2010YA006-01 Rapport technique final - Levé magnétique aéroporté - Projet Matapédia, Péninsule Gaspésienne - Permis de levé géophysique 2010GC005 - Levé gravimétrique aéroporté - Projet Dundee, Sud du Québec - Permis de levé géophysique 2010GA006 AV Ift AV1 AV AV .A VA In517 r MM= .

GEO DATA SOLUTION Inc

RAPPORT TECHNIQUE FINAL

LEVÉ MAGNÉTIQUE AÉROPORTÉ PROJET MATAPÉDIA, PÉNINSULE GASPÉSIENNE Permis de levé géophysique 2010GC005

LEVÉ GRAVIMÉTRIQUE AÉROPORTÉ PROJET DUNDEE, SUD DU QUÉBEC Permis de levé géophysique 2010GA006

Pour

GASTEM INC.

Par

Géo Data Solutions GDS inè 1054 Des Pervenches Laval, Québec, H7Y 2C7 Tel.: (450) 689-3153 Fax: (450) 689-1013

Avril 2011 Reçu le

117 MAR. 2014

Direction du bureau des hydrocarbures

TABLE DES MATIÈRES

1.0 INTRODUCTION 1 1.1 LEVÉ MAGNÉTIQUE - PROJET MATAPÉDIA 2 1.2 -LEVÉ GRAVIMÉTRIQUE - PROJET DUNDEE 2 2.0 RECONNAISSANCE DU PROJET 4 2.1 LEVÉ MAGNÉTIQUE - PROJET MATAPÉDIA 4 2.2 LEVÉ GRAVIMÉTRIQUE - DUNDEE 5 3.0 AÉRONEF ET ÉQUIPEMENT 7 3.1 AÉRONEF 7 3.2 LEVÉ MAGNÉTIQUE 8 3.2.1 Magnétomètre en vol 8 3.2.2 Compensateur magnétique et système d'enregistrement de données 9 3.2.3 Station de référence au sol 10 3.2.4 Système vidéo 11 3.2.5 Système de positionnement GPS différentiel 12 3.2.6 Altimètre radar 13 3.3 LEVÉ GRAVIMÉTRIQUE 13 4.0 PERSONNEL IMPLIQUÉ 14

5.0 CALENDRIER DES TRAVAUX 15 5.1 LEVÉ MAGNÉTIQUE 15 5.2 LEVÉ GRAVIMÉTRIQUE 15 6.0 TESTS ET ÉTALONNAGE 17 6.1 ÉTALONNAGE DU MAGNÉTOMÈTRE 17 6.2 ÉTALONNAGE DE L'ALTIMÈTRE RADAR 17 6.3 TEST DE LA PARALLAXE (LAG TEST) 18 7.0 CONTRÔLE DE QUALITÉ SUR LE TERRAIN 18 7.1 CONTRÔLE QUOTIDIEN DES DONNÉES 1' 8 7.2 SPÉCIFICATIONS DU PLAN DE VOL 19 7.3 VITESSE DE L'AVION ET TAUX D'ÉCHANTILLONNAGE 20 7.4 DÉRIVES DIURNES 22 7.5 DONNÉES MAGNÉTIQUES 22 8.0 TRAITEMENT FINAL DES DONNÉES 23 8.1 TRAITEMENT DES DONNÉES MAGNÉTIQUES 23 8.2 TRAITEMENT DES DONNÉES DE POSITIONNEMENT ET D'ALTIMÉTRIE 24 9.0 PRODUITS FINAUX 27 9.1 PARAMÈTRES UTILISÉS 27 9.2 PRODUITS FINAUX 28 10.0 CONCLUSIONS 30

i LISTE DES ANNEXES

Annexe A: Étalonnage et Tests — C-GPVN Annexe B: Rapport du levé gravimétrique - Dundee

LISTE DES TABLEAUX

Tableau 1: Coordonnées du Projet Matapédia (NAD83) 4 Tableau 2: Coordonnées du Projet Dundee (NAD83) 6 Tableau 3: Spécifications de l'enregistrement digital des données en vol 10 Tableau 4: Spécifications de l'enregistrement digital des données au sol 11 Tableau 5: Personnel impliqué 14 Tableau 6: Période de productivité 15 Tableau 7: Statistiques de chaque levé 16 Tableau 8: Nombre total de kilomètres survolés 16 Tableau 9: Dates des tests et calibrations 17 Tableau 10: Nivellement par ligne de contrôle 23 Tableau 11: Liste des champs de la base de données magnétiques 29

