Yoga 7:45–8:30 Firestarter + Best Firestarter + Best 9:30–10:15 Cycle Power 7:15–8:05 Athletic Yoga Off The Barre Josh Mathew- Abs Ever 9:00–9:45 CS ♦ Jason Strong 7:00–8:00 Vinyasa Yoga 7:00–7:45 YS ♦ MS ♦ MS ♦ Abs Ever YS ♦ Elitza Ivanova YS ♦ Margaret Schwarz YS ♦ Sarah Marchetti Meier Shane Blouin Luke Bernier 10:15–11:00 Off The Barre Gleim 8:00–8:45 Cycle Beats 7:30–8:15 Precision Run® 7:30–8:15 Precision Run® 8:45–9:45 Vinyasa Yoga Cycle Power YS ♦ Cindya Davis Gerard 7:15–8:00 Precision Run® TR ♦ Kevin Scott YS ♦ Colleen Murphy 9:15–10:00 CS ♦ Nikki Bucks TR ♦ CS ♦ Candace 10:30–11:15 Atletica Thelemaque TR ♦ Chaz Jackson Peterson 8:45–9:30 Pilates Fusion 8:00–8:45 -
The Sundial, Beyond the Form and Time
ISAMA BRIDGES The International Society of the Mathematical Connections Arts, Mathematics, and Architecture in Art, Music, and Science The Sundial, Beyond the Form and Time ... Andrzej Zarzycki 227 Brighton Street Belmont, MA 02478 E-mail: [email protected] Abstract Architecture (iir" k 1-t].lk" ch ... r) n. 1. The art and science of designing and erecting buildings. Can a building inspire scientific thinking? Can an architectural structure reflect the complexity of the universe? Is there a relationship between the artistic and scientific? This paper discusses an approach to design, which uses an architectural structure as a research apparatus to pursue scientifically driven beauty. Architecture could be defined as the man-made universe - the universe whose primary function was to shelter us from elements, animals and other people. Broadly speaking, to protect us from the "outer Uni verse". It is not surprising that the evolution of architecture follows the same trajectories as the evolution of our thinking and perception ofthe surrounding world. However, somewhere along the lines of history, archi tecture acquired another purpose and began to playa new role in our self-awareness. In ancient, medieval and even modem times, we have viewed architecture as a medium to express, symbolize, and address the meaning of our existence. Ancient temples reveal an intimate knowledge of geometry and human perception by purposefully distorting their forms to balance visual illusions. Medieval cathedrals manifested greatness of God through art and structural achievements, while contemporary monu ments address the social and philosophical aspirations of a present-day society. As a result of this centuries long evolution~ we now associate architecture with its less utilitarian and more symbolic values. -
AIM: Latitude and Longitude
AIM: Latitude and Longitude Latitude lines run east/west but they measure north or south of the equator (0°) splitting the earth into the Northern Hemisphere and Southern Hemisphere. Latitude North Pole 90 80 Lines of 70 60 latitude are 50 numbered 40 30 from 0° at 20 Lines of [ 10 the equator latitude are 10 to 90° N.L. 20 numbered 30 at the North from 0° at 40 Pole. 50 the equator ] 60 to 90° S.L. 70 80 at the 90 South Pole. South Pole Latitude The North Pole is at 90° N 40° N is the 40° The equator is at 0° line of latitude north of the latitude. It is neither equator. north nor south. It is at the center 40° S is the 40° between line of latitude north and The South Pole is at 90° S south of the south. equator. Longitude Lines of longitude begin at the Prime Meridian. 60° W is the 60° E is the 60° line of 60° line of longitude west longitude of the Prime east of the W E Prime Meridian. Meridian. The Prime Meridian is located at 0°. It is neither east or west 180° N Longitude West Longitude West East Longitude North Pole W E PRIME MERIDIAN S Lines of longitude are numbered east from the Prime Meridian to the 180° line and west from the Prime Meridian to the 180° line. Prime Meridian The Prime Meridian (0°) and the 180° line split the earth into the Western Hemisphere and Eastern Hemisphere. Prime Meridian Western Eastern Hemisphere Hemisphere Places located east of the Prime Meridian have an east longitude (E) address. -
Prime Meridian ×
