Stable Orbits in the Small-Body Problem an Application to the Psyche Mission
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Precision Modelling of Thermal Perturbations with Application to Pioneer 10 and Rosetta
High precision modelling of thermal perturbations with application to Pioneer 10 and Rosetta Vom Fachbereich Produktionstechnik der UNIVERSITAT¨ BREMEN zur Erlangung des Grades Doktor-Ingenieur genehmigte Dissertation von Dipl.-Ing. Benny Rievers Gutachter: Prof. Dr.-Ing. Hans J. Rath Prof. Dr. rer. nat. Hansj¨org Dittus Fachbereich Produktionstechnik Fachbereich Produktionstechnik Universit¨at Bremen Universit¨at Bremen Tag der m¨undlichen Pr¨ufung: 13. Januar 2012 i Kurzzusammenfassung in Deutscher Sprache Das Hauptthema dieser Doktorarbeit ist die pr¨azise numerische Bestimmung von Thermaldruck (TRP) und Solardruck (SRP) f¨ur Satelliten mit komplexer Geome- trie. F¨ur beide Effekte werden analytische Modelle entwickelt und als generischen numerischen Methoden zur Anwendung auf komplexe Modellgeometrien umgesetzt. Die Analysemethode f¨ur TRP wird zur Untersuchung des Thermaldrucks f¨ur den Pio- neer 10 Satelliten f¨ur den kompletten Zeitraum seiner 30-j¨ahrigen Mission verwendet. Hierf¨ur wird ein komplexes dreidimensionales Finite-Elemente Modell des Satelliten einschließlich detaillierter Materialmodelle sowie dem detailliertem ¨außerem und in- nerem Aufbau entwickelt. Durch die Spezifizierung von gemessenen Temperaturen, der beobachteten Trajektorie sowie detaillierten Modellen f¨ur die W¨armeabgabe der verschiedenen Komponenten, wird eine genaue Verteilung der Temperaturen auf der Oberfl¨ache von Pioneer 10 f¨ur jeden Zeitpunkt der Mission bestimmt. Basierend auf den Ergebnissen der Temperaturberechnung wird der resultierende Thermaldruck mit Hilfe einer Raytracing-Methode unter Ber¨ucksichtigung des Strahlungsaustauschs zwischen den verschiedenen Oberf¨achen sowie der Mehrfachreflexion, berechnet. Der Verlauf des berechneten TRPs wird mit den von der NASA ver¨offentlichten Pioneer 10 Residuen verglichen, und es wird aufgezeigt, dass TRP die so genannte Pioneer Anomalie inner- halb einer Modellierungsgenauigkeit von 11.5 % vollst¨andig erkl¨aren kann. -
Orbit Determination of Rosetta Around Comet 67P/Churyumov-Gerasimenko
ORBIT DETERMINATION OF ROSETTA AROUND COMET 67P/CHURYUMOV-GERASIMENKO Bernard Godard(1), Frank Budnik(2), Pablo Munoz˜ (3), Trevor Morley(1), and Vishnu Janarthanan(4) (1)Telespazio VEGA Deutschland GmbH, located at ESOC* (2)ESA/ESOC* (3)GMV, located at ESOC* (4)Terma GmbH, located at ESOC* *Robert-Bosch-Str. 5, 64293 Darmstadt, Germany, +49 6151 900, < firstname > : < lastname > @esa:int (remove letter accents) Abstract: When Rosetta arrived at comet 67P/Churyumov-Gerasimenko in early August 2014, not much was known about the comet. The orbit of the comet had been determined from years of tracking from ground observatories and a few months of optical tracking by Rosetta during approach. Ground and space-based images had also been used to construct light curves to infer the comet rotation period. But the comet mass, spin axis orientation and shape were still to be determined. The lander Philae was scheduled to land in about three months at a date chosen as a compromise between the time required to acquire sufficient knowledge about the comet and the risk of rising comet activity worsening the navigation accuracy. During these three months, the comet had to be characterised for navigation purposes. In particular, the comet orbit, attitude, centre of mass and gravity field had to be determined. This paper describes the Rosetta orbit determination process including the comet parameters determination, the dynamic and observation models, the filter configuration, the comet frame definition and will discuss the achieved navigation accuracy. Keywords: Rosetta orbit determination, small body relative optical navigation, gravity field deter- mination, comet attitude and orbit determination, 67P/Churyumov-Gerasimenko 1. -
Rosetta → PRESS KIT AUGUST 2014 ARRIVAL at COMET 67P/CHURYUMOV-GERASIMENKO
rosetta → PRESS KIT AUGUST 2014 ARRIVAL AT COMET 67P/CHURYUMOV-GERASIMENKO www.esa.int/rosetta @ESA_Rosetta #RosettaAreWeThereYet www.esa.int European Space Agency1 Rosetta is one of the most complex and ambitious missions ever undertaken. It will perform unique science. No other mission has Rosetta’s potential to look back to the infant Solar System, when our planet was forming, and investigate the role comets may have played in seeding Earth with water, perhaps even the ingredients for life. To do this, Rosetta will be the first mission to orbit and land on a comet. To get there, scientists had to plan in advance, in the greatest possible detail, a ten-year trip through the Solar System. Approaching, orbiting, and landing on a comet require delicate and spectacular manoeuvres. Rosetta’s target, comet 67P/Churyumov-Gerasimenko, is a relatively small object, about 4 kilometres in diameter, moving at a speed as great as 120,000 kilometres per hour with respect to the Sun. Very little is known about its surface properties or the close environment. Only when we arrive at the comet will we be able to explore the comet in such detail that we can safely orbit it and deploy the lander. Rosetta’s lander will obtain the first images from a comet’s surface and make the first in-situ analysis of a comet’s composition. Rosetta will also be the first mission to investigate a comet’s nucleus and environment over an extended period of time. It will witness, at close proximity, how a comet changes as it approaches the increasing intensity of the Sun’s radiation and then returns to the outer Solar System. -