LISTE DES FIGURES

Figure 1: Carte de localisation — Projets Dundee et Matapédia 1 Figure 2: Région étudiée — Matapédia 2 Figure 3: Région étudiée — Dundee 3 Figure 4: Topographie de la région étudiée — Projet Matapédia 5 Figure 5: Topographie de la région étudiée — Projet Dundee 6 Figure 6: Les, deux avions Piper Navajo bimoteurs utilisés 7 Figure 7: Le RIMS DAARC500 et son interface graphique 9 Figure 8: Station de base magnétométrique et console 10 Figure 9: Caméra vidéo Samsung SDC-415 et système d'enregistrement 11 Figure 10: Récepteur GPS Novatel et système de navigation Linav 3D 12 Figure 11: Statistique de la hauteur de vol 21 Figure 12: Vitesse des avions par rapport au sol 21 Figure 13: Index des cartes — Projet Matapédia 27

Reçu le

ii ~ ï' 2014

Direction du bureau des âlydro<:r"xY'bi,[icç;

1.0 INTRODUCTION

Le 21 décembre 2010, GEO DATA SOLUTIONS GDS INC. (GDS) signait le contrat no.10029 avec la firme Gastem Inc. (Gastem) concernant la réalisation et la compilation d'un levé magnétique aéroporté dans la péninsule gaspésienne (Projet Matapédia) et d'un levé gravimétrique aéroporté dans la région du sud du Québec (Projet Dundee). Ces levés représentent approximativement 32 000 km et 2 600 km respectivement. Ils ont été réalisés entre le 23 décembre 2010 et le 15 mars 2011 avec une production s'échelonnant du 15 janvier au 14 mars 2011.

Ce rapport présente pour le levé magnétique et le levé gravimétrique, les différentes étapes de réalisation des travaux d'acquisition et de vérification des données sur le terrain ainsi que le traitement final des données qui s'en est suivit. L'instrumentation, les tests et le traitement des données gravimétrique sont présentés plus en détail en annexe B.

-7430' -74'15' - 41:10' : ~ -= ` 2009PG460 \ y t'' jn ...... _ fre ro , - -~~ Pi`ojet #undee .•~ ` ~ .• `' c~ ./'

2006RS135

z .~ 616RS134 , _.._, r. }: • • •006RS136 20]6RS137.!

t - T . 1a `f ., . . . !..I'• .i` . . . . _~.Ÿ:•. , • -7430' -7475' -741:10'

. 4745. 4.P 471r~ 4710' 4615' 45l5' 4616• .1Ottl ~' Y .: ~ •' ~ b ~ . • . . ..- S : ~r.jet ta—dia _ - .:

A[ .., M

L ~ gillihm _ .OLO

L'

• ~ .Olü mm I I iii; r %

.. Québec

.0 1 1 11114,',-„ .:~~ ~~ la ` Mataped iiiiiiill

~ , K

S .. , Proje, undee C ~ . _

4714 . 47W 4715• 4790• 4555' 45,4 4614 46Ur Figure 1: Carte de localisation — Projets Dundee et Matapédia 1 1.1 Levé magnétique — Projet Matapédia

Un avion bimoteur Piper Navajo PA-31 immatriculés C-GPVN loué par GDS de Brucelandair International a été utilisé. Cet avion était équipé d'un magnétomètre à vapeur de césium à faisceau partagé incorporé à l'intérieur d'une coquille de kevlar fixée à la queue de l'aéronef. L'espacement nominal des traverses et des lignes de contrôle était respectivement de 300 m et 3000 m. Les traverses étaient orientées N145°E, perpendiculairement aux lignes de contrôle. L'aéronef volait à une hauteur nominale au-dessus du sol de 125 m. La trajectoire de vol a été restituée par l'application, après vol, de corrections différentielles aux données brutes du système GPS. Le levé a été effectué suivant une surface de vol prédéterminée ayant un taux de montée et descente maximal de 5%.

Figure 2: Région étudiée — Matapédia

1.2 Levé gravimétrique — Projet Dundee

Un avion bimoteur Piper Navajo PA-31 immatriculés C-FDME loué par GDS de Brucelandair International a été utilisé. GDS a également loué les services de Canadian Micro Gravity qui incluaient un gravimètre GT-1A et ses accessoires ainsi qu'un opérateur et un processeur qualifiés pour ce Type de levé. Les traverses étaient espacées de 500 m et orientées Est-Ouest (N90°E). Les lignes de contrôle étaient espacées de 3000 m et, pour permettre à l'avion de tourner avant d'atteindre la frontière canado-américaine, leur orientation était N45°E. L'aéronef volait à une hauteur fixe de 430 m au-dessus du niveau moyen de la mer. La trajectoire de vol a été restituée par l'application, après vol, de corrections différentielles aux données brutes du système GPS.

2 Figure 3: Région étudiée — Dundee

3 2.0 RECONNAISSANCE DU PROJET

2.1 Levé magnétique — Projet Matapédia

Une météo modérément instable (plafond bas, neige forte, pluie verglaçante, basse température) a caractérisé une bonne partie de la période d'acquisition des données qui s'est étalée du 15 janvier au 14 mars 2011. Pendant cette période, la durée du jour a constamment progressé, passant de 9 à près de 12 heures.

Le relief topographique de la région peut être qualifié de modéré (figure 4). Lors du levé, GDS a utilisé un système de navigation 31) permettant de suivre une surface de vol optimale calculée à l'aide d'un logiciel développé par Ressources Naturelles . Le taux de descente et de remontée de l'avion fut fixé à 5%. Cette technique permet entre autres de minimiser les différences d'élévation aux points d'intersection entre les traverses et les lignes de contrôle au risque de ne pas obtenir Ia hauteur de voI optimale dans les secteurs où le relief topographique est plus accentué. Malgré qu'aucune zone périlleuse ou interdite au vol n'était présente sur le bloc et qu'aucun permis spécial n'était requis, la surface de vol a été ajustée de telle sorte que l'aéronef survolait les zones habitées à une élévation minimum de 305m au-dessus du sol.

La base d'opérations de GDS fut établie à Dalhousie, Nouveau-Brunswick, laquelle est située à l'intérieur du bloc, dans le secteur Sud-Est. Grâce à l'autonomie du Piper Navajo PA-31, il fut donc possible de faire l'acquisition de grands volumes de données au cours de chaque vol.

Une station de base magnétique avec récepteur GPS intégré fut installée dans un environnement magnétiquement calme et non loin de la base d'opérations afin que le géophysicien de terrain puisse en faire facilement Ia surveillance et la collecte de données.

La zone survolée est illustrée à la figure 4 tandis que le tableau 1 présente ses coordonnées.

Tableau 1: Coordonnées du Projet Matapédia (NAD83) Sommet Latitude Longitude ' Sommet Latitude Longitude 1 47°40'23" N= 67°36'08" 0 5 48°37'22" N 66°37'02" O 2 47°43'53" N- 67°39'38" 0 6 48°19'53" N 66°04'36" O 3 48°29'37" N 67°23'46" 0 7 47°57'37" N 66°05'20" O 4 48°37'30" N 67°05'53" O 1