This website would like to remind you: Your browser (Apple Safari 4) is out of date. Update your browser for more × security, comfort and the best experience on this site. Encyclopedic Entry prime meridian For the complete encyclopedic entry with media resources, visit: http://education.nationalgeographic.com/encyclopedia/prime-meridian/ The prime meridian is the line of 0 longitude, the starting point for measuring distance both east and west around the Earth. The prime meridian is arbitrary, meaning it could be chosen to be anywhere. Any line of longitude (a meridian) can serve as the 0 longitude line. However, there is an international agreement that the meridian that runs through Greenwich, England, is considered the official prime meridian. Governments did not always agree that the Greenwich meridian was the prime meridian, making navigation over long distances very difficult. Different countries published maps and charts with longitude based on the meridian passing through their capital city. France would publish maps with 0 longitude running through Paris. Cartographers in China would publish maps with 0 longitude running through Beijing. Even different parts of the same country published materials based on local meridians. Finally, at an international convention called by U.S. President Chester Arthur in 1884, representatives from 25 countries agreed to pick a single, standard meridian. They chose the meridian passing through the Royal Observatory in Greenwich, England. The Greenwich Meridian became the international standard for the prime meridian. UTC The prime meridian also sets Coordinated Universal Time (UTC). UTC never changes for daylight savings or anything else. Just as the prime meridian is the standard for longitude, UTC is the standard for time. -
How Long Is a Year.Pdf
How Long Is A Year? Dr. Bryan Mendez Space Sciences Laboratory UC Berkeley Keeping Time The basic unit of time is a Day. Different starting points: • Sunrise, • Noon, • Sunset, • Midnight tied to the Sun’s motion. Universal Time uses midnight as the starting point of a day. Length: sunrise to sunrise, sunset to sunset? Day Noon to noon – The seasonal motion of the Sun changes its rise and set times, so sunrise to sunrise would be a variable measure. Noon to noon is far more constant. Noon: time of the Sun’s transit of the meridian Stellarium View and measure a day Day Aday is caused by Earth’s motion: spinning on an axis and orbiting around the Sun. Earth’s spin is very regular (daily variations on the order of a few milliseconds, due to internal rearrangement of Earth’s mass and external gravitational forces primarily from the Moon and Sun). Synodic Day Noon to noon = synodic or solar day (point 1 to 3). This is not the time for one complete spin of Earth (1 to 2). Because Earth also orbits at the same time as it is spinning, it takes a little extra time for the Sun to come back to noon after one complete spin. Because the orbit is elliptical, when Earth is closest to the Sun it is moving faster, and it takes longer to bring the Sun back around to noon. When Earth is farther it moves slower and it takes less time to rotate the Sun back to noon. Mean Solar Day is an average of the amount time it takes to go from noon to noon throughout an orbit = 24 Hours Real solar day varies by up to 30 seconds depending on the time of year. -
Civil Twilight Duration (Sunset to Solar Depression
Civil Twilight Duration (sunset to solar depression 6°) at the Prime Meridian, Sea Level, Northern Hemisphere (March 1, 2007 to March 31, 2008) Mar 1 Mar 15 Mar 29 Apr 12 Apr 26 May 10 May 24 7 Jun 21 Jun Jul 5 Jul 19 Aug 2 Aug 16 Aug 30 Sep 13 Sep 27 11 Oct 25 Oct Nov 8 Nov 22 Dec 6 Dec 20 Jan 3 Jan 17 Jan 31 14 Feb 28 Feb Mar 13 Mar 27 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Civil Twilight Duration (daytime temporal minutes after sunset) after minutes temporal (daytime Duration Civil Twilight 23.5° N 30° N 100 40° N 45° N 105 50° N 55° N 58° N 59° N 110 60° N 61° N Northward Equinox North Solstice 115 Southward Equinox South Solstice 120 Analysis by Dr. Irv Bromberg, University of Toronto, Canada http://www.sym454.org/twilight/ Civil Twilight Duration (sunset to solar depression 6°) at the Prime Meridian, Sea Level, Southern Hemisphere (March 1, 2007 to March 31, 2008) Mar 1 Mar 15 Mar 29 Apr 12 Apr 26 May 10 May 24 7 Jun 21 Jun Jul 5 Jul 19 Aug 2 Aug 16 Aug 30 Sep 13 Sep 27 11 Oct 25 Oct Nov 8 Nov 22 Dec 6 Dec 20 Jan 3 Jan 17 Jan 31 14 Feb 28 Feb Mar 13 Mar 27 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 23.5° S 30° S Civil Twilight Duration (daytime temporal minutes after sunset) after minutes temporal (daytime Duration Civil Twilight 100 40° S 45° S 50° S 55° S 105 58° S 59° S 110 60° S 61° S Northward Equinox North Solstice 115 Southward Equinox South Solstice 120 Analysis by Dr. -
Equation of Time — Problem in Astronomy M
