Toxicological Review for Methyl Ethyl Ketone (MEK)

Total Page:16

File Type:pdf, Size:1020Kb

Toxicological Review for Methyl Ethyl Ketone (MEK) EPA 635/R-03/009 www.epa.gov/iris TOXICOLOGICAL REVIEW OF METHYL ETHYL KETONE (CAS No. 78-93-3) In Support of Summary Information on the Integrated Risk Information System (IRIS) September 2003 U.S. Environmental Protection Agency Washington, DC DISCLAIMER This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Note: This document may undergo revisions in the future. The most up-to-date version will be made available electronically via the IRIS Home Page at http://www.epa.gov/iris. ii CONTENTS —TOXICOLOGICAL REVIEW OF METHYL ETHYL KETONE (CAS No. 78-93-3) LIST OF TABLES ............................................................ vi LIST OF FIGURES .......................................................... vii FOREWORD ............................................................... viii AUTHORS, CONTRIBUTORS, AND REVIEWERS ................................ ix 1. INTRODUCTION ..........................................................1 2. CHEMICAL AND PHYSICAL INFORMATION RELEVANT TO ASSESSMENTS .....3 3. TOXICOKINETICS RELEVANT TO ASSESSMENTS ............................5 3.1. ABSORPTION .......................................................5 3.1.1. Oral Exposure ..................................................5 3.1.2. Inhalation Exposure .............................................5 3.1.3. Dermal Exposure ...............................................6 3.2. DISTRIBUTION ......................................................7 3.3. METABOLISM ......................................................8 3.4. ELIMINATION AND EXCRETION .....................................11 3.5. PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODELS .....12 4. HAZARD IDENTIFICATION ................................................17 4.1. STUDIES IN HUMANS - EPIDEMIOLOGY, CASE REPORTS, CLINICAL CONTROLS .......................................................17 4.1.1. Oral Exposure .................................................17 4.1.2. Inhalation Exposure ............................................17 4.1.2.1. Acute Exposure ..........................................17 4.1.2.2. Case Studies of Long-term Human Exposure to MEK ............19 4.1.2.3. Occupational Studies of MEK Exposure ......................20 4.2. PRECHRONIC AND CHRONIC STUDIES AND CANCER BIOASSAYS IN ANIMALS–ORAL AND INHALATION .................................27 4.2.1. Oral Exposure .................................................27 4.2.2. Inhalation Exposure ............................................28 4.3. REPRODUCTIVE/DEVELOPMENTAL STUDIES .........................34 4.3.1. Studies in Humans .............................................34 4.3.2. Studies in Animals .............................................35 4.3.2.1. Oral Exposure ...........................................35 4.3.2.2. Inhalation Exposure ......................................40 4.4. OTHER STUDIES ...................................................45 4.4.1. Acute Toxicity Data ............................................45 4.4.1.1. Oral Exposure ...........................................45 4.4.1.2. Inhalation Exposure ......................................47 4.4.2. Genotoxicity ..................................................47 4.4.3. Carcinogenicity ................................................48 4.4.4. MEK Potentiation of Peripheral Neuropathy from Chemicals Metabolized to Gamma-Diketones ..............................................49 iii 4.5. SYNTHESIS AND EVALUATION OF MAJOR NONCANCER EFFECTS ......52 4.5.1. Oral Exposure .................................................52 4.5.2. Inhalation Exposure ............................................54 4.5.3. Mode of Action Information ......................................55 4.6. WEIGHT-OF-EVIDENCE EVALUATION AND CANCER CHARACTERIZATION .............................................55 4.7. SUSCEPTIBLE POPULATIONS AND LIFESTAGES ......................56 4.7.1. Possible Childhood Susceptibility .................................56 4.7.2. Possible Gender Differences ......................................57 4.7.3. Other ........................................................57 5. DOSE RESPONSE ASSESSMENTS ..........................................59 5.1. ORAL REFERENCE DOSE (RfD) ......................................59 5.1.1. Choice of Principal Study