Studies on the Diversity of Macrofungus in Kodaikanal Region of Western Ghats, Tamil Nadu, India

Total Page:16

File Type:pdf, Size:1020Kb

Studies on the Diversity of Macrofungus in Kodaikanal Region of Western Ghats, Tamil Nadu, India BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 6, November 2018 E-ISSN: 2085-4722 Pages: 2283-2293 DOI: 10.13057/biodiv/d190636 Studies on the diversity of macrofungus in Kodaikanal region of Western Ghats, Tamil Nadu, India BOOBALAN THULASINATHAN1, MOHAN RASU KULANTHAISAMY1,2, ARUMUGAM NAGARAJAN1, SARAVANAN SOORANGKATTAN3, JOTHI BASU MUTHURAMALINGAM3, JEYAKANTHAN JEYARAMAN4, ALAGARSAMY ARUN 1, 1Department of Microbiology, Alagappa University, College Road, Alagappa Puram, Karaikudi – 630003, Tamil Nadu, India. Tel.: +91-4565-223 100, email: [email protected] 2Department of Energy Science, Alagappa University. Karaikudi 630003, Tamil Nadu, India 3Department of Botany (DDE), Alagappa University. Karaikudi 630003, Tamil Nadu, India 4Department of Bioinformatics, Alagappa University. Karaikudi 630003, Tamil Nadu, India Manuscript received: 22 October 2018. Revision accepted: 13 November 2018. Abstract. Boobalan T, Mohan Rasu K, Arumugam N, Saravanan S, Jothi Basu M, Jeyakanthan J, Arun A. 2018. Studies on the diversity of macrofungus in Kodaikanal region of Western Ghats, Tamil Nadu, India. Biodiversitas 19: 2283-2293. We have demonstrated the distribution of macro fungal communities in the selected forest territory of Kodaikanal (Poondi) region, which houses about 100 mushrooms species diverse forms of mushrooms including both the soil-inhabiting (n = 45) and wood-inhabiting (n = 55) species. Kodaikanal is situated on a plateau between the Parappar and Gundar valleys; this area experiences peculiar lower temperature between 8.2°C and 19.7°C, higher humidity between 92% and 95%, which in turn enhances the growth of different types of mushrooms throughout the year. However, the peak production and macro fungal flushes were observed during the winter season followed by the northeast monsoon (Oct-Dec 2015). A total of 100 species belonging to 51 families were documented from this study sites. Moreover, some species (e.g., Ganoderma sp and Phellinus sp) persists all around the year in this region. However, some incidents of logging and burning of host trees have resulted in the decline of the macro fungal populations in this region. Hence the present study highlights the diversity of macro fungal population and also suggests their importance as part of biodiversity conservation. Keywords: Basidiomycetes fungi, mushrooms diversity, soil-inhabiting mushrooms, tree-inhabiting mushrooms INTRODUCTION through a balanced diet (Valverde et al. 2015). It is very important to document and understand the biodiversity at Mushroom is a seasonal growing macro fungus that regional, national and global level. Because India is one of plays a vital role in terrestrial ecosystem and functions as the 17 mega diverse countries of the world and biodiversity decomposers (Hawksworth 2001; Mueller et al. 2007; conservation is the responsibility of every country. Prakash 2016; Adeniyi et al. 2018). Fungi are large According to Ministry of Environment and Forest in India biodiversity group of microorganism in the ecosystem and With only 2.4% of the world’s land area, about 16.7% of consist of about 1.5 million species across the globe, where the world’s human population and 18% livestock together India ranks third largest fungal diversified country with contribute about 8% of the known global biodiversity. about 2,70,000 species, next to the largest insect biodiversity Recently, Gadgil et al. (2011) have raised voice against the (Manoharachary et al. 2005). There are many varieties of illegal practices that are spoiling the ecosystem and have mushrooms such as fairy clubs, toadstools, puffballs, suggested the need for effective conservation of ecologically stinkhorns, earthstars, bird’s nest fungi, jelly fungi and sensitive areas in the Western Ghats India. Kodaikanal is these are generally of saprophytic in nature capable of covered with a dense forest of Acacia mearnsii (Australian using wood as a nutrient source by utilizing a ligninolytic black wattle), eucalyptus and pine, which was introduced in enzyme (Karwa and Rai 2010). Mushrooms also play an the period of 1960s between 1,800 and 2,400 m of important role in global carbon cycle, in addition, they are Kodaikanal surrounding regions for households and essential to the survival of other organisms in numerous industry purposes (Rangan et al. 2010). The macrofungal ways, act as source of novel bioactive compounds, forest diversity has been classified based on three main