Satellite Splat II: an Inelastic Collision with a Surface-Launched Projectile and the Maximum Orbital Radius for Planetary Impact
European Journal of Physics Eur. J. Phys. 37 (2016) 045004 (10pp) doi:10.1088/0143-0807/37/4/045004 Satellite splat II: an inelastic collision with a surface-launched projectile and the maximum orbital radius for planetary impact Philip R Blanco1,2,4 and Carl E Mungan3 1 Department of Physics and Astronomy, Grossmont College, El Cajon, CA 92020- 1765, USA 2 Department of Astronomy, San Diego State University, San Diego, CA 92182- 1221, USA 3 Physics Department, US Naval Academy, Annapolis, MD 21402-1363, USA E-mail: [email protected] Received 26 January 2016, revised 3 April 2016 Accepted for publication 14 April 2016 Published 16 May 2016 Abstract Starting with conservation of energy and angular momentum, we derive a convenient method for determining the periapsis distance of an orbiting object, by expressing its velocity components in terms of the local circular speed. This relation is used to extend the results of our previous paper, examining the effects of an adhesive inelastic collision between a projectile launched from the surface of a planet (of radius R) and an equal-mass satellite in a circular orbit of radius rs. We show that there is a maximum orbital radius rs ≈ 18.9R beyond which such a collision cannot cause the satellite to impact the planet. The difficulty of bringing down a satellite in a high orbit with a surface- launched projectile provides a useful topic for a discussion of orbital angular momentum and energy. The material is suitable for an undergraduate inter- mediate mechanics course. Keywords: orbital motion, momentum conservation, energy conservation, angular momentum, ballistics (Some figures may appear in colour only in the online journal) 4 Author to whom any correspondence should be addressed. -
Orbital Mechanics Course Notes
Orbital Mechanics Course Notes David J. Westpfahl Professor of Astrophysics, New Mexico Institute of Mining and Technology March 31, 2011 2 These are notes for a course in orbital mechanics catalogued as Aerospace Engineering 313 at New Mexico Tech and Aerospace Engineering 362 at New Mexico State University. This course uses the text “Fundamentals of Astrodynamics” by R.R. Bate, D. D. Muller, and J. E. White, published by Dover Publications, New York, copyright 1971. The notes do not follow the book exclusively. Additional material is included when I believe that it is needed for clarity, understanding, historical perspective, or personal whim. We will cover the material recommended by the authors for a one-semester course: all of Chapter 1, sections 2.1 to 2.7 and 2.13 to 2.15 of Chapter 2, all of Chapter 3, sections 4.1 to 4.5 of Chapter 4, and as much of Chapters 6, 7, and 8 as time allows. Purpose The purpose of this course is to provide an introduction to orbital me- chanics. Students who complete the course successfully will be prepared to participate in basic space mission planning. By basic mission planning I mean the planning done with closed-form calculations and a calculator. Stu- dents will have to master additional material on numerical orbit calculation before they will be able to participate in detailed mission planning. There is a lot of unfamiliar material to be mastered in this course. This is one field of human endeavor where engineering meets astronomy and ce- lestial mechanics, two fields not usually included in an engineering curricu- lum. -
A Delta-V Map of the Known Main Belt Asteroids
Acta Astronautica 146 (2018) 73–82 Contents lists available at ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro A Delta-V map of the known Main Belt Asteroids Anthony Taylor *, Jonathan C. McDowell, Martin Elvis Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA, USA ARTICLE INFO ABSTRACT Keywords: With the lowered costs of rocket technology and the commercialization of the space industry, asteroid mining is Asteroid mining becoming both feasible and potentially profitable. Although the first targets for mining will be the most accessible Main belt near Earth objects (NEOs), the Main Belt contains 106 times more material by mass. The large scale expansion of NEO this new asteroid mining industry is contingent on being able to rendezvous with Main Belt asteroids (MBAs), and Delta-v so on the velocity change required of mining spacecraft (delta-v). This paper develops two different flight burn Shoemaker-Helin schemes, both starting from Low Earth Orbit (LEO) and ending with a successful MBA rendezvous. These methods are then applied to the 700,000 asteroids in the Minor Planet Center (MPC) database with well-determined orbits to find low delta-v mining targets among the MBAs. There are 3986 potential MBA targets with a delta- v < 8kmsÀ1, but the distribution is steep and reduces to just 4 with delta-v < 7kms-1. The two burn methods are compared and the orbital parameters of low delta-v MBAs are explored. 