and Critical Effect ........................59 5.1.2. Methods of Analysis ............................................60 5.1.2.1. Benchmark Dose Modeling ................................61 5.1.2.2. Route-to-route Extrapolation ...............................69 5.1.3. RfD Derivation – Including Application of Uncertainty Factors ..........70 5.1.4. Previous Oral Assessment .......................................72 5.2. INHALATION REFERENCE CONCENTRATION (RfC) ....................72 5.2.1. Choice of Principal Study and Critical Effect ........................72 5.2.2. Methods of Analysis ............................................73 5.2.2.1. Benchmark Dose Modeling ................................74 5.2.2.2. Adjustment to a Human Equivalent Exposure Concentration ......79 5.2.2.3. PBPK Modeling .........................................81 5.2.3. RfC Derivation — Including Application of Uncertainty Factors .........82 5.2.4. Previous Inhalation Assessment ...................................84 5.3. CANCER ASSESSMENT .............................................84 5.3.1. Oral Slope Factor ..............................................84 5.3.2. Inhalation Unit Risk ............................................84 6. MAJOR CONCLUSIONS IN THE CHARACTERIZATION OF HAZARD AND DOSE RESPONSE .........................................85 6.1. HUMAN HAZARD POTENTIAL .......................................85 6.2. DOSE RESPONSE ...................................................87 6.2.1. Noncancer/Oral ................................................87 6.2.2. Noncancer/Inhalation ...........................................87 6.2.3. Cancer/Oral and Inhalation .......................................89 7. REFERENCES ............................................................90 APPENDIX A: SUMMARY OF EXTERNAL PEER REVIEW AND PUBLIC COMMENTS AND DISPOSITION APPENDIX B: BENCHMARK DOSE MODELING RESULTS AND OUTPUT iv Output B-1: Reduced Pup Body Weight in Wistar Rats, F1A Generation at Postnatal Day 4 (Cox et al., 1975) Output B-2: Reduced Pup Body Weight in Wistar Rats, F1A Generation at Postnatal Day 21 (Cox et al., 1975) Output B-3: Reduced Fetal Weight in Wistar Rats, F1B Generation (Cox et al., 1975) Output B-4: Reduced Pup Body Weight in Wistar Rats, F2 Generation at Postnatal Day 4 (Cox et al., 1975) Output B-5: Reduced Pup Body Weight in Wistar Rats, F2 Generation at Postnatal Day 21 (Cox et al., 1975) Output B-6: Increased Incidence of Extra Ribs in Sprague-Dawley Rats (Deacon et al., 1981) Output B-7: Reduced Fetal Weight in CD-1 Mice (Schwetz et al., 1991/ Mast et al., 1989) Output B-8:, Increased Incidence of Misaligned Sternebrae in CD-1 Mice (Schwetz et al., 1991/Mast et al., 1989) v LIST OF TABLES Table 1. Kinetic parameters used for PBPK models for MEK kinetics in humans and rats ...16 Table 2. Mean F1A litter body weight on days 4 and 21 in rats exposed to 2-butanol in drinking water ..................................................................37 Table 3. Incidence of skeletal variations in F1B fetuses ..............................38 Table 4. Maternal and fetal effects in 2-butanol-exposed rats ..........................44 Table 5. Summary of key repeat-exposure reproductive and developmental toxicity studies in animals exposed to MEK or 2-butanol ........................................62 Table 6. Mean litter pup body weight in F1A generation Wistar rats exposed to 2-butanol in drinking water in a two-generation reproductive and developmental toxicity study .....65 Table 7. Litter mean fetal weight in F1B generation Wistar rats exposed to 2-butanol in drinking water in a two-generation reproductive and developmental toxicity study ............66 Table 8. Benchmark dose modeling results using litter mean body weight data for F1B fetuses.............................................................66 Table 9. Litter mean pup body weight in F2 generation Wistar rats exposed to 2-butanol in drinking water in a two-generation reproductive and developmental toxicity study .....67 Table 10. Benchmark dose modeling results using litter mean body weight data for F2 pups on postnatal days 4 and 21 ....................................................68 Table 11. Benchmark doses for developmental effects in rats from various generations and potential points of departure for the RfD ......................................69 Table 12. Incidence of extra ribs (litters with an affected fetus) in Sprague-Dawley rats exposed to MEK 7 hours/day on gestation days 6–15 ...................................74 Table 13. Benchmark concentration modeling results using litter incidence data for Sprague- Dawley rat fetuses with extra ribs exposed to MEK during gestation days 6-15 ........75 Table 14. Litter mean fetal weight (both sexes combined) in CD-1 mice exposed to MEK 7 hours/day on gestation days 6–15 ............................................76 Table 15. Benchmark concentration modeling results using litter mean body weight data ....76 Table 16. Total number of fetuses (combined for both sexes) with misaligned sternebrae per exposure group in CD-1 mice
Recommended publications
  • Methyl Ethyl Ketone (2-Butanone)
    Methyl Ethyl Ketone (2-Butanone) 78-93-3 Hazard Summary Methyl ethyl ketone is used as a solvent. Acute (short-term) inhalation exposure to methyl ethyl ketone in humans results in irritation to the eyes, nose, and throat. Limited information is available on the chronic (long-term) effects of methyl ethyl ketone in humans. Chronic inhalation studies in animals have reported slight neurological, liver, kidney, and respiratory effects. No information is available on the developmental, reproductive, or carcinogenic effects of methyl ethyl ketone in humans. Developmental effects, including decreased fetal weight and fetal malformations, have been reported in mice and rats exposed to methyl ethyl ketone via inhalation and ingestion. EPA has classified methyl ethyl ketone as a Group D, not classifiable as to human carcinogenicity. Please Note: The main sources of information for this fact sheet are EPA's Health Effects Assessment for Methyl Ethyl Ketone (1) and EPA's Integrated Risk Information System (IRIS) (6), which contains information on inhalation chronic toxicity of methyl ethyl ketone and the RfC and oral chronic toxicity and the RfD. Uses The primary use of methyl ethyl ketone is as a solvent in processes involving gums, resins, cellulose acetate, and cellulose nitrate. (1) Methyl ethyl ketone is also used in the synthetic rubber industry, in the production of paraffin wax, and in household products such as lacquer and varnishes, paint remover, and glues. (1) Sources and Potential Exposure Methyl ethyl ketone has been detected in both indoor and outdoor air. Methyl ethyl ketone can be produced in outdoor air by the photooxidation of certain air pollutants, such as butane and other hydrocarbons.
    [Show full text]
  • Direct Β‑Functionalization of Cyclic Ketones with Aryl Ketones Via the Merger of Photoredox and Organocatalysis Filip R
    Communication pubs.acs.org/JACS Direct β‑Functionalization of Cyclic Ketones with Aryl Ketones via the Merger of Photoredox and Organocatalysis Filip R. Petronijevic,́† Manuel Nappi,† and David W. C. MacMillan* Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States *S Supporting Information ABSTRACT: The direct β-coupling of cyclic ketones with aryl ketones has been achieved via the synergistic combination of photoredox catalysis and organocatalysis. Diaryl oxymethyl or aryl−alkyl oxymethyl radicals, transiently generated via single-electron reduction of ketone precursors, readily merge with β-enaminyl radical species, generated by photon-induced enamine oxidation, to produce γ-hydroxyketone adducts. Experimental evidence indicates that two discrete reaction pathways can be operable in this process depending upon the nature of the ketyl radical precursor and the photocatalyst. he direct β-functionalization of saturated ketones and T aldehydes is an important yet elusive goal in organic chemistry.1 While carbonyl groups are readily amenable to ipso- and α-carbon substitution with a range of nucleophiles and electrophiles respectively,2,3 activation at the β-methylene position poses a significant synthetic challenge. With a few notable exceptions,1,4 carbonyl β-functionalization has tradition- ally been restricted to the conjugate addition of soft nucleophiles are accessed via carbene catalysis,9,10 nucleophilic addition of into α,β-unsaturated carbonyl systems. As such, the development acetal-protected Grignard reagents,11 or stoichiometric metal- 5 − of a general catalytic platform for the direct β-functionalization activated homoenolate equivalents.12 16 of saturated ketones or aldehydes would represent a conceptual Drawing from the mechanistic insights gained in the course of and practical advance for the field.