biocontrol agents, plant pathogens and are also involved in factors such as terricolous saprotrophic, wood-inhabiting the degradation process (Arun et al. 2008; Arun and Eyini and ectomycorrhizal (EcM) (Kutszegi et al. 2015). Many 2011). Wild mushrooms are also becoming more important environmental factors are important drivers for the for their nutritional, sensory and especially pharmacological diversity of macrofungal species richness. Wood-inhabiting characteristics including the significant content of vitamins fungal communities are host specificity or the amount and (Günç Ergönül et al. 2013; Heleno et al. 2010). diameter (Lonsdale et al. 2008), age (Heilmann-Clausen In this context, mushrooms have a long history of use in 2001), decay stage (Heilmann-Clausen et al. 2014), species oriental medicine to prevent and fight numerous diseases identity (Küffer et al. 2008), complexity (Heilmann-Clausen 2284 BIODIVERSITAS 19 (6): 2283-2293, November 2018 and Christensen 2005), and spatio-temporal availability of of Kodaikanal was about 15.93°C with an average of dead wood (Halme et al. 2013). The microclimatic 17.29°C in summer (Mar, May, Jun, Jul and Aug) and condition and inside pH of wood also play on important mean winter temperature was about 14.1°C (Dec, Jan and role in macrofungal growth (Salerni et al. 2002). Feb) with average annual rainfall of 1,650 and 1,800 mm In this scenario, the aim of the present study is to study (Rangan et al. 2010). The main reason for selecting this the distribution and presence of macro fungal species in the region as the study area is due to their peculiar climatic forest patches of the Kodaikanal (Poondi) region. Also that, features, which enhance the growth of a variety of plants isolating the sporocarps from mushrooms that were like acacia, eucalyptus and pinus (Jan-Dec 2015), which in cultivated in the laboratory conditions for numerous turn influences the growth of mushrooms in the study area. studies. From the collection and diversity documentation, we have studied the morphological characters of the Sampling of macrofungi mushrooms, host specificity, forest-type preference, A group of 6 people, three at each side of the central seasonal growth pattern and adaptation over lower line walked along transects the length of 20m each end and temperature extremes. all macro fungi within the transect belt were recorded. We have used meter sticks to describe an area of 2m on both sides and walked forward the length of transects observed MATERIALS AND METHODS the type and number of individual of the species (Ortega- Martinez and Martinez-Pena 2008). To avoid the double Study area counting, after complete the first transect the following The present study area is situated about 45 km transects were laid 5m intervals. Each macro fungi species eastwards from Kodaikanal (Poondi: 10°11'11.63"N and within each transect was collected in separate specimen 77°20'33.89"E; 1981.2 m) (Jan-Dec 2015) (Figure 1). This bags in order to avoid spore contamination among the area is surrounded by Kodaikanal Wildlife Sanctuary, different specimens, and these were photographed in which is about 60,895.482 hectares (608.95 sq.km) and colored and tagged. Morphological features such as size, consisted of different macro fungal species. Hand held color, shape, and texture of the sporocarps were recorded thermo-hygrometer (Mextech™, Mumbai, India) was used as these features might change with drying. Identification to record the temperature and relative humidity is of specimen was based on macroscopic and microscopic prevailing in the sampling sites. The average temperature features. Figure 1. Map showing distribution of mushrooms species in Kodaikanal region of Poondi, India THULASINATHAN et al. – Biodiversity of macrofungus distributions in India 2285 Table 1. Overall diversity indexes RESULTS AND DISCUSSION Soil habituating Wood habituating Among the collected 100 mushroom species 79 were Shannon-Weiner Simpson Shannon-Weiner Simpson identified at the species level, and 21 were identified as for genus level belonging to 51 families from the Kodaikanal 2.079 1.877 2.025 5.025 (Poondi) region of the Western Ghats during the study period (2015) (Figures 2-3). Among the species 45 were isolated from the soil host surfaces, whereas the remaining The macroscopic features used were: the cap size, 55 were isolated from the tree host surfaces of tree species shape, color, surface texture and surface moisture, gill such as black wattle (n = 42), eucalyptus (n = 3), pinus (n = color, attachment, spacing, lamellules, the stem size, shape, 6) and Erythrina indica (n = 4). All these host trees were of surface texture and surface moisture, the