1. Introduction [2]. A running tabulation of the accessibility of NEOs is maintained on- line by Lance Benner3 and identifies 65 NEOs with delta-v< 4:5kms-1.A For decades, asteroid mining and exploration has been largely dis- separate database based on intensive numerical trajectory calculations is missed as infeasible and unprofitable. -
Control of Long-Term Low-Thrust Small Satellites Orbiting Mars
SSC18-PII-26 Control of Long-Term Low-Thrust Small Satellites Orbiting Mars Christopher Swanson University of Florida 3131 NW 58th Blvd. Gainesville FL [email protected] Faculty Advisor: Riccardo Bevilacqua Graduate Advisor: Patrick Kelly University of Florida ABSTRACT As expansion of deep space missions continue, Mars is quickly becoming the planet of primary focus for science and exploratory satellite systems. Due to the cost of sending large satellites equipped with enough fuel to last the entire lifespan of a mission, inexpensive small satellites equipped with low thrust propulsion are of continuing interest. In this paper, a model is constructed for use in simulating the control of a small satellite system, equipped with low- thrust propulsion in orbit around Mars. The model takes into consideration the fuel consumption and can be used to predict the lifespan of the satellite based on fuel usage due to the natural perturbation of the orbit. This model of the natural perturbations around Mars implements a Lyapunov Based control law using a set of gains for the orbital elements calculated by obtaining the ratio of the instantaneous rate of change of the element over the maximum rate of change over the current orbit. The thrust model simulates the control of the semi-major axis, eccentricity, and inclination based upon a thrust vector fixed to a local vertical local horizontal reference frame of the satellite. This allows for a more efficient fuel usage over the long continuous thrust burns by prioritizing orbital elements in the control when they have a higher relative rate of change rather than the Lyapunov control prioritizing the element with the greatest magnitude rate of change. -
Precise Astrometry and Diameters of Asteroids from Occultations – a Data-Set of Observations and Their Interpretation
MNRAS 000,1–22 (2020) Preprint 14 October 2020 Compiled using MNRAS LATEX style file v3.0 Precise astrometry and diameters of asteroids from occultations – a data-set of observations and their interpretation David Herald 1¢, David Gault2, Robert Anderson3, David Dunham4, Eric Frappa5, Tsutomu Hayamizu6, Steve Kerr7, Kazuhisa Miyashita8, John Moore9, Hristo Pavlov10, Steve Preston11, John Talbot12, Brad Timerson (deceased)13 1Trans Tasman Occultation Alliance, [email protected] 2Trans Tasman Occultation Alliance, [email protected] 3International Occultation Timing Association, [email protected] 4International Occultation Timing Association, [email protected] 5Euraster, [email protected] 6Japanese Occultation Information Network, [email protected] 7Trans Tasman Occultation Alliance, [email protected] 8Japanese Occultation Information Network, [email protected] 9International Occultation Timing Association, [email protected] 10International Occultation Timing Association – European Section, [email protected] 11International Occultation Timing Association, [email protected] 12Trans Tasman Occultation Alliance, [email protected] 13International Occultation Timing Association, deceased Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Occultations of stars by asteroids have been observed since 1961, increasing from a very small number to now over 500 annually. We have created and regularly maintain a growing data-set of more than 5,000 observed asteroidal occultations. The data-set includes: the raw observations; astrometry at the 1 mas level based on centre of mass or figure (not illumination); where possible the asteroid’s diameter to 5 km or better, and fits to shape models; the separation and diameters of asteroidal satellites; and double star discoveries with typical separations being in the tens of mas or less. -
A Strategy for Exploring the Asteroid Belt with Ion Propulsion C