This paper was awarded in the II International Competition (1993/94) "First Step to Nobel Prize in Physics" and published in the competition proceedings (Acta Phys. Pol. A 88 Supplement, S-49 (1995)). The paper is reproduced here due to kind agreement of the Editorial Board of "Acta Physica Polonica A". EQUATION OF TIME | PROBLEM IN ASTRONOMY M. Muller¨ Gymnasium M¨unchenstein, Grellingerstrasse 5, 4142 M¨unchenstein, Switzerland Abstract The apparent solar motion is not uniform and the length of a solar day is not constant throughout a year. The difference between apparent solar time and mean (regular) solar time is called the equation of time. Two well-known features of our solar system lie at the basis of the periodic irregularities in the solar motion. The angular velocity of the earth relative to the sun varies periodically in the course of a year. The plane of the orbit of the earth is inclined with respect to the equatorial plane. Therefore, the angular velocity of the relative motion has to be projected from the ecliptic onto the equatorial plane before incorporating it into the measurement of time. The math- ematical expression of the projection factor for ecliptic angular velocities yields an oscillating function with two periods per year. The difference between the extreme values of the equation of time is about half an hour. The response of the equation of time to a variation of its key parameters is analyzed. In order to visualize factors contributing to the equation of time a model has been constructed which accounts for the elliptical orbit of the earth, the periodically changing angular velocity, and the inclined axis of the earth. -
Coordinates James R
Coordinates James R. Clynch Naval Postgraduate School, 2002 I. Coordinate Types There are two generic types of coordinates: Cartesian, and Curvilinear of Angular. Those that provide x-y-z type values in meters, kilometers or other distance units are called Cartesian. Those that provide latitude, longitude, and height are called curvilinear or angular. The Cartesian and angular coordinates are equivalent, but only after supplying some extra information. For the spherical earth model only the earth radius is needed. For the ellipsoidal earth, two parameters of the ellipsoid are needed. (These can be any of several sets. The most common is the semi-major axis, called "a", and the flattening, called "f".) II. Cartesian Coordinates A. Generic Cartesian Coordinates These are the coordinates that are used in algebra to plot functions. For a two dimensional system there are two axes, which are perpendicular to each other. The value of a point is represented by the values of the point projected onto the axes. In the figure below the point (5,2) and the standard orientation for the X and Y axes are shown. In three dimensions the same process is used. In this case there are three axis. There is some ambiguity to the orientation of the Z axis once the X and Y axes have been drawn. There 1 are two choices, leading to right and left handed systems. The standard choice, a right hand system is shown below. Rotating a standard (right hand) screw from X into Y advances along the positive Z axis. The point Q at ( -5, -5, 10) is shown. -
Research on the Precession of the Equinoxes and on the Nutation of the Earth’S Axis∗
Research on the Precession of the Equinoxes and on the Nutation of the Earth’s Axis∗ Leonhard Euler† Lemma 1 1. Supposing the earth AEBF (fig. 1) to be spherical and composed of a homogenous substance, if the mass of the earth is denoted by M and its radius CA = CE = a, the moment of inertia of the earth about an arbitrary 2 axis, which passes through its center, will be = 5 Maa. ∗Leonhard Euler, Recherches sur la pr´ecession des equinoxes et sur la nutation de l’axe de la terr,inOpera Omnia, vol. II.30, p. 92-123, originally in M´emoires de l’acad´emie des sciences de Berlin 5 (1749), 1751, p. 289-325. This article is numbered E171 in Enestr¨om’s index of Euler’s work. †Translated by Steven Jones, edited by Robert E. Bradley c 2004 1 Corollary 2. Although the earth may not be spherical, since its figure differs from that of a sphere ever so slightly, we readily understand that its moment of inertia 2 can be nonetheless expressed as 5 Maa. For this expression will not change significantly, whether we let a be its semi-axis or the radius of its equator. Remark 3. Here we should recall that the moment of inertia of an arbitrary body with respect to a given axis about which it revolves is that which results from multiplying each particle of the body by the square of its distance to the axis, and summing all these elementary products. Consequently this sum will give that which we are calling the moment of inertia of the body around this axis. -
Paper 2017026