    [Show full text]
  • Methyl Isopropyl Ketone Safety Data Sheet According to Federal Register / Vol
    Methyl isopropyl ketone Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 05/25/2015 Version: 1.0 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Methyl isopropyl ketone CAS-No. : 563-80-4 Product code : (US) W1814 Formula : C5H10O Synonyms : 3-Methylbutane-2-one / Isopropyl methyl ketone / Methyl-2-butanone, 3- / 2-Acetylpropane / 3- Methylbutanone-2 / 3-Methylbutanone / 3-Methylbutan-2-one / 3-Methyl-2-butanone / 2- Butanone, 3-methyl- / Butan-2-one, 3-methyl- 1.2. Recommended use and restrictions on use No additional information available 1.3. S upplie r Synerzine 5340 Hwy 42 S Ellenwood, Georgia 30294 - USA T 404-524-6744 - F 404-577-1651 [email protected] - www.synerzine.com 1.4. Emergency telephone number Emergency number : Infotrac 1-800-535-5053 (Contract# 102471) Dial +1-352-323-3500 when outside the US SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mi xt ure GHS -US classification Flammable liquids Category H225 Highly flammable liquid and vapour 2 Specific target organ toxicity H336 May cause drowsiness or dizziness (single exposure) Category 3 Hazardous to the aquatic H402 Harmful to aquatic life environment - Acute Hazard Category 3 Full text of H statements : see section 16 2.2. GHS Label elements, including precautionary statements GHS-US labeling Hazard pictograms (GHS-US) : Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H225 - Highly flammable liquid and vapour H336 - May cause drowsiness or dizziness H402 - Harmful to aquatic life Precautionary statements (GHS-US) : P210 - Keep away from heat, hot surfaces, sparks, open flames and other ignition sources.
    [Show full text]
  • Toxicological Profile for 2-Butanone Released for Public Comment in May 2019
    Toxicological Profile for 2-Butanone October 2020 2-BUTANONE ii DISCLAIMER Use of trade names is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry, the Public Health Service, or the U.S. Department of Health and Human Services. 2-BUTANONE iii FOREWORD This toxicological profile is prepared in accordance with guidelines* developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for these toxic substances described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a relevance to public health discussion which would allow a public health professional to make a real-time determination of whether the presence of a particular substance in the environment poses a potential threat to human health. The adequacy of information to determine a substance's
    [Show full text]
  • Aldehydes and Ketones
    12 Aldehydes and Ketones Ethanol from alcoholic beverages is first metabolized to acetaldehyde before being broken down further in the body. The reactivity of the carbonyl group of acetaldehyde allows it to bind to proteins in the body, the products of which lead to tissue damage and organ disease. Inset: A model of acetaldehyde. (Novastock/ Stock Connection/Glow Images) KEY QUESTIONS 12.1 What Are Aldehydes and Ketones? 12.8 What Is Keto–Enol Tautomerism? 12.2 How Are Aldehydes and Ketones Named? 12.9 How Are Aldehydes and Ketones Oxidized? 12.3 What Are the Physical Properties of Aldehydes 12.10 How Are Aldehydes and Ketones Reduced? and Ketones? 12.4 What Is the Most Common Reaction Theme of HOW TO Aldehydes and Ketones? 12.1 How to Predict the Product of a Grignard Reaction 12.5 What Are Grignard Reagents, and How Do They 12.2 How to Determine the Reactants Used to React with Aldehydes and Ketones? Synthesize a Hemiacetal or Acetal 12.6 What Are Hemiacetals and Acetals? 12.7 How Do Aldehydes and Ketones React with CHEMICAL CONNECTIONS Ammonia and Amines? 12A A Green Synthesis of Adipic Acid IN THIS AND several of the following chapters, we study the physical and chemical properties of compounds containing the carbonyl group, C O. Because this group is the functional group of aldehydes, ketones, and carboxylic acids and their derivatives, it is one of the most important functional groups in organic chemistry and in the chemistry of biological systems. The chemical properties of the carbonyl group are straightforward, and an understanding of its characteristic reaction themes leads very quickly to an understanding of a wide variety of organic reactions.
