High Precision Modelling of Thermal Perturbations with Application to Pioneer 10 and Rosetta

Total Page:16

File Type:pdf, Size:1020Kb

High Precision Modelling of Thermal Perturbations with Application to Pioneer 10 and Rosetta High precision modelling of thermal perturbations with application to Pioneer 10 and Rosetta Vom Fachbereich Produktionstechnik der UNIVERSITAT¨ BREMEN zur Erlangung des Grades Doktor-Ingenieur genehmigte Dissertation von Dipl.-Ing. Benny Rievers Gutachter: Prof. Dr.-Ing. Hans J. Rath Prof. Dr. rer. nat. Hansj¨org Dittus Fachbereich Produktionstechnik Fachbereich Produktionstechnik Universit¨at Bremen Universit¨at Bremen Tag der m¨undlichen Pr¨ufung: 13. Januar 2012 i Kurzzusammenfassung in Deutscher Sprache Das Hauptthema dieser Doktorarbeit ist die pr¨azise numerische Bestimmung von Thermaldruck (TRP) und Solardruck (SRP) f¨ur Satelliten mit komplexer Geome- trie. F¨ur beide Effekte werden analytische Modelle entwickelt und als generischen numerischen Methoden zur Anwendung auf komplexe Modellgeometrien umgesetzt. Die Analysemethode f¨ur TRP wird zur Untersuchung des Thermaldrucks f¨ur den Pio- neer 10 Satelliten f¨ur den kompletten Zeitraum seiner 30-j¨ahrigen Mission verwendet. Hierf¨ur wird ein komplexes dreidimensionales Finite-Elemente Modell des Satelliten einschließlich detaillierter Materialmodelle sowie dem detailliertem ¨außerem und in- nerem Aufbau entwickelt. Durch die Spezifizierung von gemessenen Temperaturen, der beobachteten Trajektorie sowie detaillierten Modellen f¨ur die W¨armeabgabe der verschiedenen Komponenten, wird eine genaue Verteilung der Temperaturen auf der Oberfl¨ache von Pioneer 10 f¨ur jeden Zeitpunkt der Mission bestimmt. Basierend auf den Ergebnissen der Temperaturberechnung wird der resultierende Thermaldruck mit Hilfe einer Raytracing-Methode unter Ber¨ucksichtigung des Strahlungsaustauschs zwischen den verschiedenen Oberf¨achen sowie der Mehrfachreflexion, berechnet. Der Verlauf des berechneten TRPs wird mit den von der NASA ver¨offentlichten Pioneer 10 Residuen verglichen, und es wird aufgezeigt, dass TRP die so genannte Pioneer Anomalie inner- halb einer Modellierungsgenauigkeit von 11.5 % vollst¨andig erkl¨aren kann. Durch eine Modifizierung des Algorithmus f¨ur die Bestimmung von TRP, wird ein numerisches Vefahren f¨ur die Analyse von SRP entwickelt. Beide Methoden werden f¨ur die Analyse von SRP und TRP f¨ur die Rosetta Sonde am Beispiel ausgew¨ahlter heliozen- trische Freiflugphasen sowie f¨ur den ersten Erd-Flyby verwendet. F¨ur die untersuchten Freiflugphasen ergibt sich die H¨ohe des TRPs im Bereich von 10 % der berechneten SRP Gr¨oßenordnung, was Abweichungen der erwarteten Rosetta-Trajektorie erkl¨art, die von ESA/ESOC festgestellt wurden. Hierbei wurden f¨ur die Modellierung des SRPs Abweichungen im Bereich 5 % - 10 % festgestellt, welche nahezu perfekt mit der modellierten Gr¨oßenordung des TRP ¨ubereinstimmen. F¨ur den Flyby werden sowohl TRP als auch SRP als m¨ogliche Ursachen f¨ur die beobachtete Flyby Anomalie aus- geschlossen, da beide Effekte zu einer Abbremsung von Rosetta f¨uhren, wohingegen eine anomale Beschleunigung w¨ahrend des Flybys beobachtet wurde. ii Abstract The main topic of this thesis is the precise numerical determination of thermal re- coil pressure (TRP) and solar radiation pressure (SRP) acting on complex spacecraft bodies. Analytical models for both effects are developed and expanded into a generic numerical approach for the treatment of complex model geometries. The TRP analysis method is used for an evaluation of thermal recoils acting on the Pioneer 10 spacecraft during its 30 years mission. For this a complex three-dimensional Finite Element model of the craft with detailed material models and accurate exterior and interior geomet- rical configuration is developed. By specifying the available housekeeping