Geophysical Research Abstracts, Vol. 8, 05272, 2006 SRef-ID: 1607-7962/gra/EGU06-A-05272 © European Geosciences Union 2006 A strategy for exploring the Asteroid Belt with Ion propulsion C. T. Russell, and the Dawn Science Team Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA. (Email: [email protected]/Fax: 310-206-3051 The largest asteroids are survivors from the earliest days of the formation of the solar system and by and large have escaped the heavy bombardment period largely un- scathed. Moreover, these largest bodies should have remained closest to their points of origin. Thus a strategy of visiting the largest bodies in the main belt could tell us much about the original compositional gradient in the solar system and hence the tem- perature and pressure gradient that produced it. The Dawn mission explores the two most massive main belt asteroids 4 Vesta and 1 Ceres at 2.34 and 2.77 AU respectively. These bodies are very different. Vesta has an equatorial diameter of about 520 km and is covered with basaltic flows whereas Ceres is close to 1000 km in diameter and has a shape and density consistent with a rocky core covered by a thick ice (˜100 km) shell. The third most massive main belt asteroid, 2 Pallas, lies at the same distance as Ceres with the same size of Vesta but a much lower density. However, since it orbits at a high inclination it is quite inaccessible. The fourth most massive asteroid is 10 Hygiea at 3.12 AU. -
Development of the Psyche Mission for NASA's Discovery Program
Development of the Psyche Mission for NASA’s Discovery Program IEPC-2017-153 Presented at the 35th International Electric Propulsion Conference Georgia Institute of Technology • Atlanta, Georgia • USA October 8 – 12, 2017 David Y. Oh*, Steve Collins†, Dan Goebel‡, Bill Hart§, Gregory Lantoine**, Steve Snyder††, and Greg Whiffen‡‡ California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA, 91109, USA Linda Elkins-Tanton§§ Arizona State University, Tempe, AZ, 85287 and Peter Lord,*** Zack Pirkl††† and Lee Rotlisburger‡‡‡ Space Systems/Loral, Palo Alto, CA, 94303, USA Abstract: In January 2017, the proposed mission Psyche: Journey to a Metal World, led by principal investigator Dr. Lindy Elkins-Tanton of Arizona State University (ASU), was selected for implementation as part of NASA’s Discovery Program. The planned Psyche mission is enabled by electric propulsion and would use SPT-140 Hall thrusters to rendezvous and orbit the largest metal asteroid in the solar system. The spacecraft requires no chemical propulsion and, when launched in 2022, would be the first mission to use Hall thrusters beyond lunar orbit. This paper describes the ongoing development of the Psyche mission concept and describes how Psyche would use commercially provided solar power and electric propulsion to meet its mission’s science requirements. It describes the mission’s scientific objectives and low thrust mission trajectory, the spacecraft architecture, including its power and propulsion systems, and the all-electric attitude control strategy that allows Psyche to fly without the use of chemical propulsion. Together, these elements provide a robust baseline design that maximizes heritage, leverages the strongest experience bases within the partner organizations, and minimizes risk across the design; providing a firm basis for implementation of the Psyche mission. -
Asteroids Do Have Satellites 289
Merline et al.: Asteroids Do Have Satellites 289 Asteroids Do Have Satellites William J. Merline Southwest Research Institute Stuart J. Weidenschilling Planetary Science Institute Daniel D. Durda Southwest Research Institute Jean-Luc Margot California Institute of Technology Petr Pravec Astronomical Institute of the Academy of Sciences of the Czech Republic Alex D. Storrs Towson University After years of speculation, satellites of asteroids have now been shown definitively to exist. Asteroid satellites are important in at least two ways: (1) They are a natural laboratory in which to study collisions, a ubiquitous and critically important process in the formation and evolu- tion of the asteroids and in shaping much of the solar system, and (2) their presence allows to us to determine the density of the primary asteroid, something which otherwise (except for certain large asteroids that may have measurable gravitational influence on, e.g., Mars) would require a spacecraft flyby, orbital mission, or sample return. Binaries have now been detected in a variety of dynamical populations, including near-Earth, main-belt, outer main-belt, Tro- jan, and transneptunian regions. Detection of these new systems has been the result of improved observational techniques, including adaptive optics on large telescopes, radar, direct imaging, advanced lightcurve analysis, and spacecraft imaging. Systematics and differences among the observed systems give clues to the formation mechanisms. We describe several processes that may result in binary systems, all of which involve collisions of one type or another, either physi- cal or gravitational. Several mechanisms will likely be required to explain the observations. 1. INTRODUCTION sons between, for example, asteroid taxonomic types and our inventory of meteorites. -
(2000) Forging Asteroid-Meteorite Relationships Through Reflectance
Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta.