Beno Gutenberg
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Scientist, Spring 2008
San Jose State University SJSU ScholarWorks The Scientist (College of Science) College of Science Spring 1-1-2008 The Scientist, Spring 2008 San Jose State University, College of Science Follow this and additional works at: https://scholarworks.sjsu.edu/scientist Recommended Citation San Jose State University, College of Science, "The Scientist, Spring 2008" (2008). The Scientist (College of Science). 2. https://scholarworks.sjsu.edu/scientist/2 This Newsletter is brought to you for free and open access by the College of Science at SJSU ScholarWorks. It has been accepted for inclusion in The Scientist (College of Science) by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. Volume 12, Number 1 Spring 2008 College of Science San José State University The Scientist Message from the Dean Inside this issue: It’s been a busy I am also very pleased to an- Message from the 1 year here at the College of nounce that Dr. Singmaster Dean Science. Building on the has been designated the Geology: 2 great work of a planning SJSU Professor of the Year, a The Millers We are very pleased team made up of faculty, well deserved honor recog- to welcome our new Develop- Michael Graham: staff, and students that met nizing her years of selfless ment officer, Carol Beattie, 2 Kelp Discovery at a retreat at Asilomar a dedication to our students, who joined the university ad- year ago, we have nearly as well as her remarkable vancement staff in January. Physics and finalized plans for a College- teaching abilities. Carol has extensive experi- Astronomy 3 wide advising center, which We are continuing to ence in industry, consulting 2007 Highlights we hope will turn into a one- develop Professional Science and working with non-profits stop-shop for students in all Master’s programs that are such as the Children’s Health Mathematics News 4 departments of the college. -
Government: the View from Washington, DC
THIS IS THE TEXT OF AN ESSAY IN THE WEB SITE “THE DISCOVERY OF GLOBAL WARMING” BY SPENCER WEART, HTTP://WWW.AIP.ORG/HISTORY/CLIMATE. JULY 2007. HYPERLINKS WITHIN THAT SITE ARE NOT INCLUDED IN THIS FILE. FOR AN OVERVIEW SEE THE BOOK OF THE SAME TITLE (HARVARD UNIV. PRESS, 2003). COPYRIGHT © 2003-2007 SPENCER WEART & AMERICAN INSTITUTE OF PHYSICS. Government: The View from Washington, DC The money that paid for research on climate change came mostly from governments. Governments were also central to any practical actions that might address global warming. Following the Second World War, the United States Federal government funded many kinds of research, much of it connected to Cold War concerns, and some of this happened to relate to climate change. During the 1960s, the government created major agencies for space, atmospheric, and ocean science, and in the 1970s, as public concern for the environment mounted, the agencies increasingly supported research targeted directly at climate change. But climate scientists were too few and disorganized to push through a unified national research program. Their budgets, divided among different agencies, would rise for a few years and then stagnate. During the 1980s, the funding and the science itself came under attack. The technical question of whether climate change might be a threat got caught up in political battles between pro-regulation environmentalists and anti-government conservatives. Demands for policies to mitigate global warming found little support among American politicians, who thought the ideas were politically unfeasible if not downright pernicious. (This essay covers only the United States government—the most important by far, in terms of influence and domestic greenhouse gas production. -
Energy and Magnitude: a Historical Perspective
Pure Appl. Geophys. 176 (2019), 3815–3849 Ó 2018 Springer Nature Switzerland AG https://doi.org/10.1007/s00024-018-1994-7 Pure and Applied Geophysics Energy and Magnitude: A Historical Perspective 1 EMILE A. OKAL Abstract—We present a detailed historical review of early referred to as ‘‘Gutenberg [and Richter]’s energy– attempts to quantify seismic sources through a measure of the magnitude relation’’ features a slope of 1.5 which is energy radiated into seismic waves, in connection with the parallel development of the concept of magnitude. In particular, we explore not predicted a priori by simple physical arguments. the derivation of the widely quoted ‘‘Gutenberg–Richter energy– We will use Gutenberg and Richter’s (1956a) nota- magnitude relationship’’ tion, Q [their Eq. (16) p. 133], for the slope of log10 E versus magnitude [1.5 in (1)]. log10 E ¼ 1:5Ms þ 11:8 ð1Þ We are motivated by the fact that Eq. (1)istobe (E in ergs), and especially the origin of the value 1.5 for the slope. found nowhere in this exact form in any of the tra- By examining all of the relevant papers by Gutenberg and Richter, we note that estimates of this slope kept decreasing for more than ditional references in its support, which incidentally 20 years before Gutenberg’s sudden death, and that the value 1.5 were most probably copied from one referring pub- was obtained through the complex computation of an estimate of lication to the next. They consist of Gutenberg and the energy flux above the hypocenter, based on a number of assumptions and models lacking robustness in the context of Richter (1954)(Seismicity of the Earth), Gutenberg modern seismological theory. -
