Physics an Overview
Total Page:16
File Type:pdf, Size:1020Kb
Physics An overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sun, 13 Mar 2011 20:13:16 UTC Contents Articles Main article 1 Physics 1 Introduction 13 Theoretical physics 13 Experimental physics 18 Philosophy of physics 22 History 29 History of physics 29 Nobel Prize in Physics 43 Branches of physics 48 Classical physics 48 Modern physics 49 Outline of physics 51 Classical mechanics 54 Thermodynamics 65 Statistical mechanics 75 Electromagnetism 85 Optics 90 Special relativity 116 General relativity 143 Quantum mechanics 175 Research fields 192 Condensed matter physics 192 Atomic, molecular, and optical physics 194 Particle physics 195 Astrophysics 200 Physical cosmology 204 Application and influence 211 Applied physics 211 Current research 214 List of unsolved problems in physics 214 References Article Sources and Contributors 222 Image Sources, Licenses and Contributors 228 Article Licenses License 231 1 Main article Physics Physics (from Ancient Greek: φύσις physis "nature") is a natural science that involves the study of matter[1] and its motion through spacetime, as well as all related concepts, including energy and force.[2] More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.[3] [4] [5] Physics is one of the oldest academic disciplines, perhaps the oldest through its inclusion of astronomy.[6] Over the last two millennia, physics was a part of natural philosophy along with chemistry, certain branches of mathematics, and biology, but during the Scientific Revolution in the 16th century, the natural sciences emerged as unique research programs in their own right.[7] Certain research areas are interdisciplinary, such as mathematical physics and quantum chemistry, which means that the boundaries of physics are not rigidly defined. In the nineteenth and twentieth centuries physicalism emerged as a major unifying feature of the philosophy of science as physics provides fundamental explanations for every observed natural phenomenon. New ideas in physics often explain the fundamental mechanisms of other sciences, while opening to new research areas in mathematics and philosophy. Physics is also significant and influential through advances in its understanding that have translated into new technologies. For example, advances in the understanding of electromagnetism or nuclear physics led directly to the development of new products which have dramatically transformed modern-day society, such as television, computers, domestic appliances, and nuclear weapons; advances in thermodynamics led to the development of industrialization; and advances in mechanics inspired the development of calculus. Scope and aims Physics covers a wide range of phenomena, from elementary particles (such as quarks, neutrinos and electrons) to the largest superclusters of galaxies. Included in these phenomena are the most basic objects composing all other things. Therefore physics is sometimes called the "fundamental science".[8] Physics aims to describe the various phenomenon that occur in nature in terms of simpler phenomena. Thus, physics aims to both connect the things observable to humans to root causes, and then connect these causes together. For example, the ancient Chinese observed that certain rocks (lodestone) were attracted to one another by some invisible force. This Physics involves modeling the natural world with effect was later called magnetism, and was first rigorously studied in theory, usually quantitative. Here, the path of a the 17th century. A little earlier than the Chinese, the ancient Greeks particle is modeled with the mathematics of calculus to explain its behavior: the purview of knew of other objects such as amber, that when rubbed with fur would the branch of physics known as mechanics. cause a similar invisible attraction between the two. This was also first studied rigorously in the 17th century, and came to be called electricity. Thus, physics had come to understand two observations of nature in terms of some root cause (electricity and magnetism). However, further work in the 19th century revealed that these two forces were just two different aspects of one force – electromagnetism. This process of "unifying" forces continues today, and electromagnetism and the weak nuclear force are now considered to be two aspects of the electroweak interaction. Physics hopes to Physics 2 find an ultimate reason (Theory of Everything) for why nature is as it is (see section Current research below for more information). Scientific method Physicists use a scientific method to test the validity of a physical theory, using a methodical approach to compare the implications of the theory in question with the associated conclusions drawn from experiments and observations conducted to test it. Experiments and observations are to be collected and matched with the predictions and hypotheses made by a theory, thus aiding in the determination or the validity/invalidity of the theory. Theories which are very well supported by data and have never failed any competent empirical test are often called scientific laws, or natural laws. Of course, all theories, including those called scientific laws, can always be replaced by more accurate, generalized statements if a disagreement of theory with observed data is ever found.[9] Theory and experiment Theorists seek to develop mathematical models that both agree with existing experiments and successfully predict future results, while experimentalists devise and perform experiments to test theoretical predictions and explore new phenomena. Although theory and experiment are developed separately, they are strongly dependent upon each other. Progress in physics frequently comes about when experimentalists make a discovery that existing theories cannot explain, or when new theories generate experimentally testable predictions, which inspire new experiments. Physicists who work at the interplay of theory and experiment are called phenomenologists. Phenomenologists look at the complex phenomena observed in experiment and work to relate them to The astronaut and Earth are both in free-fall fundamental theory. Theoretical physics has historically taken inspiration from philosophy; electromagnetism was unified this way.[10] Beyond the known universe, the field of theoretical physics also deals with hypothetical issues,[11] such as parallel universes, a multiverse, and higher dimensions. Theorists invoke these ideas in hopes of solving particular problems with existing theories. They then explore the consequences of these ideas and work toward making testable predictions. Experimental physics informs, and is informed by, engineering and technology. Experimental physicists involved in basic research design and perform experiments with equipment such as particle accelerators and lasers, whereas those involved in applied research often work in Lightning is an electric current industry, developing technologies such as magnetic resonance imaging (MRI) and transistors. Feynman has noted that experimentalists may seek areas which are not well explored by theorists.[12] Physics 3 Relation to other sciences and to mathematics In the Assayer (1622), Galileo noted that mathematics is the language in which Nature expresses its laws.[13] Most experimental results in physics are numerical measurements, and theories in physics use mathematics to give numerical results to match these measurements. Physics relies upon mathematics to provide the logical framework in which physical laws may be precisely formulated and predictions quantified. Whenever analytic solutions of equations are not feasible, numerical analysis and simulations may be utilized. Thus, scientific This parabola-shaped lava flow illustrates Galileo's law of falling bodies as well as computation is an integral part of physics, and the field of blackbody radiation – the temperature is computational physics is an active area of research. discernible from the color of the blackbody. A key difference between physics and mathematics is that since physics is ultimately concerned with descriptions of the material world, it tests its theories by comparing the predictions of its theories with data procured from observations and experimentation, whereas mathematics is concerned with abstract patterns, not limited by those observed in the real world. The distinction, however, is not always clear-cut. There is a large area of research intermediate between physics and mathematics, known as mathematical physics. Physics is also intimately related to many other sciences, as well as applied fields like engineering and medicine. The principles of physics find applications throughout the other natural sciences as some phenomena studied in physics, such as the conservation of energy, are common to all material systems. Other phenomena, such as superconductivity, stem from these laws, but are not laws themselves because they only appear in some systems. Physics is often said to be the "fundamental science" (chemistry is sometimes included), because each of the other disciplines (biology, chemistry, geology, material science, engineering, medicine etc.) deals with particular types of material systems that obey the laws of physics.[8] For example, chemistry is the science of collections of matter (such as gases and liquids formed of atoms and molecules) and the processes known as chemical reactions that result in the change of chemical substances.