presence or invasive tree types and were observed to accommodate absence of partial and universal veils, flesh color and many number mushrooms than that of the other native tree texture. Using standard protocols, diversity indices such as species. Also, each tree inhabiting mushroom species was Simpson and Shannon-Weiner diversity indices were used observed to dependent only on specific host species. (Table 1). Diversity and distribution Identification of mushrooms A total of 100 species were collected in both wood and The mushrooms were photographed at the collection soil. Overall diversity index was indicated to wood spot and were identified based on its primary mode of habituating mushrooms have more index regarding nutrients (fungi parasitic on living plant material), very diversity compared with soil habituating mushrooms (Table fresh dead material, wood-decay fungi, ectomycorrhizal 1). In Soil the identified species belong to 21 families of 9 fungi and litter-decay fungi found on forest floor according orders. Majority of the fungi belonged to the Agaricales (31 to Ferris et al.
Recommended publications
  • Effects of Trophism on Nutritional and Nutraceutical Potential of Wild Edible
    Effects of trophism on nutritional and nutraceutical potential of wild edible mushrooms a,b a,b a,b b CÁTIA GRANGEIA SANDRINA A. HELENO, LILLIAN BARROS, ANABELA MARTINS, a,b,* ISABEL C.F.R. FERREIRA aCIMO-ESA, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal. bEscola Superior Agrária, Instituto Politécnico de Bragança, Campus de Santa Apolónia, Apartado 1172, 5301-855 Bragança, Portugal. * Author to whom correspondence should be addressed (e-mail: [email protected] telephone +351-273-303219; fax +351-273-325405). ABSTRACT Consumption of wild growing mushrooms has been preferred to eating of cultivated fungi in many countries of central and Eastern Europe. Nevertheless, the knowledge of the nutritional value of wild growing mushrooms is limited. The present study reports the effects of trophism on mushrooms nutritional and nutraceutical potential. In vitro antioxidant properties of five saprotrophic (Calvatia utriformis, Clitopilus prunulus, Lycoperdon echinatum, Lyophyllum decastes, Macrolepiota excoriata) and five mycorrhizal (Boletus erythropus, Boletus fragrans, Hygrophorus pustulatus, Russula cyanoxantha, Russula olivacea) wild edible mushrooms were accessed and compared to individual compounds identified by chromatographic techniques. Mycorrhizal species revealed higher sugars concentration (16-42 g/100 g dw) than the saprotrophic mushrooms (0.4-15 g/100 g). Furthermore, fructose was found only in mycorrhizal species (0.2-2 g/100 g). The saprotrophic Lyophyllum decastes, and the mycorrhizal species Boletus erythropus and Boletus fragrans gave the highest antioxidant potential, mainly due to the contribution of polar antioxidants such as phenolics and sugars. The bioactive compounds found in wild mushrooms give scientific evidence to traditional edible and medicinal uses of these species.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • Septal Pore Caps in Basidiomycetes Composition and Ultrastructure
    Septal Pore Caps in Basidiomycetes Composition and Ultrastructure Septal Pore Caps in Basidiomycetes Composition and Ultrastructure Septumporie-kappen in Basidiomyceten Samenstelling en Ultrastructuur (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. J.C. Stoof, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op maandag 17 december 2007 des middags te 16.15 uur door Kenneth Gregory Anthony van Driel geboren op 31 oktober 1975 te Terneuzen Promotoren: Prof. dr. A.J. Verkleij Prof. dr. H.A.B. Wösten Co-promotoren: Dr. T. Boekhout Dr. W.H. Müller voor mijn ouders Cover design by Danny Nooren. Scanning electron micrographs of septal pore caps of Rhizoctonia solani made by Wally Müller. Printed at Ponsen & Looijen b.v., Wageningen, The Netherlands. ISBN 978-90-6464-191-6 CONTENTS Chapter 1 General Introduction 9 Chapter 2 Septal Pore Complex Morphology in the Agaricomycotina 27 (Basidiomycota) with Emphasis on the Cantharellales and Hymenochaetales Chapter 3 Laser Microdissection of Fungal Septa as Visualized by 63 Scanning Electron Microscopy Chapter 4 Enrichment of Perforate Septal Pore Caps from the 79 Basidiomycetous Fungus Rhizoctonia solani by Combined Use of French Press, Isopycnic Centrifugation, and Triton X-100 Chapter 5 SPC18, a Novel Septal Pore Cap Protein of Rhizoctonia 95 solani Residing in Septal Pore Caps and Pore-plugs Chapter 6 Summary and General Discussion 113 Samenvatting 123 Nawoord 129 List of Publications 131 Curriculum vitae 133 Chapter 1 General Introduction Kenneth G.A. van Driel*, Arend F.