data, the measured trajectory as well as detailed models for the heat generation of the different components, an accurate distribution of the Pioneer 10 surface temperatures can be computed for each part of the mission. Based on these surface temperature distribu- tions, the resulting recoil is computed by means of a ray tracing method, which allows for the radiation exchange between surfaces as well as the inclusion of multiple reflec- tions. The evolution of the computed TRP is compared to the Pioneer 10 residuals published by NASA and it is found that TRP can explain the so called Pioneer anomaly completely within a modelling accuracy of 11.5 %. By modifying the TRP algorithm, a numerical approach for the analysis of SRP is developed. Both methods are used to analyse SRP and TRP for the Rosetta spacecraft during chosen heliocentric cruise phases as well as for the first Rosetta Earth flyby. For the cruise phases it is found that the TRP is in the order of 10 % of the SRP magnitude which explains discrepancies from the expected Rosetta trajectory found by ESA/ESOC. Here acceleration errors in the order of 5 % to 10 % of the SRP magnitude have been observed during the heliocentric cruise phases which perfectly complies to the obtained TRP magnitude. For the flyby TRP and SRP are ruled out as possible causes for the flyby anomaly due to the fact that both effects lead to a deceleration of Rosetta on its flyby trajectory and not to an anomalous increase of the velocity, as is the case for the observed anomaly. iii Acknowledgements First of all, I would like to acknowledge the support of Prof. Dr. Hans J. Rath and Prof. Dr. Hansj¨org Dittus for being the referees of this thesis. In particular, I would like to thank Prof. Dr. Claus L¨ammerzahl for his support throughout the years, the many fruitful discussions, the cooperative work as well as initially providing me with the interesting research topic of the Pioneer anomaly. I would also like to acknowledge the cooperation with Prof. Dr. Jozef van der Ha and Dr. Takahiro Kato, who strongly supported my work regarding the Rosetta mission, especially during the last year. Furthermore, I would like to thank the ISSI institute for providing support for the meetings of the Pioneer collaboration as well as Dr. Slava G. Turyshev and the JPL for fruitful discussions. Likewise, I would like to thank all my colleagues of the fundamental physics group at ZARM for their support and the good time that I had. Additionally, I would like to express my gratitude to my office colleagues, Dr. Meike List and Stefanie Bremer, for all these years of kind support. Furthermore, many thanks go to Dr. Eva Hackmann, Dennis Lorek, Benjamin Tilch and Torben Prieß, who did a remarkable job at proof- reading this thesis in a very limited time. The financial support by the German Research Foundation DFG as well as the cluster of excellence QUEST is gratefully acknowledged. I would like to express my deep gratitude to my family, in particular my mother Petra, for supporting me by all means throughout all these years. Finally, I would like to thank my wife Silvia for all her love and patience. Without her support, this work would not have been possible. Bremen, August 2011 Benny Rievers iv Symbols a Gauss integration border 1 [-] ai Transformed triangle vertex point a [-] 2 ap SRP component perpendicular to sun direction [m/s ] 2 as SRP component aligned with sun direction [m/s ] A Surface area [m2] A Quaternion rotation matrix [-] A(i) Surface area of element i [m2] Ay Quaternion rotation matrix with axis y’ [-] Az Quaternion rotation matrix with axis z [-] 2 A1 Surface of active element [m ] 2 A2 Surface of receiving element [m ] α Coefficient of absorption [-] αgap Absorptivity of gabs between solar cells [-] αmean Mean absorptivity [-] αcell Solar cell absorptivity [-] αSP Solar panel