    [Show full text]
  • References on Use of CO2 for Medical
    Some References on the Use of CO2 for Medical Entomology Survey Becker N et al. Comparison of carbon dioxide, octenol and a host-odour as mosquito attractants in the Upper Rhine Valley, Germany. Med Vet Entomol 1995;9:377-80. Abstract: Field studies were conducted in the Upper Rhine Valley to determine the responses of mosquitoes to CDC traps baited with either CO2, octenol, light or paired combinations of these. Among eight mosquito species caught, the attractant effect on trap catches was studied in the four most abundant: Aedes vexans, Ae. rossicus, Ae. cinereus and Culex pipiens. Traps baited only with light or octenol caught few mosquitoes, whereas many were caught by traps baited with CO2 alone or in combination with either of the other candidate attractants. CO2 baited traps, with or without light, caught the most Aedes. The combination of CO2 and octenol attracted most Cx pipiens, but this apparent synergy was not significant. Using a caged hamster compared to CO2 as bait in a CDC light-trap with only intermittent fan suction, the hamster attracted less mosquitoes than CO2 emitted at a rate of 225 g/h on days 1 and 2, whereas on days 3 and 4 the smell from the hamster's cage became significantly more attractive than this rate of CO2 for all species of mosquitoes. Canyon DV, Hii JL. Efficacy of carbon dioxide, 1-octen-3-ol, and lactic acid in modified Fay- Prince traps as compared to man-landing catch of Aedes aegypti. J Am Mosq Control Assoc 1997;13:66-70. Abstract: The attractants 1-octen-3-ol and lactic acid significantly decreased catches of Aedes aegypti in Townsville, Australia, by 50% in a controlled laboratory environment and by 100% in the field when compared to carbon dioxide baited bidirectional Fay-Prince trap catches.
    [Show full text]
  • Aldehydes and Ketone
    ALDEHYDES AND KETONE www.gneet.com ALDEHYDES AND KETONES In aldehydes, the carbonyl group is linked to either two hydrogen atom or one hydrogen atom and one carbon containing group such as alkyl, aryl or aralkyl group Examples * In ketones, the carbonyl group is linked to two carbon containing groups which may be same or different alkyl, aryl group. If two R and R’ groups are same, the ketone is called simple or symmetrical ketone and if R and R’ are different, then ketone is known as mixed or an unsymmetrical ketone. STRUCTURE Carbonyl carbon of both aldehyde and ketones is sp2 – hybridised, One of the three sp2 hybridised orbital get involved in σ- bond formation with half –filled p-orbital of oxygen atom whereas rest of the two are consumed in σ-bond formation with hydrogen and carbon depending on the structure of aldehyde or ketone. Unhybridised p-orbital of carbonyl carbon form π-bond with another half-filled p-orbital of oxygen atom by sideways overlapping. ISOMERISM IN ALDEHYDES AND KETONES (a) Chain isomerism: Aldehydes ( with 4 or more carbon atoms) and ketone ( with 5 or more carbon atoms) show chain isomerism. Example i) C4H8O CH3-CH2-CH2-CHO ( butanal) 1 ALDEHYDES AND KETONE www.gneet.com ii) C5H10O (b) Position isomerism: aliphatic aldehydes do not show position isomerism, because –CHO group is always present at the end of carbon chain. Aromatic aldehyde show position isomerism. Example (c) Metamerism: Higher ketones show metamerism due to presence of different alkyl groups attached to the same functional group C5H10O (d) Functional isomerism : Aldehydes and ketones show functional isomerism in them.
