Community Resilience to Climate Change: Theory, Research and Practice

Total Page:16

File Type:pdf, Size:1020Kb

Community Resilience to Climate Change: Theory, Research and Practice COMMUNITY RESILIENCE TO CLIMATE CHANGE THEORY, RESEARCH & PRACTICE Dana Hellman & Vivek Shandas [Decorative cover image] This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license except where otherwise noted. Copyright © 2020 Dana Hellman and Vivek Shandas Accessibility Statement PDXScholar supports the creation, use, and remixing of open educational resources (OER). Portland State University (PSU) Library acknowledges that many open educational resources are not created with accessibility in mind, which creates barriers to teaching and learning. PDXScholar is actively committed to increasing the accessibility and usability of the works we produce and/or host. We welcome feedback about accessibility issues our users encounter so that we can work to mitigate them. Please email us with your questions and comments at [email protected] “Accessibility Statement” is a derivative of Accessibility Statement by BCcampus, and is licensed under CC BY 4.0. Community Resilience to Climate Change: Theory, Research and Practice Community Resilience to Climate Change: Theory, Research and Practice meets the criteria outlined below, which is a set of criteria adapted from BCCampus’ Checklist for Accessibility, licensed under CC BY 4.0. The OER guide contains the following accessibility and usability features: File Formats • The entire OER guide is only available as a PDF. The PDF is available for free download at Portland State University’s institutional repository, PDXScholar. • Editable Microsoft Word files of each individual section are also available for download, and include student exercises, classroom activities, readings, and alternative selections. Organization of content • Organization of content is outlined in a Table of Contents. Images ● All non-decorative images contain alternative text descriptions of the image’s content or function. ● Images do not rely on color to convey meaning. ● Graphs, charts, and maps include alternative text. Font Size and formatting ● No known repeated characters or excessive spaces. Known Issues/Potential barriers to accessibility ● Nested heading structures are not correctly or consistently used throughout the document. Please refer to the Table of Contents for organization of content. ● Tables have been converted to images and therefore do not contain selectable text. Alternative text is used to summarize the table, but does not capture all of the data in the table. ● Font size is 9 point for body text. To increase the display size, use the “zoom in” function when viewing the PDF. ● Descriptive link text is not used consistently. Many hyperlinks are spelled out in full. ● Many of the charts and graphs in the full-text reproductions of articles rely on color to convey meaning. If you have trouble accessing this material, please let us know at [email protected]. This accessibility statement has been adopted and adapted from Accessibility Statement and Appendix A: Checklist for Accessibility found in Accessibility Toolkit - 2nd Edition by BCcampus, and is licensed under a Creative Commons Attribution 4.0 International License. The Accessibility Statement is licensed under a Creative Commons Attribution 4.0 International License. AUTHORS’ NOTE This reader is an Open Educational Resource, meant to accompany a graduate or higher- level undergraduate university course in climate change resilience, adaptation, and/or planning. While the material is geared toward students in urban and regional planning, it may also be of interest to students of urban studies, public health, geography, political science, sociology, risk management, and others. Each section of this volume includes (1) an introductory summary, (2) a reading list with full text articles*, (3) student exercises meant to enhance understanding and facilitate in-class discussion, and (4) additional discussion prompts or activities for instructors to use in class. The format of materials is intended to convey key concepts, while leaving ample space for student exploration, discourse, and creativity. Lessons may culminate in an applied, imaginative final project, a sample framework of which is provided at the end of Section VI. *For your convenience, this reader includes full-text reproductions of articles which are available through an open access, creative commons license. Other relevant materials are included on the reading list under “Alternative Selections” and may be obtained and incorporated into the course at the discretion of the instructor. Each reading list represents a broad sample of available material, and should not be taken as a concrete course plan; instructors are encouraged to rework the lineup, select only the most pertinent readings for a given course, and exclude list items as appropriate. TABLE OF CONTENTS SECTION I: INTRODUCTION & KEY CONCEPTS.......................................................................................................................................................1 Student Exercises & Classroom Activities.............................................................................................................................................................................................4 Reading List....................................................................................................................................................................................................................................................5 “Cities and climate change: The precedents and why they matter” (Hebbert & Jankovic).....................................................................................................6 “Resilience for whom? The problem structuring process of the resilience analysis” (Herrera)................................................................................................17 SECTION II: RESILIENCE IN THEORY.....................................................................................................................................................................31 Reading List.................................................................................................................................................................................................................................................33 Student Exercises & Classroom Activities..........................................................................................................................................................................................34 “Resilience thinking: Integrating resilience, adaptability and transformability” (Folke et al.)..............................................................................................35 “General resilience to cope with extreme events” (Carpenter et al.)..........................................................................................................................................42 “Focusing the meaning(s) of resilience: Resilience as a descriptive concept and a boundary object” (Brand & Jax)...................................................50 “Climate change resilience strategies for the building sector: Examining existing domains of resilience utilized by design professionals” (Rajkovic & Okour)......................................................................................................................................................................................................................................63 “Comparing conceptualizations of urban climate resilience in theory and practice” (Meerow & Stults).........................................................................74 SECTION III: IDENTIFYING & EVALUATING RESILIENCE......................................................................................................................................88 Reading List.................................................................................................................................................................................................................................................90 Student Exercises & Classroom Activities..........................................................................................................................................................................................91 “Conceptualizing community resilience to natural hazards – the emBRACE framework” (Kruse et al.).........................................................................92 “Indicators for monitoring urban climate change resilience and adaptation” (Feldmeyer et al.)......................................................................................106 “Subjective measures of household resilience to climate variability and change: Insights from a nationally representative survey of Tanzania” (Jones et al.)...............................................................................................................................................................................................................................................121 “Measuring household resilience to floods: A case study in the Vietnamese Mekong River Delta” (Nguyen & James)..........................................136 “Assessing Vulnerability to Urban Heat: A Study of Disproportionate Heat Exposure and Access to Refuge by Socio-Demographic Status in Portland, OR” (Voelkel et al.).................................................................................................................................................................................................................149
Recommended publications
  • The Scientist, Spring 2008
    San Jose State University SJSU ScholarWorks The Scientist (College of Science) College of Science Spring 1-1-2008 The Scientist, Spring 2008 San Jose State University, College of Science Follow this and additional works at: https://scholarworks.sjsu.edu/scientist Recommended Citation San Jose State University, College of Science, "The Scientist, Spring 2008" (2008). The Scientist (College of Science). 2. https://scholarworks.sjsu.edu/scientist/2 This Newsletter is brought to you for free and open access by the College of Science at SJSU ScholarWorks. It has been accepted for inclusion in The Scientist (College of Science) by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. Volume 12, Number 1 Spring 2008 College of Science San José State University The Scientist Message from the Dean Inside this issue: It’s been a busy I am also very pleased to an- Message from the 1 year here at the College of nounce that Dr. Singmaster Dean Science. Building on the has been designated the Geology: 2 great work of a planning SJSU Professor of the Year, a The Millers We are very pleased team made up of faculty, well deserved honor recog- to welcome our new Develop- Michael Graham: staff, and students that met nizing her years of selfless ment officer, Carol Beattie, 2 Kelp Discovery at a retreat at Asilomar a dedication to our students, who joined the university ad- year ago, we have nearly as well as her remarkable vancement staff in January. Physics and finalized plans for a College- teaching abilities. Carol has extensive experi- Astronomy 3 wide advising center, which We are continuing to ence in industry, consulting 2007 Highlights we hope will turn into a one- develop Professional Science and working with non-profits stop-shop for students in all Master’s programs that are such as the Children’s Health Mathematics News 4 departments of the college.
    [Show full text]
  • Special Report
    SPECIAL REPORT An Ethical Approach to Population and Climate Change limate change has finally grabbed the ily planning back decades. Ethically, we must be attention of the U.S. public and poli- exceedingly conscious of what we are asking, and Ccymakers, yet the role of population why, before we hitch a ride on the climate change has been all but overlooked until very recent- train. Only by framing the connections between ly. Today, interest in the relationship between population and climate change in their full con- global population growth and climate change is text can we move forward in an ethical and helpful growing, as demonstrated by a spate of recent manner. Done well, a thoughtful and deliberative articles (e.g., Lahart et al., 2008). Many popu- dialogue around voluntary family planning’s con- lation experts see the world’s focus on climate tribution to mitigating climate change can help us change as an opportunity to make population better understand the significant role the United relevant again (e.g., PHE Policy and Practice States plays in the world, not only as a consumer Group, 2008; Smith, 2008). By getting gov- and polluter, but also as an important member of ernments and donors to recognize that climate a global commons, and as a beneficent donor. change might be partly alleviated by addressing population growth, they believe they can help A Brief History of Population secure long-promised and sorely needed fund- ing for international family planning. From Thomas Malthus in the 1790s to Paul For both practical and ethical reasons, we must Ehrlich and Garrett Hardin in the 1960s, demog- think very carefully before developing advocacy raphers and ecologists have raised concerns arguments linking global population growth and about the planet’s ability to sustain exponentially climate change.
    [Show full text]
  • Welcome to Biometeorology. I Am a Professor of Biometeorology. I Have Worked at Cal Since 1999
    Welcome to Biometeorology. I am a professor of Biometeorology. I have worked at Cal since 1999. I received my BS in Atmospheric Science from UC Davis, a PhD in Bioenvironmental Engineering from the University of Nebraska, Lincoln. I then spent 17 years at the NOAA Atmospheric Turbulence and Diffusion Division in Oak Ridge, TN working as a Biometeorologist and Physical Scientist. Those interested in the work of my lab, you can get information on our research and publications at nature.berkeley.edu/biometlab 1 2 The field of Biometeorology can be very broad, including roles of weather on: 1) human health; 2) outbreaks of insects and pathogens, 3) the health and production of dairy, cattle, pigs and chickens, 4) frost prevention, 5) irrigation management, 6) modeling of crop growth, yield and crop management, 7) study of phenological growth stages, 8) integrated assessments with remote sensing and 9) future change in these systems with global warming and land use change 3 List of topics that hopefully relate with and engage with the diverse background of students taking this course. I hope it serves as a motivation for your interest and need to take biometeorology as it serves the many multifaceted goals of these other fields. In short many of these fields need to predict the rate of fluxes given the state of the environment. Our job is to translate information from distance weather stations to the site of the organism to better assess these fluxes. 4 There is a two connection between the atmosphere and underlying biosphere. Meteorological conditions affect the activity of life in the soil and plants.
    [Show full text]
  • Evapotranspiration Estimation: a Study of Methods in the Western United States
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2016 Evapotranspiration Estimation: A Study of Methods in the Western United States Clayton S. Lewis Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Civil Engineering Commons Recommended Citation Lewis, Clayton S., "Evapotranspiration Estimation: A Study of Methods in the Western United States" (2016). All Graduate Theses and Dissertations. 4683. https://digitalcommons.usu.edu/etd/4683 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. EVAPOTRANSPIRATION ESTIMATION: A STUDY OF METHODS IN THE WESTERN UNITED STATES by Clayton S. Lewis A dissertation submitted in partial fulfillment of the requirements of the degree of DOCTOR OF PHILOSOPHY in Civil Engineering Approved: _________________________ _________________________ Christopher M. U. Neale Gilberto E. Urroz Major Professor Committee Member _________________________ _________________________ Robert W. Hill Joanna Endter-Wada Committee Member Committee Member _________________________ _________________________ Jagath J. Kaluarachchi Mark McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2016 ii Copyright © Clayton S. Lewis 2016 All Rights Reserved iii ABSTRACT Evapotranspiration Estimation: A Study of Methods in the Western United States by Clayton S. Lewis, Doctor of Philosophy Utah State University, 2016 Major Professor: Dr. Christopher M. U. Neale Department: Civil and Environmental Engineering This research focused on estimating evapotranspiration (i.e., the amount of water vaporizing into the atmosphere through processes of surface evaporation and plant transpiration) under both theoretical and actual conditions.
    [Show full text]
  • TOOL 19: RECOVERY and RESILIENCE 1 to Manage Future Shocks
    DISASTER MANAGEMENT TOOL 19 RECOVERY AND RESILIENCE OVERVIEW A moderate pandemic may impact life and commerce only for the duration of the RECOVERY pandemic waves and may actually strengthen social networks as people come to each other’s assistance. A more severe pandemic may have caused many deaths, drastic This tool will help you to: inflation, unemployment, • Determine which actions will food crisis, and a collapse STEPS TO RECOVERY AND RESILIENCE get life and commerce back to of social networks. normal as soon as possible Recovery from a series of Pandemic recovery programs should: • Improve pre-disaster severe pandemic waves • Reduce fear and reestablish a sense of security conditions and build will require hard work • Reassess vulnerability and strengthen and resilience to future risks and persistence on the sustain relief activities part of local leaders and • Get life and commerce back to normal Who will implement this tool: community members. • Improve on pre-disaster living conditions and • The mayor overall well-being by linking relief activities to After several severe longer-term work that addresses the underlying • The municipal causes of food shortages and poverty pandemic waves, the leadership team tendency may be to • Relevant staff from the analyze the situation simply in terms of needs and deficiencies, because both will following municipal sectors: certainly be immense. Yet a municipality must rely on an inventory of remaining - Family Welfare/ assets and capacities if it is to find the power to regenerate itself. Initially, Food Security communities should determine what they can do immediately, without external - Communication assistance, using all existing skills, resources, and technical experience.
    [Show full text]
  • Government: the View from Washington, DC
    THIS IS THE TEXT OF AN ESSAY IN THE WEB SITE “THE DISCOVERY OF GLOBAL WARMING” BY SPENCER WEART, HTTP://WWW.AIP.ORG/HISTORY/CLIMATE. JULY 2007. HYPERLINKS WITHIN THAT SITE ARE NOT INCLUDED IN THIS FILE. FOR AN OVERVIEW SEE THE BOOK OF THE SAME TITLE (HARVARD UNIV. PRESS, 2003). COPYRIGHT © 2003-2007 SPENCER WEART & AMERICAN INSTITUTE OF PHYSICS. Government: The View from Washington, DC The money that paid for research on climate change came mostly from governments. Governments were also central to any practical actions that might address global warming. Following the Second World War, the United States Federal government funded many kinds of research, much of it connected to Cold War concerns, and some of this happened to relate to climate change. During the 1960s, the government created major agencies for space, atmospheric, and ocean science, and in the 1970s, as public concern for the environment mounted, the agencies increasingly supported research targeted directly at climate change. But climate scientists were too few and disorganized to push through a unified national research program. Their budgets, divided among different agencies, would rise for a few years and then stagnate. During the 1980s, the funding and the science itself came under attack. The technical question of whether climate change might be a threat got caught up in political battles between pro-regulation environmentalists and anti-government conservatives. Demands for policies to mitigate global warming found little support among American politicians, who thought the ideas were politically unfeasible if not downright pernicious. (This essay covers only the United States government—the most important by far, in terms of influence and domestic greenhouse gas production.
    [Show full text]
  • The Dilemma of Reticence: Helmut Landsberg, Stephen Schneider, and Public Communication of Climate Risk, 1971-1976
    History of Meteorology 6 (2014) 53 The Dilemma of Reticence: Helmut Landsberg, Stephen Schneider, and public communication of climate risk, 1971-1976 Gabriel Henderson Aarhus University Aarhus, Denmark “Most of the crucial issues of human survival that will confront humanity over the next few decades will call for ethical and political value judgments – decisions on how to act in the face of uncertainties. … Human value judgments are too important to be left exclusively to the experts.” – Stephen Schneider1 “Science is not as objective as some people think. Often human value judgments (or even prejudices) make things move as much as curiosity or the search for answers as to ‘why.’” – Helmut Landsberg2 During the tumultuous mid-1970s, when energy and food shortages, environmental pollution, and political instability induced suspicions that America was increasingly susceptible to increased climatic instability, American climatologists Helmut Landsberg and Stephen Schneider disagreed strongly on whether scientists should engage the public about the future risks and urgency of climate change. On the one hand, Schneider, a young climate modeler with the National Center for Atmospheric Research (NCAR), expressed explicitly an unwillingness to embrace reticence as an appropriate response to the risks of climate change. To illustrate the gravity of the situation, he frequently resorted to vivid and frightening metaphors to convince the public and policy makers that I want to express my gratitude to Ruth Morgan and the anonymous reviewer who contributed thoughtful suggestions to improve and refine the scope of this article. I would also like to thank my colleagues at the Center for Science Studies at Aarhus University for their suggestions to strengthen my narrative and flow of argument: Dania Achermann, Matthias Heymann, and Janet Martin-Nielsen.
    [Show full text]
  • Biometeorology, ESPM 129 1 Lecture 5, Solar Radiation, Part 1, Principles Instructor
    Biometeorology, ESPM 129 Lecture 5, Solar Radiation, Part 1, Principles Instructor: Dennis Baldocchi Professor of Biometeorology Ecosystem Science Division Department of Environmental Science, Policy and Management 345 Hilgard Hall University of California, Berkeley Berkeley, CA 94720 September 12, 2014 This set of Lectures will discuss A. Solar Radiation 1. Solar Constant 2. Spectral Composition of Sunlight a. Planck’s Law b. Wien’s Law c. absorption, reflection and transmission d. uv,PAR, NIR, IR L5.1 Introduction The sun is the source of energy that drives the cycle of life and death on earth. It is also the energy source that gives us warmth and evaporates water and melts snow. Obviously, no course on biometeorology could proceed without a thorough discussion of solar radiation. The sun is our nearest star. It is about 150,000,000 km away from the Earth. Due to its immense, but finite size, it has an angular diameter of 0.5 degree (32 minutes), as viewed from Earth. The Sun burns continuously via thermonuclear reactions (fusion). Inside the sun, radiative processes transfer this energy from 0.3 to 0.7 radii. Convection transfers solar energy to its exterior surface. Despite the extremely high temperatures needed at the core of the sun, to sustain its thermonuclear reactions, the sun has a black body temperature of 5770 K. Consequently, we receive a relatively constant flux density of energy, defined as the Solar Constant. Its mean value is 1366 W m-2 +/- 31. 1 One Watt is a Joule per second. A Joule is a common unit of energy.
    [Show full text]
  • Project Descriptions 2020
    Project description / 2020 Health, Risk and Climate Change: Understanding Links Between Exposure, Hazards and Vulnerability Across Spatial and Temporal Scales (HERCULES) Climate related health risks are not yet thoroughly understood. We know that climate change related health risks will be distributed unevenly, with some population groups being more likely to suffer the adverse consequences. Urban populations, especially in socially and economically disadvantaged areas, are likely to be particularly vulnerable to the unfavourable effects of climate change due to already existing exposure to for example, air pollutants and social stressors. What are the specific socio-environmental preconditions that make citizen groups in disadvantaged areas vulnerable to climate change? What are these preconditions, and how are they spatially distributed in cities? What type of actions ought to be taken in order to improve the adaptive capacity and resilience of Finnish cities under climate change? While adaptation within cities has been advancing, there is little knowledge of how adaptation is being implemented and how effective it is. As impacts of climate change are projected to worsen over time, the current adaptation measures may become insufficient, or inappropriate. HERCULES begins from the standpoint that climate change directly influences on individuals’ well-being and health, but that this often happens through long-term, complex, and often concealed processes, including broader trends of urban development. We shall examine how the spatial pattern and intensity of health-relevant climatic hazards and other environmental exposures have changed since the 1980s, and how these will change during the coming decades. For this, we shall use extensive high-resolution data on climate and land-use, and sophisticated modelling.
    [Show full text]
  • News and Nntes
    Bulletin American Meteorological Society pictures will be required to extract the wealth of data and tracked. The cloud systems comprising the Inter- on cloud developments, movements and dissipation. tropical Convergence Zone can be observed and studied. A preliminary analysis of the cloud observations from Tropical storms such as hurricanes and typhoons can ATS-I indicates that detailed viewing of short-lived be monitored continuously. The rapid changes associated weather systems and phenomena from synchronous alti- with storms and frontal systems can be readily observed tude is feasible. The observation of cloud systems over and assessed. The continuous monitoring of weather the tropical ocean will assist in the study of the heat systems from synchronous satellites will be an important budget of the atmosphere. Mesoscale phenomena such as adjunct to the ESS A and Nimbus satellites for observing thunderstorms, possibly even tornadoes, can be identified and studying the Earth's weather. news and nntes New institute director, University of Miami of Marine Science is planned with several joint appointments, common graduate courses in fluid dynamics, statistics, and Dr. Eric B. Kraus, formerly similar basic subjects, as well as access to research vessels and of Woods Hole Oceano- an instrumented field site for wave and air-sea interaction graphic Institution, has be- studies near Abaco Island in the Bahamas. come director of the Institute of Atmospheric Science, Uni- versity of Miami. He has also National Academy of Sciences building named been appointed professor of meteorology at the Univer- The new building being constructed for the National Acad- sity's Institute of Marine emy of Sciences on property of George Washington University Science.
    [Show full text]
  • BIOMETEOROLOGY 8 PART 1 (Abstracts)
    BIOMETEOROLOGY 8 PART 1 (Abstracts) Proceedings of The Ninth International Biometeorologicaf Congress September 23 - October I, 1981 organized by The International Society of Biometeorology Edited by D. Overdieck, J. Mfiller and H. Lieth Supplement to volume 26, 1982 of the INTERNATIONAL JOURNAL of BIOMETEOROLOGY SWETS & ZEITLINCER B.V. LISSE - 1982 ISBN 90 265 0382 2 CONTENTS I. ORGANIZATION OF THE INTERNATIONAL SOCIETY OF BIOMETEOROLOGY AND OTHER INFORMATION 1 II. ABSTRACTS 9 Abbreviations and Symbols 10 Sections 1 - 15 Human Biometeorology, Health Resorts and Climatotherapy 11 Biological Effects of Ions and Charged Particles 57 Interdisciplinary Cycle Research 87 Biological Effects of Electric, Magnetic and Electromagnetic Fields 119 Animal Biometeorology 145 Photoperiodism 159 Plant Biometeorology 173 Sandbinding and Desert Plants 189 Biomass for Energy Production 203 Architectural and Urban Biometeorology 207 Aerosols 219 Biometeorological Modelling and Systems Analysis 227 Biometeorological Factors in Developing Countries 241 Agricultural Biometeorology 261 Contributed.Papers 273 Workshop on Bioindicat rs, Man and the Biosphere +7 +I Late Papers 279 Author Index 297 +I All abstracts of the MAB Workshop on "Plants as indicators for air pollutants" appear together with some late papers in an addendum. Most of the late papers are placed into the sections where they belong to, but many were not seen by the section chairmen. The Ninth International Bicmeteorolcgical Congress held in Osnabriick and Stuttgart Hohenheim, FRG was co-sponsored
    [Show full text]
  • Beno Gutenberg
    NATIONAL ACADEMY OF SCIENCES B E N O G U T E N B ER G 1889—1960 A Biographical Memoir by L E O N KNOP OFF Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1999 NATIONAL ACADEMIES PRESS WASHINGTON D.C. Courtesy of the California Institute of Technology Archives, Pasadena BENO GUTENBERG June 4, 1889–January 25, 1960 BY LEON KNOPOFF ENO GUTENBERG WAS THE foremost observational seismolo- Bgist of the twentieth century. He combined exquisite analysis of seismic records with powerful analytical, inter- pretive, and modeling skills to contribute many important discoveries of the structure of the solid Earth and its atmo- sphere. Perhaps his best known contribution was the pre- cise location of the core of the Earth and the identification of its elastic properties. Other major contributions include the travel-time curves; the discovery of very long-period seis- mic waves with large amplitudes that circle the Earth; the identification of differences in crustal structure between continents and oceans, including the discovery of a signifi- cantly thin crust in the Pacific; the discovery of a low-veloc- ity layer in the mantle (which he interpreted as the zone of decoupling of horizontal motions of the surficial parts from the deeper parts of the Earth); the creation of the magni- tude scale for earthquakes; the relation between magnitudes and energies for earthquakes; the famous universal magni- tude-frequency relation for earthquake distributions; the first density distribution for the mantle; the study of the tem- perature distribution in the Earth; the understanding of microseisms; and the structure of the atmosphere.
    [Show full text]