Ron Spinosa NAMA's 2011
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix K. Survey and Manage Species Persistence Evaluation
Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site. -
Agaricales, Basidiomycota) Occurring in Punjab, India
Current Research in Environmental & Applied Mycology 5 (3): 213–247(2015) ISSN 2229-2225 www.creamjournal.org Article CREAM Copyright © 2015 Online Edition Doi 10.5943/cream/5/3/6 Ecology, Distribution Perspective, Economic Utility and Conservation of Coprophilous Agarics (Agaricales, Basidiomycota) Occurring in Punjab, India Amandeep K1*, Atri NS2 and Munruchi K2 1Desh Bhagat College of Education, Bardwal–Dhuri–148024, Punjab, India. 2Department of Botany, Punjabi University, Patiala–147002, Punjab, India. Amandeep K, Atri NS, Munruchi K 2015 – Ecology, Distribution Perspective, Economic Utility and Conservation of Coprophilous Agarics (Agaricales, Basidiomycota) Occurring in Punjab, India. Current Research in Environmental & Applied Mycology 5(3), 213–247, Doi 10.5943/cream/5/3/6 Abstract This paper includes the results of eco-taxonomic studies of coprophilous mushrooms in Punjab, India. The information is based on the survey to dung localities of the state during the various years from 2007-2011. A total number of 172 collections have been observed, growing as saprobes on dung of various domesticated and wild herbivorous animals in pastures, open areas, zoological parks, and on dung heaps along roadsides or along village ponds, etc. High coprophilous mushrooms’ diversity has been established and a number of rare and sensitive species recorded with the present study. The observed collections belong to 95 species spread over 20 genera and 07 families of the order Agaricales. The present paper discusses the distribution of these mushrooms in Punjab among different seasons, regions, habitats, and growing habits along with their economic utility, habitat management and conservation. This is the first attempt in which various dung localities of the state has been explored systematically to ascertain the diversity, seasonal availability, distribution and ecology of coprophilous mushrooms. -
Diversity of Species of the Genus Conocybe (Bolbitiaceae, Agaricales) Collected on Dung from Punjab, India
Mycosphere 6(1): 19–42(2015) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2015 Online Edition Doi 10.5943/mycosphere/6/1/4 Diversity of species of the genus Conocybe (Bolbitiaceae, Agaricales) collected on dung from Punjab, India Amandeep K1*, Atri NS2 and Munruchi K2 1Desh Bhagat College of Education, Bardwal-Dhuri-148024, Punjab, India 2Department of Botany, Punjabi University, Patiala-147002, Punjab, India. Amandeep K, Atri NS, Munruchi K 2015 – Diversity of species of the genus Conocybe (Bolbitiaceae, Agaricales) collected on dung from Punjab, India. Mycosphere 6(1), 19–42, Doi 10.5943/mycosphere/6/1/4 Abstract A study of diversity of coprophilous species of Conocybe was carried out in Punjab state of India during the years 2007 to 2011. This research paper represents 22 collections belonging to 16 Conocybe species growing on five diverse dung types. The species include Conocybe albipes, C. apala, C. brachypodii, C. crispa, C. fuscimarginata, C. lenticulospora, C. leucopus, C. magnicapitata, C. microrrhiza var. coprophila var. nov., C. moseri, C. rickenii, C. subpubescens, C. subxerophytica var. subxerophytica, C. subxerophytica var. brunnea, C. uralensis and C. velutipes. For all these taxa, dung types on which they were found growing are mentioned and their distinctive characters are described and compared with similar taxa along with a key for their identification. The taxonomy of ten taxa is discussed along with the drawings of morphological and anatomical features. Conocybe microrrhiza var. coprophila is proposed as a new variety. As many as six taxa, namely C. albipes, C. fuscimarginata, C. lenticulospora, C. leucopus, C. moseri and C. -
Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum -
Mycologist News
MYCOLOGIST NEWS The newsletter of the British Mycological Society 2012 (4) Edited by Prof. Pieter van West and Dr Anpu Varghese 2013 BMS Council BMS Council and Committee Members 2013 President Prof. Geoffrey D. Robson Vice-President Prof. Bruce Ing President Elect Prof Nick Read Treasurer Prof. Geoff M Gadd Secretary Position vacant Publications Officer Dr. Pieter van West International Initiatives Adviser Prof. AJ Whalley Fungal Biology Research Committee representatives: Dr. Elaine Bignell; Prof Nick Read Fungal Education and Outreach Committee: Dr. Paul S. Dyer; Dr Ali Ashby Field Mycology and Conservation: Dr. Stuart Skeates, Mrs Dinah Griffin Fungal Biology Research Committee Prof. Nick Read (Chair) retiring 31.12. 2013 Dr. Elaine Bignell retiring 31.12. 2013 Dr. Mark Ramsdale retiring 31.12. 2013 Dr. Pieter van West retiring 31.12. 2013 Dr. Sue Crosthwaite retiring 31.12. 2014 Prof. Mick Tuite retiring 31.12. 2014 Dr Alex Brand retiring 31.12. 2015 Fungal Education and Outreach Committee Dr. Paul S. Dyer (Chair and FBR link) retiring 31.12. 2013 Dr. Ali Ashby retiring 31.12. 2013 Ms. Carol Hobart (FMC link) retiring 31.12. 2012 Dr. Sue Assinder retiring 31.12. 2013 Dr. Kay Yeoman retiring 31.12. 2013 Alan Williams retiring 31.12. 2014 Prof Lynne Boddy (Media Liaison) retiring 31.12. 2014 Dr. Elaine Bignell retiring 31.12. 2015 Field Mycology and Conservation Committee Dr. Stuart Skeates (Chair, website & FBR link) retiring 31.12. 2014 Prof Richard Fortey retiring 31.12. 2013 Mrs. Sheila Spence retiring 31.12. 2013 Mrs Dinah Griffin retiring 31.12. 2014 Dr. -
Studies on the Diversity of Macrofungus in Kodaikanal Region of Western Ghats, Tamil Nadu, India
BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 6, November 2018 E-ISSN: 2085-4722 Pages: 2283-2293 DOI: 10.13057/biodiv/d190636 Studies on the diversity of macrofungus in Kodaikanal region of Western Ghats, Tamil Nadu, India BOOBALAN THULASINATHAN1, MOHAN RASU KULANTHAISAMY1,2, ARUMUGAM NAGARAJAN1, SARAVANAN SOORANGKATTAN3, JOTHI BASU MUTHURAMALINGAM3, JEYAKANTHAN JEYARAMAN4, ALAGARSAMY ARUN 1, 1Department of Microbiology, Alagappa University, College Road, Alagappa Puram, Karaikudi – 630003, Tamil Nadu, India. Tel.: +91-4565-223 100, email: [email protected] 2Department of Energy Science, Alagappa University. Karaikudi 630003, Tamil Nadu, India 3Department of Botany (DDE), Alagappa University. Karaikudi 630003, Tamil Nadu, India 4Department of Bioinformatics, Alagappa University. Karaikudi 630003, Tamil Nadu, India Manuscript received: 22 October 2018. Revision accepted: 13 November 2018. Abstract. Boobalan T, Mohan Rasu K, Arumugam N, Saravanan S, Jothi Basu M, Jeyakanthan J, Arun A. 2018. Studies on the diversity of macrofungus in Kodaikanal region of Western Ghats, Tamil Nadu, India. Biodiversitas 19: 2283-2293. We have demonstrated the distribution of macro fungal communities in the selected forest territory of Kodaikanal (Poondi) region, which houses about 100 mushrooms species diverse forms of mushrooms including both the soil-inhabiting (n = 45) and wood-inhabiting (n = 55) species. Kodaikanal is situated on a plateau between the Parappar and Gundar valleys; this area experiences peculiar lower temperature between 8.2°C and 19.7°C, higher humidity between 92% and 95%, which in turn enhances the growth of different types of mushrooms throughout the year. However, the peak production and macro fungal flushes were observed during the winter season followed by the northeast monsoon (Oct-Dec 2015). -
Reviewing the World's Edible Mushroom Species: a New
Received: 5 September 2020 Revised: 4 December 2020 Accepted: 21 December 2020 DOI: 10.1111/1541-4337.12708 COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY Reviewing the world’s edible mushroom species: A new evidence-based classification system Huili Li1,2,3 Yang Tian4 Nelson Menolli Jr5,6 Lei Ye1,2,3 Samantha C. Karunarathna1,2,3 Jesus Perez-Moreno7 Mohammad Mahmudur Rahman8 Md Harunur Rashid8 Pheng Phengsintham9 Leela Rizal10 Taiga Kasuya11 Young Woon Lim12 Arun Kumar Dutta13 Abdul Nasir Khalid14 Le Thanh Huyen15 Marilen Parungao Balolong16 Gautam Baruah17 Sumedha Madawala18 Naritsada Thongklang19,20 Kevin D. Hyde19,20,21 Paul M. Kirk22 Jianchu Xu1,2,3 Jun Sheng23 Eric Boa24 Peter E. Mortimer1,3 1 CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China 2 East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China 3 Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China 4 College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China 5 Núcleo de Pesquisa em Micologia, Instituto de Botânica, São Paulo, Brazil 6 Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, Brazil 7 Colegio de Postgraduados, Campus Montecillo, Texcoco, México 8 Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, -
Forest Fungi in Ireland
FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix -
Biodiversity of Dead Wood
Scottish Natural Heritage Biodiversity of Dead Wood Fungi – Lichens - Bryophytes Dr David Genney SNH Policy and Advice Officer Scottish Natural Heritage Key messages Scotland is home to thousands of fungi, lichens and bryophytes, many of which depend on dead wood as a food source or place to grow. This presentation gives a brief introduction, for each group, to the diversity of dead wood species and the types of dead wood they need to survive. The take-home message is that the dead wood habitat is as diverse as the species that depend upon it. Ensuring a wide range of these dead wood types will maximise species diversity. Some dead wood types need special management and may need to be prioritised in areas where threatened species depend upon them. Scottish Natural Heritage FUNGI Dead wood is food for fungi and they, in turn, have a big impact on its quality and ultimate fate With thousands of species, each with specific habitat requirements, fungi require a wide diversity of dead wood types to maximise diversity Liz Holden Scottish Natural Heritage Different fungi rot wood in different ways – the main types of rot are brown rot and white rot Brown rot fungi The main building block of wood, cellulose, is broken down by the fungi, but not other structural compounds such as lignin. Dead wood is brown and exhibits brick-like cracking Many bracket fungi are brown rotters Liz Holden Cellulose Scottish Natural Heritage White-rot fungi White-rot fungi degrade a wider range of wood compounds, including the very complex polymer, lignin Pale wood More species are white-rot than brown-rot fungi Lignin Liz Holden Lignin Scottish Natural Heritage Armillaria spp. -
Septal Pore Caps in Basidiomycetes Composition and Ultrastructure
Septal Pore Caps in Basidiomycetes Composition and Ultrastructure Septal Pore Caps in Basidiomycetes Composition and Ultrastructure Septumporie-kappen in Basidiomyceten Samenstelling en Ultrastructuur (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. J.C. Stoof, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 17 december 2007 des middags te 16.15 uur door Kenneth Gregory Anthony van Driel geboren op 31 oktober 1975 te Terneuzen Promotoren: Prof. dr. A.J. Verkleij Prof. dr. H.A.B. Wösten Co-promotoren: Dr. T. Boekhout Dr. W.H. Müller voor mijn ouders Cover design by Danny Nooren. Scanning electron micrographs of septal pore caps of Rhizoctonia solani made by Wally Müller. Printed at Ponsen & Looijen b.v., Wageningen, The Netherlands. ISBN 978-90-6464-191-6 CONTENTS Chapter 1 General Introduction 9 Chapter 2 Septal Pore Complex Morphology in the Agaricomycotina 27 (Basidiomycota) with Emphasis on the Cantharellales and Hymenochaetales Chapter 3 Laser Microdissection of Fungal Septa as Visualized by 63 Scanning Electron Microscopy Chapter 4 Enrichment of Perforate Septal Pore Caps from the 79 Basidiomycetous Fungus Rhizoctonia solani by Combined Use of French Press, Isopycnic Centrifugation, and Triton X-100 Chapter 5 SPC18, a Novel Septal Pore Cap Protein of Rhizoctonia 95 solani Residing in Septal Pore Caps and Pore-plugs Chapter 6 Summary and General Discussion 113 Samenvatting 123 Nawoord 129 List of Publications 131 Curriculum vitae 133 Chapter 1 General Introduction Kenneth G.A. van Driel*, Arend F. -
A Checklist of Clavarioid Fungi (Agaricomycetes) Recorded in Brazil
A checklist of clavarioid fungi (Agaricomycetes) recorded in Brazil ANGELINA DE MEIRAS-OTTONI*, LIDIA SILVA ARAUJO-NETA & TATIANA BAPTISTA GIBERTONI Departamento de Micologia, Universidade Federal de Pernambuco, Av. Nelson Chaves s/n, Recife 50670-420 Brazil *CORRESPONDENCE TO: [email protected] ABSTRACT — Based on an intensive search of literature about clavarioid fungi (Agaricomycetes: Basidiomycota) in Brazil and revision of material deposited in Herbaria PACA and URM, a list of 195 taxa was compiled. These are distributed into six orders (Agaricales, Cantharellales, Gomphales, Hymenochaetales, Polyporales and Russulales) and 12 families (Aphelariaceae, Auriscalpiaceae, Clavariaceae, Clavulinaceae, Gomphaceae, Hymenochaetaceae, Lachnocladiaceae, Lentariaceae, Lepidostromataceae, Physalacriaceae, Pterulaceae, and Typhulaceae). Among the 22 Brazilian states with occurrence of clavarioid fungi, Rio Grande do Sul, Paraná and Amazonas have the higher number of species, but most of them are represented by a single record, which reinforces the need of more inventories and taxonomic studies about the group. KEY WORDS — diversity, taxonomy, tropical forest Introduction The clavarioid fungi are a polyphyletic group, characterized by coralloid, simple or branched basidiomata, with variable color and consistency. They include 30 genera with about 800 species, distributed in Agaricales, Cantharellales, Gomphales, Hymenochaetales, Polyporales and Russulales (Corner 1970; Petersen 1988; Kirk et al. 2008). These fungi are usually humicolous or lignicolous, but some can be symbionts – ectomycorrhizal, lichens or pathogens, being found in temperate, subtropical and tropical forests (Corner 1950, 1970; Petersen 1988; Nelsen et al. 2007; Henkel et al. 2012). Some species are edible, while some are poisonous (Toledo & Petersen 1989; Henkel et al. 2005, 2011). Studies about clavarioid fungi in Brazil are still scarce (Fidalgo & Fidalgo 1970; Rick 1959; De Lamônica-Freire 1979; Sulzbacher et al. -
Chemical Elements in Ascomycetes and Basidiomycetes
Chemical elements in Ascomycetes and Basidiomycetes The reference mushrooms as instruments for investigating bioindication and biodiversity Roberto Cenci, Luigi Cocchi, Orlando Petrini, Fabrizio Sena, Carmine Siniscalco, Luciano Vescovi Editors: R. M. Cenci and F. Sena EUR 24415 EN 2011 1 The mission of the JRC-IES is to provide scientific-technical support to the European Union’s policies for the protection and sustainable development of the European and global environment. European Commission Joint Research Centre Institute for Environment and Sustainability Via E.Fermi, 2749 I-21027 Ispra (VA) Italy Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC Catalogue number: LB-NA-24415-EN-C Editors: R. M. Cenci and F. Sena JRC65050 EUR 24415 EN ISBN 978-92-79-20395-4 ISSN 1018-5593 doi:10.2788/22228 Luxembourg: Publications Office of the European Union Translation: Dr. Luca Umidi © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy 2 Attached to this document is a CD containing: • A PDF copy of this document • Information regarding the soil and mushroom sampling site locations • Analytical data (ca, 300,000) on total samples of soils and mushrooms analysed (ca, 10,000) • The descriptive statistics for all genera and species analysed • Maps showing the distribution of concentrations of inorganic elements in mushrooms • Maps showing the distribution of concentrations of inorganic elements in soils 3 Contact information: Address: Roberto M.