    [Show full text]
  • Hydroxyethoxyphenyl Butanone’ (HEPB)
    SCCS/1582/16 Final version Scientific Committee on Consumer Safety SCCS OPINION ON Ethylzingerone – ‘Hydroxyethoxyphenyl Butanone’ (HEPB) (Cosmetics Europe No P98) The SCCS adopted this Opinion by written procedure on 7 April 2017 SCCS/1582/16 Final Opinion on Ethylzingerone - ‘Hydroxyethoxyphenyl Butanone’ (HEPB) - Cosmetics Europe No P98 About the Scientific Committees Three independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat. They are: the Scientific Committee on Consumer Safety (SCCS), the Scientific Committee on Health and Environmental Risks (SCHER) and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) and are made up of external experts. In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Agency (EMA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA). SCCS The Committee shall provide Opinions on questions concerning all types of health and safety risks (notably chemical, biological, mechanical and other physical risks) of non-food consumer products (for example: cosmetic products and their ingredients, toys, textiles, clothing, personal care and household products such as detergents, etc.) and services (for example: tattooing, artificial sun tanning, etc.). Scientific Committee members Ulrike Bernauer, Laurent Bodin, Leonardo Celleno, Qasim Chaudhry, Pieter Jan Coenraads, Maria Dusinska, Janine Ezendam, Eric Gaffet, Corrado Lodovico Galli, Berit Granum, Eirini Panteri, Vera Rogiers, Christophe Rousselle, Maciej Stepnik, Tamara Vanhaecke, Susan Wijnhoven.
    [Show full text]
  • Critical Evaluation of Thermochemical Properties of C1–C4 Species; Updated Group-Contributions to Estimate Thermochemical Properties
    Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Critical evaluation of thermochemical properties of C-1-C-4 Title species: updated group-contributions to estimate thermochemical properties Author(s) Burke, S. M.; Simmie, J. M.; Curran, Henry J. Publication Date 2015-01-05 Burke, S. M., Simmie, J. M., & Curran, H. J. (2015). Critical Publication evaluation of thermochemical properties of C-1-C-4 species: Information updated group-contributions to estimate thermochemical properties. Journal of Physical and Chemical Reference Data, 44(1), 013101. Publisher AIP Publishing Link to publisher's http://dx.doi.org/10.1063/1.4902535 version Item record http://hdl.handle.net/10379/6119 DOI http://dx.doi.org/10.1063/1.4902535 Downloaded 2021-09-25T06:51:18Z Some rights reserved. For more information, please see the item record link above. C1–C4 thermochemical properties: updated group additivity groups Critical evaluation of thermochemical properties of C1–C4 species; updated group-contributions to estimate thermochemical properties. S. M. Burke, J. M. Simmie, and H. J. Currana) Combustion Chemistry Centre, National University of Ireland, Galway, Ireland (Dated: 26 September 2014) A review of literature enthalpies of formation and molar entropies for alkanes, alkenes, alcohols, hydroperox- ides, and their associated radicals has been compiled and critically evaluated. By comparing literature values the overall uncertainty in thermochemical properties of small hydrocarbons and oxygenated hydrocarbons can be highlighted. In general there is good agreement between heat of formation values in the literature for stable species, however there is greater uncertainty in the values for radical species and for molar entropy values.
    [Show full text]
  • Chapter 14 – Aldehydes and Ketones
    Chapter 14 – Aldehydes and Ketones 14.1 Structures and Physical Properties of Aldehydes and Ketones Ketones and aldehydes are related in that they each possess a C=O (carbonyl) group. They differ in that the carbonyl carbon in ketones is bound to two carbon atoms (RCOR’), while that in aldehydes is bound to at least one hydrogen (H2CO and RCHO). Thus aldehydes always place the carbonyl group on a terminal (end) carbon, while the carbonyl group in ketones is always internal. Some common examples include (common name in parentheses): O O H HH methanal (formaldehyde) trans-3-phenyl-2-propenal (cinnamaldehyde) preservative oil of cinnamon O O propanone (acetone) 3-methylcyclopentadecanone (muscone) nail polish remover a component of one type of musk oil Simple aldehydes (e.g. formaldehyde) typically have an unpleasant, irritating odor. Aldehydes adjacent to a string of double bonds (e.g. 3-phenyl-2-propenal) frequently have pleasant odors. Other examples include the primary flavoring agents in oil of bitter almond (Ph- CHO) and vanilla (C6H3(OH)(OCH3)(CHO)). As your book says, simple ketones have distinctive odors (similar to acetone) that are typically not unpleasant in low doses. Like aldehydes, placing a collection of double bonds adjacent to a ketone carbonyl generally makes the substance more fragrant. The primary flavoring agent in oil of caraway is just a such a ketone. 2 O oil of carraway Because the C=O group is polar, small aldehydes and ketones enjoy significant water solubility. They are also quite soluble in typical organic solvents. 14.2 Naming Aldehydes and Ketones Aldehydes The IUPAC names for aldehydes are obtained by using rules similar to those we’ve seen for other functional groups (e.g.