    [Show full text]
  • A Checklist of Clavarioid Fungi (Agaricomycetes) Recorded in Brazil
    A checklist of clavarioid fungi (Agaricomycetes) recorded in Brazil ANGELINA DE MEIRAS-OTTONI*, LIDIA SILVA ARAUJO-NETA & TATIANA BAPTISTA GIBERTONI Departamento de Micologia, Universidade Federal de Pernambuco, Av. Nelson Chaves s/n, Recife 50670-420 Brazil *CORRESPONDENCE TO: [email protected] ABSTRACT — Based on an intensive search of literature about clavarioid fungi (Agaricomycetes: Basidiomycota) in Brazil and revision of material deposited in Herbaria PACA and URM, a list of 195 taxa was compiled. These are distributed into six orders (Agaricales, Cantharellales, Gomphales, Hymenochaetales, Polyporales and Russulales) and 12 families (Aphelariaceae, Auriscalpiaceae, Clavariaceae, Clavulinaceae, Gomphaceae, Hymenochaetaceae, Lachnocladiaceae, Lentariaceae, Lepidostromataceae, Physalacriaceae, Pterulaceae, and Typhulaceae). Among the 22 Brazilian states with occurrence of clavarioid fungi, Rio Grande do Sul, Paraná and Amazonas have the higher number of species, but most of them are represented by a single record, which reinforces the need of more inventories and taxonomic studies about the group. KEY WORDS — diversity, taxonomy, tropical forest Introduction The clavarioid fungi are a polyphyletic group, characterized by coralloid, simple or branched basidiomata, with variable color and consistency. They include 30 genera with about 800 species, distributed in Agaricales, Cantharellales, Gomphales, Hymenochaetales, Polyporales and Russulales (Corner 1970; Petersen 1988; Kirk et al. 2008). These fungi are usually humicolous or lignicolous, but some can be symbionts – ectomycorrhizal, lichens or pathogens, being found in temperate, subtropical and tropical forests (Corner 1950, 1970; Petersen 1988; Nelsen et al. 2007; Henkel et al. 2012). Some species are edible, while some are poisonous (Toledo & Petersen 1989; Henkel et al. 2005, 2011). Studies about clavarioid fungi in Brazil are still scarce (Fidalgo & Fidalgo 1970; Rick 1959; De Lamônica-Freire 1979; Sulzbacher et al.
    [Show full text]
  • Re-Thinking the Classification of Corticioid Fungi
    mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma.
    [Show full text]
  • The Diversity of Macromycetes in the Territory of Batočina (Serbia)
    Kragujevac J. Sci. 41 (2019) 117-132. UDC 582.284 (497.11) Original scientific paper THE DIVERSITY OF MACROMYCETES IN THE TERRITORY OF BATOČINA (SERBIA) Nevena N. Petrović*, Marijana M. Kosanić and Branislav R. Ranković University of Kragujevac, Faculty of Science, Department of Biology and Ecology St. Radoje Domanović 12, 34 000 Kragujevac, Republic of Serbia *Corresponding author; E-mail: [email protected] (Received March 29th, 2019; Accepted April 30th, 2019) ABSTRACT. The purpose of this paper was discovering the diversity of macromycetes in the territory of Batočina (Serbia). Field studies, which lasted more than a year, revealed the presence of 200 species of macromycetes. The identified species belong to phyla Basidiomycota (191 species) and Ascomycota (9 species). The biggest number of registered species (100 species) was from the order Agaricales. Among the identified species was one strictly protected – Phallus hadriani and seven protected species: Amanita caesarea, Marasmius oreades, Cantharellus cibarius, Craterellus cornucopia- odes, Tuber aestivum, Russula cyanoxantha and R. virescens; also, several rare and endangered species of Serbia. This paper is a contribution to the knowledge of the diversity of macromycetes not only in the territory of Batočina, but in Serbia, in general. Keywords: Ascomycota, Basidiomycota, Batočina, the diversity of macromycetes. INTRODUCTION Fungi represent one of the most diverse and widespread group of organisms in terrestrial ecosystems, but, despite that fact, their diversity remains highly unexplored. Until recently it was considered that there are 1.6 million species of fungi, from which only something around 100 000 were described (KIRK et al., 2001), while data from 2017 lists 120000 identified species, which is still a slight number (HAWKSWORTH and LÜCKING, 2017).
    [Show full text]
  • Survey of the Gasteral Basidiomycota (Fungi) of Croatia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE NAT. CROAT. VOL. 14 No 2 99¿120 ZAGREB June 30, 2005 original scientific paper / izvorni znanstveni rad SURVEY OF THE GASTERAL BASIDIOMYCOTA (FUNGI) OF CROATIA ZDENKO TKAL^EC,ARMIN ME[I] &OLEG ANTONI] Laboratory of Biocoenotic Research, Ru|er Bo{kovi} Institute, Bijeni~ka cesta 54, 10000 Zagreb, Croatia (E-mails: [email protected], [email protected], [email protected]) Tkal~ec, Z., Me{i}, A. & Antoni}, O.: Survey of the gasteral Basidiomycota (Fungi) of Croatia. Nat. Croat., Vol. 14, No. 2., 99–120, 2005, Zagreb. A survey of the gasteral Basidiomycota of Croatia is given. 68 species belonging to 26 genera are presented. Five genera and 18 species are reported as new to Croatia. For each species, the pub- lished and unpublished sources of data are given, as well as the collections in which the material is deposited. Key words: Biodiversity, mycobiota, bibliography Tkal~ec, Z., Me{i}, A. & Antoni}, O.: Pregled utrobnja~a (Basidiomycota, Fungi) Hrvatske. Nat. Croat., Vol. 14, No. 2., 99–120, 2005, Zagreb. Dat je pregled gljiva utrobnja~a Hrvatske. Sadr`i 68 vrsta iz 26 rodova. Pet rodova i 18 vrsta prvi je put publicirano za podru~je Hrvatske. Uz svaku vrstu navedeni su publicirani i nepub- licirani izvori podataka, kao i zbirke u kojima je pohranjen sakupljeni materijal. Klju~ne rije~i: biolo{ka raznolikost, mikobiota, bibliografija INTRODUCTION The mycobiota of Croatia is poorly explored. The gasteral Basidiomycota are no exception since few mycologists have researched the group.
    [Show full text]
  • Ecology, Diversity and Seasonal Distribution of Wild Mushrooms in a Nigerian Tropical Forest Reserve
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 285-295 DOI: 10.13057/biodiv/d190139 Ecology, diversity and seasonal distribution of wild mushrooms in a Nigerian tropical forest reserve MOBOLAJI ADENIYI1,2,♥, YEMI ODEYEMI3, OLU ODEYEMI1 1Department of Microbiology, Obafemi Awolowo University. Ile-Ife, 220282, Osun State, Nigeria 2Department of Biological Sciences, Osun State University. Oke-Baale, Osogbo, 230212, Osun State, Nigeria. Tel.: +234-0-8035778780, ♥email: [email protected], [email protected] 3Department of Molecular Medicine, University of South Florida. 4202 E Fowler Avenue, Tampa, Florida, 33620, FL, USA Manuscript received: 19 December 2017. Revision accepted: 19 January 2018. Abstract. Adeniyi M, Odeyemi Y, Odeyemi O. 2018. Ecology, diversity and seasonal distribution of wild mushrooms in a Nigerian tropical forest reserve. Biodiversitas 19: 285-295. This study investigated the ecology, diversity and seasonal distribution of wild mushrooms at Environmental Pollution Science and Technology (ENPOST) forest reserve, Ilesa, Southwestern Nigeria. Mushrooms growing in the ligneous and terrestrial habitats of the forest were collected, identified and enumerated between March 2014 and March 2015. Diversity indices including species richness, dominance, and species diversity were evaluated. Correlation (p < 0.05) was determined among climatic data and diversity indices. A total of 151 mushroom species specific to their respective habitats were obtained. The highest monthly species richness (70) was obtained in October 2014. While a higher dominance was observed in the terrestrial habitat during the rainy and dry seasons (0.072 and 0.159 respectively), species diversity was higher in the ligneous and terrestrial habitats during the rainy season (3.912 and 3.304 respectively).
    [Show full text]
  • Rock Island State Park Species List
    Rock Island State Park Species List Place cursor over cells with red By Cumberland Mycological Society, Crossville, TN triangles to view pictures click on underlined species for web links to details about those species and/or comments Inventory List: Common Name (if applicable) Jun-12 Oct-12 Jun-13 Aug-14 Edibility Notes* Aleuria aurantia syn. Peziza aruantia "Orange Peel" x(?) edible but flavorless Agaricus placomyces "Eastern Flat-topped Agaricus" x(?) poisonous Agaricus pocillator none x unknown -possibly poisonous Agaricus silvicola none x edible (with extreme caution) Amanita abrupta "Abrupt-bulbed Lepidella" x unknown and possibly poisonous Amanita amerifulva [often called 'Amanita fulva' -a European species] “Tawny Grisette” x x edible -with extreme caution!! Amanita amerirubescens "Blusher" x x x edible -with extreme caution!! Amanita banningiana "Mary Banning's Slender Caesar" x x Amanita bisporigera = A. virosa sensu auct. amer. (Ref. RET) "Destroying Angel" x x x deadly poisonous! Amanita brunnescens “Cleft foot-Amanita” x x possibly poisonous Amanita cinereoconia var. cinereoconia "American Gray Dust Lepidella" x no information -best avoided Amanita citrina f. lavendula "Lavender-staining Citrina" x possibly poisonous Amanita citrina sensu auct. amer. "Citron Amanita," "False Death Cap" x possibly poisonous Amanita daucipes "Turnip-foot Amanita" x x possibly poisonous Amanita farinosa "Powdery-cap Amanita" x x x x unknown; not recommended Amanita flavoconia “Yellow Patches" x x x possibly poisonous Amanita gemmata complex "Gem-studded Amanita" x x possibly poisonous Amanita jacksonii syn. A. umbonata, syn. A. caesarea "American Caesar's Mushroom" x edible -with extreme caution!! Amanita muscaria var. guessowii syn. A. muscaria var. formosa "Yellow-orange Fly Agaric" x poisonous Amanita parcivolvata "Ringless False Fly Agaric" x x likely poisonous Amanita polypyramis "Plateful of Pyramids Lepidella" x x poisonous Amanita subcokeri Tulloss nom.
    [Show full text]
  • Diversity of Macromycetes in the Botanical Garden “Jevremovac” in Belgrade
    40 (2): (2016) 249-259 Original Scientific Paper Diversity of macromycetes in the Botanical Garden “Jevremovac” in Belgrade Jelena Vukojević✳, Ibrahim Hadžić, Aleksandar Knežević, Mirjana Stajić, Ivan Milovanović and Jasmina Ćilerdžić Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia ABSTRACT: At locations in the outdoor area and in the greenhouse of the Botanical Garden “Jevremovac”, a total of 124 macromycetes species were noted, among which 22 species were recorded for the first time in Serbia. Most of the species belong to the phylum Basidiomycota (113) and only 11 to the phylum Ascomycota. Saprobes are dominant with 81.5%, 45.2% being lignicolous and 36.3% are terricolous. Parasitic species are represented with 13.7% and mycorrhizal species with 4.8%. Inedible species are dominant (70 species), 34 species are edible, five are conditionally edible, eight are poisonous and one is hallucinogenic (Psilocybe cubensis). A significant number of representatives belong to the category of medicinal species. These species have been used for thousands of years in traditional medicine of Far Eastern nations. Current studies confirm and explain knowledge gained by experience and reveal new species which produce biologically active compounds with anti-microbial, antioxidative, genoprotective and anticancer properties. Among species collected in the Botanical Garden “Jevremovac”, those medically significant are: Armillaria mellea, Auricularia auricula.-judae, Laetiporus sulphureus, Pleurotus ostreatus, Schizophyllum commune, Trametes versicolor, Ganoderma applanatum, Flammulina velutipes and Inonotus hispidus. Some of the found species, such as T. versicolor and P. ostreatus, also have the ability to degrade highly toxic phenolic compounds and can be used in ecologically and economically justifiable soil remediation.
    [Show full text]
  • Kings Park Fungi Report
    Client report to the Botanic Gardens and Parks Authority Fungi survey Bold Park 2016 Author: Neale L. Bougher Department of Parks and Wildlife , Western Australia December 2016 Figures 1 - 8: Examples of fungi discovered in Bold Park during the 2016 survey. Figure 1: Scleroderma areolatum (NLB 1370). A mycorrhizal puffball species previously Figure 2: Pyronema omphalodes (NLB 1335) on burnt not recorded in Bold Park. soil after experimental fire near Wollaston. Figure 4: Hohenbuehelia bingarra (NLB 1437) occurs Figure 3: Punctularia strigosozonata (NLB 1423). Bracket or shelf-like fungus on fallen logs. in large numbers on living tuart trees. Fig 5: A fallen, invertebrate-inhabited fruit body Figure 6: Coprinellus cf. hercules (NLB 1359). A tiny of White Punk (Piptoporus laetiporus). wood-inhabiting species in Bold Pk. Figure 7: Coprinopsis “peaches & cream” Figure 8: Hypocrea rufa (NLB 1454). A cushion-like (NLB1393). Second record of this new species. wood-inhabiting species. ____________________________________________________________ Fungi Survey Bold Park 2016 © N. L. Bougher Dept. of Parks and Wildlife 2016 2 of 26 Fungi - Bold Park: 2016 Background and Objectives Bold Park is a regionally significant bushland located in the west metropolitan area of Perth, Western Australia. The park incorporates 437 hectares of diverse vegetation types on Spearwood and Quindalup dune systems such as eucalypt and banksias woodlands, acacia shrublands, and coastal and limestone heath (Keighery et al., 1990; Barrett and Tay, 2005). A large diversity of fungi occurs in Bold Park but little is known about their identity or ecology. Many hundreds of species of microfungi, including some that benefit native orchids, are likely to occur in the park.
    [Show full text]
  • Notes on Iowa Fungi. XII
    Proceedings of the Iowa Academy of Science Volume 59 Annual Issue Article 14 1952 Notes on Iowa Fungi. XII G. W. Martin State University of Iowa Let us know how access to this document benefits ouy Copyright ©1952 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Martin, G. W. (1952) "Notes on Iowa Fungi. XII," Proceedings of the Iowa Academy of Science, 59(1), 111-118. Available at: https://scholarworks.uni.edu/pias/vol59/iss1/14 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Martin: Notes on Iowa Fungi. XII Notes on Iowa Fungi. XII By G. w. MARTIN AowsPERMUM IN lowA. Figs. 1, 2 Acrospermum includes a few small and inconspicuous species of club-like fungi in which the single erect ovate or flattened spore chamber is borne on a stalk or a constricted base. Lindau (in Eng­ ler & PrantL Nat. Pf!. I. 1 :278. 1896) erected for the genus the monotypic family Acrospermaceae, based largely on the flattened ascocarp and slit-like dehiscence of A. compressum Tode ex Fries, the oldest and best-known species, and included the family, with some reservation, in the Hysteriales. Other authors have assigned it to the Hypocreales and Sphaeriales. Brandriff (Mycologia 28: 228-235. 19:i6) gives a review of the pertinent literature.
    [Show full text]