absorptivity [-] b Gauss integration border 2 [-] bi Transformed triangle vertex point b [-] c1, c2, c3 Hit detection parameters 1-3 [-] Ci Polynomial term for DOF constraint equation [-] C0 Constant term for DOF constraint equation [-] χi, χj, χk, χl Uniform Gauss coordinates [-] dhs Diameter of hemisphere [m] dMLI Thickness of MLI [m] Di DOF parameter for DOF constraint equation [-] dΩ Solid angle element surface [-] ∆v Velocity jump during flyby [m/s] ∆T Temperature gradient [K] e Eccentricity [-] e1, e2, e3 Components 1-3 of Quaternion rotation axis [-] ~ec(i) Active element centre [-] ~ec(j) Receiving element centre [-] ~ec,Ω(i, φ, θ) Solid angle element centre [-] ~eN(i) Element normal vector on element i [-] E Energy [J] E~ Quaternion rotation axis [-] EHeat Heat energy [J] Einc Incoming energy [J] EPh Photon energy [J] EVolt Electrical energy [J] ε Coefficient of emission [-] εl,eff Effective louver emissivity [-] εγ Specific coefficient of emission [-] εmean Mean coefficient of emission [-] εss Emissivity of second surface mirrors [-] v εb Emissivity of louver blades [-] ε∗ Effective MLI emissivity [-] ηcell Efficiency of solar cells [-] ηc Efficiency of louver heat conduction [-] ηMLI MLI performance [-] f~a Force resulting from absorption [N] fp Cell packing factor [-] f~s Force resulting from specular reflection [N] f~s,abs Absorption component of specular reflection force [N] f~s,refl Reflection component of specular reflection force [N] f~d Force resulting from diffuse reflection [N] f~d,abs Absorption component of diffuse reflection force [N] f~d,refl Reflection component of diffuse reflection force [N] Fa Force component resulting from absorption [N] Fr Force component resulting from reflection [N] F~TRP Thermal recoil force [N] F~TRP,Ω,eff Effective thermal recoil force component [N] g(x) Parametric function [-] g˜(χ) Transformed parametric function [-] γ Coefficient of reflection [-] γd Coefficient of diffuse reflection [-] γmean Mean reflectivity [-] γs Coefficient of specular reflection [-] i Active Element number [-] I Intensity of radiation [W/m2] 2 In Intensity of radiation emitted
Recommended publications
  • Document Downloaded From: This Paper Must Be Cited As: the Final
    Document downloaded from: http://hdl.handle.net/10251/122856 This paper must be cited as: Acedo Rodríguez, L.; Piqueras, P.; Moraño Fernández, JA. (2018). A possible flyby anomaly for Juno at Jupiter. Advances in Space Research. 61(10):2697-2706. https://doi.org/10.1016/j.asr.2018.02.037 The final publication is available at http://doi.org/10.1016/j.asr.2018.02.037 Copyright Elsevier Additional Information See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/321306820 A possible flyby anomaly for Juno at Jupiter Article in Advances in Space Research · November 2017 DOI: 10.1016/j.asr.2018.02.037 CITATION READS 1 149 3 authors, including: Luis Acedo José Antonio Moraño Universitat Politècnica de València Universitat Politècnica de València 93 PUBLICATIONS 1,145 CITATIONS 55 PUBLICATIONS 162 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Call for Papers Complexity: Discrete Models in Epidemiology, Social Sciences, and Population Dynamics View project Call for Papers: Journal "Symmetry" (MDPI) Special Issue "Mathematical Epidemiology in Medicine & Social Sciences" View project All content following this page was uploaded by Luis Acedo on 28 February 2018. The user has requested enhancement of the downloaded file. A possible flyby anomaly for Juno at Jupiter L. Acedo,∗ P. Piqueras and J. A. Mora˜no Instituto Universitario de Matem´atica Multidisciplinar, Building 8G, 2o Floor, Camino de Vera, Universitat Polit`ecnica de Val`encia, Valencia, Spain December 14, 2017 Abstract In the last decades there have been an increasing interest in im- proving the accuracy of spacecraft navigation and trajectory data.
    [Show full text]
  • Arxiv:0907.4184V1 [Gr-Qc] 23 Jul 2009 Keywords Anomalous Puzzle
    Space Science Reviews manuscript No. (will be inserted by the editor) The Puzzle of the Flyby Anomaly Slava G. Turyshev · Viktor T. Toth Received: date / Accepted: date Abstract Close planetary flybys are frequently employed as a technique to place space- craft on extreme solar system trajectories that would otherwise require much larger booster vehicles or may not even be feasible when relying solely on chemical propulsion. The theo- retical description of the flybys, referred to as gravity assists, is well established. However, there seems to be a lack of understanding of the physical processes occurring during these dynamical events. Radio-metric tracking data received from a number of spacecraft that experienced an Earth gravity assist indicate the presence of an unexpected energy change that happened during the flyby and cannot be explained by the standard methods of mod- ern astrodynamics. This puzzling behavior of several spacecraft has become known as the flyby anomaly. We present the summary of the recent anomalous observations and discuss possible ways to resolve this puzzle. Keywords Flyby anomaly · gravitational experiments · spacecraft navigation. 1 Introduction Significant changes to a spacecraft’s trajectory require a substantial mass of propellant. In particular, placing a spacecraft on a highly elliptical or hyperbolic orbit, such as the orbit required for an encounter with another planet, requires the use of a large booster vehicle, substantially increasing mission costs. An alternative approach is to utilize a gravitational assist from an intermediate planet that can change the direction of the velocity vector. Al- arXiv:0907.4184v1 [gr-qc] 23 Jul 2009 though such an indirect trajectory can increase the duration of the cruise phase of a mission, the technique nevertheless allowed several interplanetary spacecraft to reach their target destinations economically (Anderson 1997; Van Allen 2003).
    [Show full text]
  • Orbit Determination of Rosetta Around Comet 67P/Churyumov-Gerasimenko
    ORBIT DETERMINATION OF ROSETTA AROUND COMET 67P/CHURYUMOV-GERASIMENKO Bernard Godard(1), Frank Budnik(2), Pablo Munoz˜ (3), Trevor Morley(1), and Vishnu Janarthanan(4) (1)Telespazio VEGA Deutschland GmbH, located at ESOC* (2)ESA/ESOC* (3)GMV, located at ESOC* (4)Terma GmbH, located at ESOC* *Robert-Bosch-Str. 5, 64293 Darmstadt, Germany, +49 6151 900, < firstname > : < lastname > @esa:int (remove letter accents) Abstract: When Rosetta arrived at comet 67P/Churyumov-Gerasimenko in early August 2014, not much was known about the comet. The orbit of the comet had been determined from years of tracking from ground observatories and a few months of optical tracking by Rosetta during approach. Ground and space-based images had also been used to construct light curves to infer the comet rotation period. But the comet mass, spin axis orientation and shape were still to be determined. The lander Philae was scheduled to land in about three months at a date chosen as a compromise between the time required to acquire sufficient knowledge about the comet and the risk of rising comet activity worsening the navigation accuracy. During these three months, the comet had to be characterised for navigation purposes. In particular, the comet orbit, attitude, centre of mass and gravity field had to be determined. This paper describes the Rosetta orbit determination process including the comet parameters determination, the dynamic and observation models, the filter configuration, the comet frame definition and will discuss the achieved navigation accuracy. Keywords: Rosetta orbit determination, small body relative optical navigation, gravity field deter- mination, comet attitude and orbit determination, 67P/Churyumov-Gerasimenko 1.
    [Show full text]
  • Conclusive Analysis & Cause of the Flyby Anomaly
    Introduction Theory Analysis Conclusion Conclusive analysis & cause of the flyby anomaly Range proportional spectral shifts for general communication V. Guruprasad Inspired Research, New York http://www.inspiredresearch.com 2019-07-17 c 2019 V. Guruprasad IEEE NAECON 2019 1/20 Introduction Theory Analysis Conclusion Summary • Popular context: Astrometric solar-system anomalies[1] Pioneer: ∆V r_ H r at r 5 AU (blueshift) { SOLVED[2] • 0 Flyby: ∆V trajectory∼ ≈ − discontinuity≥ at satellite range • [3] Lunar orbit eccentricity growth: also H0 • ∼ Earth orbit radius growth: also H0 • ∼ • Present work: conclusive solution of the flyby anomaly All NASA-tracked flybys checked, fit to 1%, more issues found • Fit presence and absence, correlated to transponder • • Real motivation and result: wave theory+practice correction Rewrite communication and radar: source range in all signals • Rewrites physics and astrophysics since Kepler • Computation overlooked since Euler and d'Alembert • Needed extremely robust empirical validation • [1] Anderson and Nieto 2009. [2] Turyshev et al. 2012. [3] The terrestrial reference frame is uncertain to about same order..Altamimi et al. 2016 c 2019 V. Guruprasad IEEE NAECON 2019 2/20 Introduction Theory Analysis Conclusion Faithful led by the blind • Fourier transform presumes clock rate stability Clock rate stability requires design and procedures • But even HST calibration cycles only correct cumulative errors • No awareness of range proportional or scale drift rate errors • Best Allan deviations in any observations
    [Show full text]
  • Working at the Jet Propulsion Laboratory (JPL)
    Working at the Jet Propulsion Laboratory (JPL), Anderson, Campbell, Ekelund, Ellis, and Jordan reported on and characterized orbital‐energy changes during six Earth flybys by the Galileo, NEAR, Cassini, Rosetta, and MESSENGER spacecraft; the JPL researchers found an empirical prediction formula consistent with the anomalous energy changes. http://virgo.lal.in2p3.fr/NPAC/relativite_fichiers/anderson_2.pdf “Anomalous Orbital‐Energy Changes Observed during Spacecraft Flybys of Earth” (2008) According to Wikipedia, “The flyby anomaly is an unexpected energy increase during Earth‐flybys of spacecraft. This anomaly has been observed as a shift in the S‐ Band and X‐Band Doppler and ranging telemetry. Taken together it causes a significant unaccounted velocity increase of over 13 mm/sec during flybys.” http://en.wikipedia.org/wiki/Flyby_anomaly What might the flyby anomaly have to do with the Pioneer anomaly and Milgrom’s Modified Newtonian Dynamics (MOND)? Define modified general relativity theory (GRT) with the Rañada‐Milgrom effect to be the heuristic model obtained by replacing the ‐1/2 in the standard form of Einstein’s field equations by ‐1/2 + dark‐ matter‐compensation‐constant, where this constant might be approximately sqrt((60±10)/4) * 10^‐5, based upon the Rañada effect for the Pioneer anomaly combined with the empirical validity of MOND. http://en.wikipedia.org/wiki/Pioneer_anomaly http://en.wikipedia.org/wiki/Modified_Newtonian_dynamics http://vixra.org/pdf/1203.0016v1.pdf “Anomalous Gravitational Acceleration and the OPERA Neutrino Anomaly (Updated)”. The slingshot effect in orbital mechanics uses the orbital angular momentum from a large body like a planet to increase the orbital velocity of a small body like a spacecraft.
    [Show full text]
  • Astrometric Solar-System Anomalies
    Relativity in Fundamental Astronomy Proceedings IAU Symposium No. 261, 2009 c International Astronomical Union 2010 S. A. Klioner, P. K. Seidelman & M. H. Soffel, eds. doi:10.1017/S1743921309990378 Astrometric solar-system anomalies John D. Anderson1 and Michael Martin Nieto2 1 Jet Propulsion Laboratory (Retired) 121 S. Wilson Ave., Pasadena, CA 91106-3017 U.S.A. email: [email protected] 2 Theoretical Division (MS-B285), Los Alamos National Laboratory Los Alamos, New Mexico 87645 U.S.A. email: [email protected] Abstract. There are at least four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. Next, a secular change in the astronomical unit AU is definitely a concern. It is reportedly − increasing by about 15 cm yr 1 . The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists, including us, are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon’s orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level.
    [Show full text]
  • Rosetta → PRESS KIT AUGUST 2014 ARRIVAL at COMET 67P/CHURYUMOV-GERASIMENKO
    rosetta → PRESS KIT AUGUST 2014 ARRIVAL AT COMET 67P/CHURYUMOV-GERASIMENKO www.esa.int/rosetta @ESA_Rosetta #RosettaAreWeThereYet www.esa.int European Space Agency1 Rosetta is one of the most complex and ambitious missions ever undertaken. It will perform unique science. No other mission has Rosetta’s potential to look back to the infant Solar System, when our planet was forming, and investigate the role comets may have played in seeding Earth with water, perhaps even the ingredients for life. To do this, Rosetta will be the first mission to orbit and land on a comet. To get there, scientists had to plan in advance, in the greatest possible detail, a ten-year trip through the Solar System. Approaching, orbiting, and landing on a comet require delicate and spectacular manoeuvres. Rosetta’s target, comet 67P/Churyumov-Gerasimenko, is a relatively small object, about 4 kilometres in diameter, moving at a speed as great as 120,000 kilometres per hour with respect to the Sun. Very little is known about its surface properties or the close environment. Only when we arrive at the comet will we be able to explore the comet in such detail that we can safely orbit it and deploy the lander. Rosetta’s lander will obtain the first images from a comet’s surface and make the first in-situ analysis of a comet’s composition. Rosetta will also be the first mission to investigate a comet’s nucleus and environment over an extended period of time. It will witness, at close proximity, how a comet changes as it approaches the increasing intensity of the Sun’s radiation and then returns to the outer Solar System.
    [Show full text]
  • Annual Report 2014-2015
    2014 2015 Annual Report Table of Contents 2/3 The International Space Science Institute (ISSI) is an Institute of Advanced Studies where scientists from all over the world meet in a multi- and interdisciplinary setting to reach out for new scientific horizons. The main function is to contribute to the achievement of a deeper understanding of the re- sults from different space missions, ground based observations and laboratory experiments, and add- ing value to those results through multidisciplinary research. The program of ISSI covers a widespread spectrum of disciplines from the physics of the solar system and planetary sciences to astrophysics and cosmology, and from Earth sciences to astrobiology. 4 From the Board of Trustees 20 International Teams 5 From the Directors 37 International Teams approved in 2015 6 About the International Space Science Institute 39 Visiting Scientists 7 The Board of Trustees 41 International Space Science Institute Beijing 8 The Science Committee 42 Events and ISSI in the media at a glance (including centerfold) 9 ISSI Staff 44 Staff Activities 10 Facilities 48 Staff Publications 11 Financial Overview 51 Visitor Publications 12 The Association Pro ISSI 61 Space Sciences Series of ISSI (SSSI) 13 Scientific Activities: The 20th Year 66 ISSI Scientific Reports Series (SR) 14 Forum 67 Pro ISSI SPATIUM Series 15 Workshops 68 ISSI Publications in the 20th Business Year ISSI Annual Report 2014 | 2015 From the Board of Trustees One year ago the undersigned was appointed by the President as secretary of the Board, succeeding Kathrin Altwegg who had served in that capacity for six years.
    [Show full text]
  • A Delta-V Map of the Known Main Belt Asteroids
    Acta Astronautica 146 (2018) 73–82 Contents lists available at ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro A Delta-V map of the known Main Belt Asteroids Anthony Taylor *, Jonathan C. McDowell, Martin Elvis Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA, USA ARTICLE INFO ABSTRACT Keywords: With the lowered costs of rocket technology and the commercialization of the space industry, asteroid mining is Asteroid mining becoming both feasible and potentially profitable. Although the first targets for mining will be the most accessible Main belt near Earth objects (NEOs), the Main Belt contains 106 times more material by mass. The large scale expansion of NEO this new asteroid mining industry is contingent on being able to rendezvous with Main Belt asteroids (MBAs), and Delta-v so on the velocity change required of mining spacecraft (delta-v). This paper develops two different flight burn Shoemaker-Helin schemes, both starting from Low Earth Orbit (LEO) and ending with a successful MBA rendezvous. These methods are then applied to the 700,000 asteroids in the Minor Planet Center (MPC) database with well-determined orbits to find low delta-v mining targets among the MBAs. There are 3986 potential MBA targets with a delta- v < 8kmsÀ1, but the distribution is steep and reduces to just 4 with delta-v < 7kms-1. The two burn methods are compared and the orbital parameters of low delta-v MBAs are explored. 1. Introduction [2]. A running tabulation of the accessibility of NEOs is maintained on- line by Lance Benner3 and identifies 65 NEOs with delta-v< 4:5kms-1.A For decades, asteroid mining and exploration has been largely dis- separate database based on intensive numerical trajectory calculations is missed as infeasible and unprofitable.
    [Show full text]
  • A Solution to the Flyby Anomaly Riddle
    Issue 1 (April) PROGRESS IN PHYSICS Volume 16 (2020) A Solution to the Flyby Anomaly Riddle Eduardo D. Greaves1, Carlos Bracho2, and Imre Mikoss3 1Universidad Simon´ Bol´ıvar. Apartado 89000, Caracas, Venezuela. E-mail: [email protected] 2Facultad de Ingenier´ıa, Universidad Central de Venezuela, Caracas, Venezuela. E-mail: bracho [email protected] 3Universidad Simon´ Bol´ıvar. Apartado 89000, Caracas, Venezuela. E-mail: [email protected] The Flyby Anomaly is one of the unsolved problems of current physics in that the Doppler-shift determined speeds are inconsistent with expected values assuming the validity of Newtonian gravity. We postulate that the Flyby Anomaly is a consequence of the assumption that the speed of light is isotropic in all frames, and invariant in the method used to measure the velocity of the space probes by means of the Doppler Effect. The inconsistent anomalous values measured: positive, null or negative are simply ex- plained relaxing this assumption. During space probe energy assistance maneuvers the velocity components of the probe in the direction of the observer Vo are derived from the relative displacement ∆ f of the radiofrequency f transmitted by the probe, multiplied 0 0 by the local speed of the light c by the Doppler effect: Vo = (∆ f = f ) c . According to the Cespedes-Cur´ e´ hypothesis, the movement through variable gravitational energy density fields produces slight variations of the refractive index n0 of space and therefore of the speed of light c0 which leads to unaccounted corrections of the Doppler data that are based on an invariant c. This leads to incorrect estimates of the speed or energy change in the flyby maneuver in the Earth’s frame of reference.
    [Show full text]
  • The Flyby Anomaly in an Extended Whitehead's Theory
    Galaxies 2015, 3, 113-128; doi:10.3390/galaxies3030113 OPEN ACCESS galaxies ISSN 2075-4434 www.mdpi.com/journal/galaxies Article The Flyby Anomaly in an Extended Whitehead’s Theory Luis Acedo Instituto Universitario de Matemática Multidisciplinar, Building 8G, 2o Floor, Camino de Vera, Universitat Polit`ecnica de Val`encia, Valencia, Spain; E-Mail: [email protected]; Tel.: +34-963877007 (ext. 88285) Academic Editor: Lorenzo Iorio Received: 18 June 2015 / Accepted: 24 July 2015 / Published: 30 July 2015 Abstract: In this paper, we consider an extended version of Whitehead’s theory of gravity in connection with the flyby anomaly. Whitehead’s theory is a linear approximation defined in a background Minkowski spacetime, which gives the same solutions as standard general relativity for the Schwarzschild and Kerr metrics cast in Kerr–Schild coordinates. For a long time and because it gives the same results for the three classical tests—perihelion advance, light bending and gravitational redshift—it was considered a viable alternative to general relativity, but as it is really a linear approximation, it fails in more stringent tests. The model considered in this paper is a formal generalization of Whitehead’s theory, including all possible bilinear forms. In the resulting theory, a circulating vector field of force in the low velocities’ approximation for a rotating planet is deduced, in addition to Newtonian gravity. This extra force gives rise to small variations in the asymptotic velocities of flybys around the Earth to be compared to the recently reported flyby anomaly. Keywords: experimental tests of gravitational theories; modified theories of gravity; perihelion precession PACS classifications: 04.80.-y; 04.80.Cc; 04.50.Kd 1.
    [Show full text]
  • Stable Orbits in the Small-Body Problem an Application to the Psyche Mission
    Stable Orbits in the Small-Body Problem An Application to the Psyche Mission Stijn Mast Technische Universiteit Delft Stable Orbits in the Small-Body Problem Front cover: Artist illustration of the Psyche mission spacecraft orbiting asteroid (16) Psyche. Image courtesy NASA/JPL-Caltech. ii Stable Orbits in the Small-Body Problem An Application to the Psyche Mission by Stijn Mast to obtain the degree of Master of Science at Delft University of Technology, to be defended publicly on Friday August 31, 2018 at 10:00 AM. Student number: 4279425 Project duration: October 2, 2017 – August 31, 2018 Thesis committee: Ir. R. Noomen, TU Delft Dr. D.M. Stam, TU Delft Ir. J.A. Melkert, TU Delft Advisers: Ir. R. Noomen, TU Delft Dr. J.A. Sims, JPL Dr. S. Eggl, JPL Dr. G. Lantoine, JPL An electronic version of this thesis is available at http://repository.tudelft.nl/. Stable Orbits in the Small-Body Problem This page is intentionally left blank. iv Stable Orbits in the Small-Body Problem Preface Before you lies the thesis Stable Orbits in the Small-Body Problem: An Application to the Psyche Mission. This thesis has been written to obtain the degree of Master of Science in Aerospace Engineering at Delft University of Technology. Its contents are intended for anyone with an interest in the field of spacecraft trajectory dynamics and stability in the vicinity of small celestial bodies. The methods presented in this thesis have been applied extensively to the Psyche mission. Conse- quently, the work can be of interest to anyone involved in the Psyche mission.
    [Show full text]