The Dilemma of Reticence: Helmut Landsberg, Stephen Schneider, and Public Communication of Climate Risk, 1971-1976
History of Meteorology 6 (2014) 53 The Dilemma of Reticence: Helmut Landsberg, Stephen Schneider, and public communication of climate risk, 1971-1976 Gabriel Henderson Aarhus University Aarhus, Denmark “Most of the crucial issues of human survival that will confront humanity over the next few decades will call for ethical and political value judgments – decisions on how to act in the face of uncertainties. … Human value judgments are too important to be left exclusively to the experts.” – Stephen Schneider1 “Science is not as objective as some people think. Often human value judgments (or even prejudices) make things move as much as curiosity or the search for answers as to ‘why.’” – Helmut Landsberg2 During the tumultuous mid-1970s, when energy and food shortages, environmental pollution, and political instability induced suspicions that America was increasingly susceptible to increased climatic instability, American climatologists Helmut Landsberg and Stephen Schneider disagreed strongly on whether scientists should engage the public about the future risks and urgency of climate change. On the one hand, Schneider, a young climate modeler with the National Center for Atmospheric Research (NCAR), expressed explicitly an unwillingness to embrace reticence as an appropriate response to the risks of climate change. To illustrate the gravity of the situation, he frequently resorted to vivid and frightening metaphors to convince the public and policy makers that I want to express my gratitude to Ruth Morgan and the anonymous reviewer who contributed thoughtful suggestions to improve and refine the scope of this article. I would also like to thank my colleagues at the Center for Science Studies at Aarhus University for their suggestions to strengthen my narrative and flow of argument: Dania Achermann, Matthias Heymann, and Janet Martin-Nielsen. -
News and Nntes
Bulletin American Meteorological Society pictures will be required to extract the wealth of data and tracked. The cloud systems comprising the Inter- on cloud developments, movements and dissipation. tropical Convergence Zone can be observed and studied. A preliminary analysis of the cloud observations from Tropical storms such as hurricanes and typhoons can ATS-I indicates that detailed viewing of short-lived be monitored continuously. The rapid changes associated weather systems and phenomena from synchronous alti- with storms and frontal systems can be readily observed tude is feasible. The observation of cloud systems over and assessed. The continuous monitoring of weather the tropical ocean will assist in the study of the heat systems from synchronous satellites will be an important budget of the atmosphere. Mesoscale phenomena such as adjunct to the ESS A and Nimbus satellites for observing thunderstorms, possibly even tornadoes, can be identified and studying the Earth's weather. news and nntes New institute director, University of Miami of Marine Science is planned with several joint appointments, common graduate courses in fluid dynamics, statistics, and Dr. Eric B. Kraus, formerly similar basic subjects, as well as access to research vessels and of Woods Hole Oceano- an instrumented field site for wave and air-sea interaction graphic Institution, has be- studies near Abaco Island in the Bahamas. come director of the Institute of Atmospheric Science, Uni- versity of Miami. He has also National Academy of Sciences building named been appointed professor of meteorology at the Univer- The new building being constructed for the National Acad- sity's Institute of Marine emy of Sciences on property of George Washington University Science. -
Seismology in the Days of Old
Seismology in the Days of Old Den danske seismolog Inge Lehmanns sidste artikel by Inge Lehmann, Copenhagen, DK Eos, Vol. 68, No. 3, January 20, 1987, pp 33-35. Copyright by the American Geophysical Union. Reprinted with permission I may have been 15 or 16 years old, when, on a Sunday morning, I was sitting at home together with my mother and sister, and the floor began to move under us. The hanging lamp swayed. It was very strange. My father came into the room. "It was an earthquake," he said. The center had evidently been at a considerable distance, for the movements felt slow and not shaky. In spite of a great deal of effort, an accurate epicenter was never found. This was my only experience with an earthquake until I became a seismologist 20 years later. In the autumn of 1925, I became an assistant to N.E. Nørlund, who shortly before had been appointed director of "Gradmaalingen" (a geodetic institution that was in charge of measuring the meridian arc in Denmark). He had become interested in establishing seismic stations in Denmark and Greenland. He wanted everything done in the best possible way, and much attention was paid to the time service. The best existing seismographs had to be used, and they were to be placed so that they were not strongly affected by disturbing movements, such as traffic, for example. Two solid buildings, part of the fortification system that surrounded Copenhagen, were made available. My first major task was to assist in the installation of the Galitzin-Willip seismographs there. -
Community Resilience to Climate Change: Theory, Research and Practice
COMMUNITY RESILIENCE TO CLIMATE CHANGE THEORY, RESEARCH & PRACTICE Dana Hellman & Vivek Shandas [Decorative cover image] This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license except where otherwise noted. Copyright © 2020 Dana Hellman and Vivek Shandas Accessibility Statement PDXScholar supports the creation, use, and remixing of open educational resources (OER). Portland State University (PSU) Library acknowledges that many open educational resources are not created with accessibility in mind, which creates barriers to teaching and learning. PDXScholar is actively committed to increasing the accessibility and usability of the works we produce and/or host. We welcome feedback about accessibility issues our users encounter so that we can work to mitigate them. Please email us with your questions and comments at [email protected] “Accessibility Statement” is a derivative of Accessibility Statement by BCcampus, and is licensed under CC BY 4.0. Community Resilience to Climate Change: Theory, Research and Practice Community Resilience to Climate Change: Theory, Research and Practice meets the criteria outlined below, which is a set of criteria adapted from BCCampus’ Checklist for Accessibility, licensed under CC BY 4.0. The OER guide contains the following accessibility and usability features: File Formats • The entire OER guide is only available as a PDF. The PDF is available for free download at Portland State University’s institutional repository, PDXScholar. • Editable Microsoft Word files of each individual section are also available for download, and include student exercises, classroom activities, readings, and alternative selections. Organization of content • Organization of content is outlined in a Table of Contents. -
Beyond Einstein Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century Editors David E
David E. Rowe • Tilman Sauer • Scott A. Walter Editors Beyond Einstein Perspectives on Geometry, Gravitation, and Cosmology in the Twentieth Century Editors David E. Rowe Tilman Sauer Institut für Mathematik Institut für Mathematik Johannes Gutenberg-Universität Johannes Gutenberg-Universität Mainz, Germany Mainz, Germany Scott A. Walter Centre François Viète Université de Nantes Nantes Cedex, France ISSN 2381-5833 ISSN 2381-5841 (electronic) Einstein Studies ISBN 978-1-4939-7706-2 ISBN 978-1-4939-7708-6 (eBook) https://doi.org/10.1007/978-1-4939-7708-6 Library of Congress Control Number: 2018944372 Mathematics Subject Classification (2010): 01A60, 81T20, 83C47, 83D05 © Springer Science+Business Media, LLC, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
DON ANDERSON Themes Developed Across Several Decades
Don L. Anderson 1933–2014 A Biographical Memoir by Thorne Lay ©2016 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. DON LYNN ANDERSON March 5, 1933–December 2, 2014 Elected to the NAS, 1982 Don L. Anderson, the Eleanor and John R. McMillan Professor of Geophysics at the California Institute of Tech- nology, was a geophysicist who made numerous seminal contributions to our understanding of Earth’s origin, composition, structure and evolution. He pioneered applications of seismic anisotropy for global surface waves, contributed to discovering the seismic velocity discontinuities in the mantle’s transition zone and initi- ated their mineralogical interpretation, established deep insights into seismic attenuation, co-authored the most widely used reference Earth structure model, helped to establish the field of global tomography, and re-opened inquiry into the nature of hotspot volcanism and mantle stratification. He contributed to initiatives that upgraded By Thorne Lay global and regional seismic instrumentation. He served as Director of the Caltech Seismological Laboratory for 22 years, overseeing a prolific scientific environment, distilling many advances into his masterpiece book Theory of the Earth. His enthusiasm for debate and his phenomenal editorial efforts raised the scientific standard of students and colleagues alike. Don was a geophysicist of tremendous breadth, publishing about 325 peer-reviewed research papers between 1958 and 2014 in seismology, mineral physics, planetary science, tectonophysics, petrology and geochemistry. He had a remarkable familiarity with the literature across all these disciplines, keeping reprints sorted into a multitude of three-ring binders that he could access in an instant, uniquely positioning him to undertake the writing of his ambitious book, The Theory of the Earth, published in 1989. -