    [Show full text]
  • The Mechanism and Kinetics of Methyl Isobutyl Ketone Synthesis from Acetone Over Ion- Exchanged Hydroxyapatite
    Lawrence Berkeley National Laboratory Recent Work Title The mechanism and kinetics of methyl isobutyl ketone synthesis from acetone over ion- exchanged hydroxyapatite Permalink https://escholarship.org/uc/item/4hq4p42d Authors Ho, CR Zheng, S Shylesh, S et al. Publication Date 2018-09-01 DOI 10.1016/j.jcat.2018.07.005 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Journal of Catalysis 365 (2018) 174–183 Contents lists available at ScienceDirect Journal of Catalysis journal homepage: www.elsevier.com/locate/jcat The mechanism and kinetics of methyl isobutyl ketone synthesis from acetone over ion-exchanged hydroxyapatite ⇑ Christopher R. Ho a,b, Steven Zheng a, Sankaranarayanapillai Shylesh a,b, Alexis T. Bell a,b, a Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720-1462, United States b Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States article info abstract Article history: The synthesis of methyl isobutyl ketone (MIBK) can be carried out by the condensation of acetone in the Received 9 May 2018 presence of hydrogen over a supported metal catalyst. Previous studies have shown that hydroxyapatite Revised 26 June 2018 is an excellent catalyst for condensation reactions. The present investigation was undertaken in order to Accepted 2 July 2018 elucidate the reaction mechanism and site requirements for acetone coupling to MIBK over a physical Available online 18 July 2018 mixture of hydroxyapatite and Pd/SiO2. The reaction is found to proceed by consecutive aldol addition to form diacetone alcohol (DAA), dehydration of DAA to mesityl oxide (MO), and hydrogenation of MO Keywords: to MIBK.
    [Show full text]
  • Dose–Response Assay for Synthetic Mosquito (Diptera: Culicidae) Attractant Using a High-Throughput Screening System
    insects Article Dose–Response Assay for Synthetic Mosquito (Diptera: Culicidae) Attractant Using a High-Throughput Screening System Dae-Yun Kim 1, Theerachart Leepasert 2, Michael J. Bangs 1 and Theeraphap Chareonviriyaphap 1,* 1 Department of Entomology, Faculty of Agriculture, Kasetsart Univeristy, Bangkok 10900, Thailand; [email protected] (D.-Y.K.); [email protected] (M.J.B.) 2 Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; [email protected] * Correspondence: [email protected] Simple Summary: Entomological surveillance is important to evaluate vector management inter- ventions. However, collecting adult mosquitoes using direct human bait is controversial and often discouraged because of potential infection risk. Alternatively, active and passive trapping methods are available. Female mosquitoes detect human host cues such as body heat, carbon dioxide, and other volatile body emanations using olfactory sensilla to direct movement to a host. Attractive chemical lures have been identified and evaluated using a variety of olfactometric methods to in- crease trap production and efficiency. In this study, we evaluated a simple olfactometer without need of airflow. To ‘optimize’ a commercial mosquito attractant, 10 different doses of product, the TM Biogents-lure (BG-lure ), were compared. Results showed dose-dependent responses with 0.005 g with the highest attraction for Aedes aegypti, while doses of 0.2 g and above produced a repellent Citation: Kim, D.-Y.; Leepasert, T.; response. There was no significantly different response behavior between permethrin-susceptible Bangs, M.J.; Chareonviriyaphap, T. and -resistant Ae. aegypti. Culex quinquefasciatus showed significantly different responses compared Dose–Response Assay for Synthetic to Ae.
    [Show full text]