IMMC2017026 Page 1 of 18 (+4) From Eliminating Irrelevant Factors to Determining the Meeting Venue—A Computational Approach —“I’m feeling tired.” ※ Abstract International meetings are increasingly common in business and academic communities due to globalisation and the demand of cooperation in all kinds of industries. Therefore, a problem of paramount importance is to decide the host city for such meetings. The organiser of these international meetings may first receive the list of all attendees and where they are from and then choose the optimal host city in consideration of the productivity in the meeting. To study the effect of different factors to the productivity of attendees from different countries, we can first refer to the result of the International Olympiad in Informatics (IOI) as its nature is similar to the meeting mentioned above, and each contestant has already been assigned a score. We calculate the difference of a country’s relative ranking and its average relative ranking in the three most recent years to isolate the effect of factors that varies each year from those that have a permanent effect. We then forcibly do linear regression on this measure of performance against different factors, including time zone difference, temperature difference, sunshine duration difference, flight distance, and elevation difference between a contestant’s home city and the host city. Student’s t-test then show that we have no evidence to reject the null hypothesis that the regressions of productivity against temperature difference, sunshine duration difference and elevation difference each has zero slope. Then we focus on minimising the total time difference between contestants’ home cities and the host city, and also minimising the flight distance in order to lower the cost with the premise that we do not violate the former constraint. -
GSA on the Web
Vol. 6, No. 4 April 1996 1996 Annual GSA TODAY Meeting Call for A Publication of the Geological Society of America Papers Page 17 Electronic Dipping Reflectors Beneath Abstracts Submission Old Orogens: A Perspective from page 18 the British Caledonides Registration Issue June GSA Today John H. McBride,* David B. Snyder, Richard W. England, Richard W. Hobbs British Institutions Reflection Profiling Syndicate, Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Madingley Road, Cambridge CB3 0EZ, United Kingdom A B Figure 1. A: Generalized location map of the British Isles showing principal structural elements (red and black) and location of selected deep seismic reflection profiles discussed here. Major normal faults are shown between mainland Scotland and Shetland. Structural contours (green) are in kilome- ters below sea level for all known mantle reflectors north of Ireland, north of mainland Scotland, and west of Shetland (e.g., Figs. 2A and 5); contours (black) are in seconds (two-way traveltime) on the reflector I-I’ (Fig. 2B) pro- jecting up to the Iapetus suture (from Soper et al., 1992). The contour inter- val is variable. B: A Silurian-Devonian (410 Ma) reconstruction of the Caledo- nian-Appalachian orogen shows the three-way closure of Laurentia and Baltica with the leading edge of Eastern Avalonia thrust under the Laurentian margin (from Soper, 1988). Long-dash line indicates approximate outer limit of Caledonian-Appalachian orogen and/or accreted terranes. GGF is Great Glen fault; NFLD. is Newfoundland. reflectors in the upper-to-middle crust, suggesting a “thick- skinned” structural style. These reflectors project downward into a pervasive zone of diffuse reflectivity in the lower crust. -
Earth-Moon-Sun-System EQUINOX Presentation V2.Pdf
The Sun http://c.tadst.com/gfx/750x500/sunrise.jpg?1 The sun dominates activity on Earth: living and nonliving. It'd be hard to imagine a day without it. The daily pattern of the sun rising in the East and setting in the West is how we measure time...marking off the days of our lives. 6 The Sun http://c.tadst.com/gfx/750x500/sunrise.jpg?1 Virtually all life on Earth is aware of, and responds to, the sun's movements. Well before there was written history, humankind had studied those patterns. 7 Daily Patterns of the Sun • The sun rises in the east and sets in the west. • The time between sunrises is always the same: that amount of time is called a "day," which we divide into 24 hours. Note: The term "day" can be confusing since it is used in two ways: • The time between sunrises (always 24 hours). • To contrast "day" to "night," in which case day means the time during which there is daylight (varies in length). For instance, when we refer to the summer solstice as being the longest day of the year, we mean that it has the most daylight hours of any day. 8 Explaining the Sun What would be the simplest explanation of these two patterns? • The sun rises in the east and sets in the west. • The time between sunrises is always the same: that amount of time is called a "day." We now divide the day into 24 hours. Discuss some ideas to explain these patterns.