4

_ •.t y ~nh~ ~~~~ Y ~ ' ~~ ~ ~-~5•.~~~~~• o ~~ ,~r~ ~-~~~~~~~~ -1,-.r.-4.- t``+~`c _°~~,~+ss$($a,~~~~~+~3~ , r~~~~~'♦ ♦♦ ' ♦♦~~ ♦~®+'~ ♦♦*4 ♦.\â ~: ~i+♦+49' ssô O O O ~ ~ ~~ ~ 44~ ♦ ♦v ye...9e.i"-.1.\;-4.4.~-. yO~ ~a ♦♦♦♦♦ ♦♦ ♦ .. ► : 40~,.~~x.y ► ~ ~j'Po e9,04,ps~•~ +~j'~~•~~~gO•o,, ~~~a~-~Afi, 480 ~~♦♦♦+~~~~♦~ I~ ~ di ~ ~♦<~ ~~~~ ~~`~~~~'ir\~l~► ►s`.;~'~~~a" m ~~~ ♦+~..h4 ~~;s~~.:~a ;.~ ~ ~ ~r v ~~v~~~~~+ ~O~♦~~â~-ms¢~+s•~`,♦~,e ♦~,' ~~~t~il~ ~~A~~~~ ~ ô ââô i?, I.. J ,► {~ ♦~~:C ~~~i~ ~+~I♦►~~ , ^ ~+I~~ RV v.t+ïla \~~ ~;~~ ° Ir♦~♦~.,p f r~s~*~r*~l c• ~~~~~V ' 430 Q ,. zbs~~ ~" ~'♦ ^ - w~~> 7',,..~1 O ~ ~ .~ ►~ A 1R~a ~â ~ 420 ~♦~ ~♦ ♦ a~a,pO '! \~-Vit": a* w é. ~ ~ ~ O~ ,~~.~ ai ..,~ ~ ♦ ♦ ♦♦a ,i'~ ! ► ► y .t ato I~ô+♦,♦, i~ ♦ ♦`1 ► 44.,,,,.,,,,44.4)♦ ♦ ao0 ~6 ~OO~De~ e~~~DO~I~ `~♦~i `l~~ .4.4.4,"10-4-$.4*, 4 ~,~, ~w,t ~r: a~f~d ♦.~~ ♦+~♦ia ♦ . 0♦O♦♦♦♦~1♦O~9n~s @~A"♦♦ ~>~ ~+•r S•~i ~ . 390 ~~l►~♦+►OA~ ► 0~&~♦,~♦~~ .+s 0 ~r C 4 ~ ~r'~(iOy~fÔ~n~ ~► ew1 . a~a ° N• 380 ►.1D l~ra0~.~4g~4~~~~G~ 4'E4 449:(14"4?)t' " + ~• . ;~; •,~~~~4h-..o 370 N~~'r..~+4~ ~_,~.i~ ~v♦ ~ * Ab., -4; s %1e Y ~I.~~~3h .~~if tg?r t , r9~~~~~`ÎÂk ~~~~R-,w~d+~l~Ô♦~♦♦~a1`~~~`O~~~A~t~ 3~~~~`~~`~~~i~~`♦~~~~t ~A~~~ 35ô " iC~~®ÔO4♦ ♦~A~~ ► ,♦, ► A~6'A`O♦~,~~,~♦é~aÎ~♦~♦ ,~~~~éti $+~ ~ ~ OVA t ,t as Eyti~ ~'~~'~.~~t~i, .ÿ ~\ .. 340 ê ► ~A~,dii' ~ 4 4. ~,i ~► \ Y ti~ ~ r ►~ tiD ~ O 2M P ~ i~~t~~ ~4,«r♦~ ~ 330 E ~ ..WST • ► ~ ~4~~ :'~~f`~ ~~`{°e~dé ~♦♦~~ ~t~"~ ~ 325 ~aO~~v ~~~`~ _♦~ ~ 320 ~• "' ~ ~ :' ~~ éA4~~~~`1~Tt~~E~►~~ C~e+a`éâ~~ e~A~~~ `~~~ ~r' ti .~~`+ ~ ? 3 0 ~~1~~ rti'rs d~~a~ ~~+~^~~ ~ ~ti~ ♦ a ~~~0~~ C;~_ ~ ~~; N,.~ ,t't, L. ♦ {~ 2eo \ Z~ ~♦, \ A~~\®®®3e~ ~~Cï 280 a 999 h ti k : ... j``,~\~• ç~ ~ . 270 `1t ~,`7 3 1\~~.,„.,;t4 „,, r ' y a~ ~~~,\ ~~~~~~~ ♦ ~~ ~ J. `~i.F .43~ ~~~~~~0A ♦+ ♦ ~♦ 265 ~-~ 'tltv Ÿ: I~~_~O ~,~ ~ ~~~~`:. â ~ ~ ~~~=. ~^Â+• r y~~♦, 260 ô ~ ~ ~ - _~. :~ c..\ -ir ._ . . ~ `~ ♦.~ ~ ~ 250 ~~ : 240 ~t 230 4 220 , _... 4. 210 1 ~ . ~ .. ~ 200 T i~~ ~~~.1i' '~ • 180 . !tg-a,~~~~~ ; .i~ ti~Ç~\ l9 ! ` f • I . . ~~ 160 ' k:V~ l ~~ 1 ~i~"w4 q`'~tt . t ~` .~• ~ .- , .J . _ - . . . ', I~ 1 5 6 ~ 25: 5 { - . ti :~~ •,. t.,_ { S. ~ ~~~i~`~~ ~~~► ~ ~ ~ ~. _. , . : . ~ metres