The Lower Mantle and Core
Theory of the Earth Don L. Anderson Chapter 4. The Lower Mantle and Core Boston: Blackwell Scientific Publications, c1989 Copyright transferred to the author September 2, 1998. You are granted permission for individual, educational, research and noncommercial reproduction, distribution, display and performance of this work in any format. Recommended citation: Anderson, Don L. Theory of the Earth. Boston: Blackwell Scientific Publications, 1989. http://resolver.caltech.edu/CaltechBOOK:1989.001 A scanned image of the entire book may be found at the following persistent URL: http://resolver.caltech.edu/CaltechBook:1989.001 Abstract: The lower mantle starts just below the major mantle discontinuity near 650 km. The depth of this discontinuity varies, perhaps by as much as 100 km and is variously referred to as the "650-km discontinuity" or "670-km discontinuity." In recent Earth models there is a region of high velocity gradient for another 50 to 100 km below the discontinuity. This is probably due to phase changes, but it could represent a chemical gradient. The "lower mantle proper" therefore does not start until a depth of about 750 or 800 km. Below this depth the lower mantle is relatively homogeneous until about 300 km above the core-mantle boundary. If there is a chemical difference between the upper and lower mantle then, in a convecting dynamic mantle, the boundary will not be at a fixed depth. This clarification is needed because of the controversy about whether slabs penetrate into the lower mantle or whether they just push down the discontinuity. core. The Lower Mantle and Core I must be getting somewhere near the centre of the earth. -
Don Lynn Anderson Papers, 1968-1994
http://oac.cdlib.org/findaid/ark:/13030/tf9c6006hj No online items Guide to the Don Lynn Anderson Papers, 1968-1994 Processed by Charlotte E. Erwin; machine-readable finding aid created by Brooke Dykman Dockter Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] URL: http://archives.caltech.edu © 1998 California Institute of Technology. All rights reserved. Guide to the Don Lynn Anderson 1 Papers, 1968-1994 Guide to the Don Lynn Anderson Papers, 1968-1994 Archives California Institute of Technology Pasadena, California Contact Information: Archives California Institute of Technology 1200 East California Blvd. Mail Code 015A-74 Pasadena, CA 91125 Phone: (626) 395-2704 Fax: (626) 793-8756 Email: [email protected] URL: http://archives.caltech.edu Processed by: Charlotte E. Erwin Date Completed: March 27, 1996 Encoded by: Brooke Dykman Dockter © 1998 California Institute of Technology. All rights reserved. Descriptive Summary Title: Don Lynn Anderson Papers, Date (inclusive): 1968-1994 Creator: Anderson, Don Lynn Extent: Linear feet: 1 Repository: California Institute of Technology. Archives. Pasadena, California 91125 Language: English. Access Collection is open for research. Publication Rights Copyright has not been assigned to the California Institute of Technology Archives. All requests for permission to publish or quote from manuscripts must be submitted in writing to the Head of the Archives. Permission for publication is given on behalf of the California Institute of Technology Archives as the owner of the physical items and is not intended to include or imply permission of the copyright holder, which must also be obtained by the reader. -
Interview with Donald V. Helmberger
DONALD V. HELMBERGER (Born 1938) INTERVIEWED BY SHIRLEY K. COHEN May 27 and June 3, 1999 By Bob Paz, 2004. Courtesy CIT Public Relations ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Geology, geophysics, seismology, planetary science Abstract Interview in two sessions, May and June 1999, with Donald V. Helmberger, Smits Family Professor of Geophysics and Planetary Sciences in the Division of Geological and Planetary Sciences. He begins by recalling his family background and childhood on a farm in Northern Minnesota, one of thirteen children. Matriculates at the University of Minnesota in 1956 (B.S. 1961). Summer work at Scripps Institution of Oceanography, 1961; sails to Alaska on a research vessel studying the structure of the oceanic crust. Transfers to UCSD for graduate work in geophysics; works at Scripps with Russell Raitt (PhD 1967). Recollections of Walter Munk and Freeman Gilbert. Two-year postdoctoral position at MIT, with Frank Press and Nafi Toksoz; introduced to seismology. Works on upper-mantle modeling, supported by U.S. Air Force in connection with underground testing of nuclear weapons. Becomes an assistant professor at Princeton in 1969; following year, joins Caltech Seismology Laboratory as assistant professor of geophysics. After 1971 San Fernando Earthquake, works on high-frequency modeling of earthquakes. http://resolver.caltech.edu/CaltechOH:OH_Helmberger_D Recollections of Seismo Lab when it was on N. San Rafael Ave., in Pasadena, and of the move in 1974 to South Mudd, on Caltech campus. Memories of Charles Richter. Recalls students: Charles Langston, Thomas Heaton, Thorne Lay, Terry Wallace, Stephen Grand. Comments on Hiroo Kanamori, director of Seismo Lab 1990-1998.