-67%5' -6730' -6775' -67V0' .6615' -66'30' 6675' -66VO'

Levé Gaspé, 2004 Levé magnétique - Matapédia

Levi Gastem 2011

Figure 4: Topographie de la région étudiée — Projet Matapédia

2.2 Levé gravimétrique - Dundee

La période d'acquisition des données s'est déroulée du 22 février au ler mars 2011. Pendant cette période, la durée du jour était de 11 heures. Le relief topographique de la région peut être qualifié de léger (figure 5). Le levé fut effectué à une altitude constante de 400 m au-dessus de l'ellipsoïde (430 m au-dessus du niveau moyen des mers). Aucune zone périlleuse ou interdite au vol n'était présente sur le bloc et aucun permis spécial n'était requis.

La base d'opérations de GDS fut établie à , Qc, laquelle est située à 40 km au nord de la zone du levé. Grâce à l'autonomie du Piper Navajo PA-31, il fut donc possible de faire l'acquisition de grands volumes de données au cours de chaque vol.

La zone survolée est illustrée â la figure 4 tandis que le tableau 2 présente ses coordonnées.

Tableau 2: Coordonnées du Projet Dundee (NAD83) Sommet Latitude Longitude Sommet Latitude Longitude 1 45°03'56" N 74°35'52" 0 8 45°17'07" N 74°26'49" O 2 45°07'07" N 74°31'18" O 9 45°16'53" N 73°54'10" O 3 45°07'08" N 74°34'31" 0 10 45°12'40" N 74°00'12" O 4 45°10'05" N 74°30'18" O 11 45°12'37" N 73°53'43" O 5 45°10'06" N 74°33'32" O 12 45°07'33" N 74°01'05" O 6 45°13'34" N 74°28'35" 0 13 45°07'31" N 73°57'51" O 7 45°13'35" N 74°31'50" O 14 45°03'44" N 74°03'22" O

7L41A' 7411A' 77KF' •.' .- .1ti A; ' • ~. •\a .~al ~ •~~~ .• y 4'y.~ _\ ? t~. v(.bYS . 'u-1 1 i •~„a ~1- +.\" ' ~i~((il~ ~ .' a 1 ~, • - ,~M~~ .Y~ l ~t ÿ,Yw''` ~S. .\-i-,_ ..-:1ia~A~~::.au e.ii1~`.lisal°ik.oiV.~~ ` ry 90 - ,~~ , i ~+ 1~~~~` ~~' - 80 — 4 'r ' MEN . 75 —' v ?~ÿ: 1 \ ~ ~Z 1,_ ~ ` ',ÿ M' ~•.~~' ~~~~i~,. ~ ~[ 5 i. ,~. ~ 70 — .R ,~ ~* ~.~ ~, . `~ ~l+ ~ ~`~1 tr. 67 ^ ~ ~~~ + ~ ~ ~\ ~l. •' f'"~'C' A ~ ~\~\.~ •`~' ~K ~~-~~ia y 64 — j~ `7 ,y 4 } ♦ 62 — , J~1 -+.}ÿ a ti1hy~ ~ ~.. _-'~~î~ ~6i~~ _`; ~ ~-~.la-~~~ ~ : ~ ~ 60 — • ~~,` ~ ~ ~~~~ >•e~~ .• '`y' ~ \ -ÿ~~~C~ ,.~t ' 1.\ ...... ~. YriY`G~~~ ti ~~1 56 — ,;,~a` ► 4,....;~~~ ~~ ~ , ~ ~ ~~ 56 — ►~~;` ‘•••c ~ ; ~! v . ~'t~ .~4•~~4 \~.4 55 — • ~ ~~ e° ` ` ,;~~,... ~ v ~`~!G~i~~: 54 — ~T~~EE ii 53 . -~~. ~~ `1...3 ~q..1 .i~\ti.~' ~ - .^~- k~G,G~ 3 ~ ~~ ~~~~` e.,h l~- ~l' 52 — ,...v.„,.., , , -.:„,„:,-,,,:.,-,•--1.)... ,,,,-, y,y~~a 51 — ~ - ti 50 — • \+~ ' â~ '-' ~ , `~~ ~`~ ~ l \\```~.. l. . l ,p .•.s.,,,,,,,,,,,...-, ~ .-1.,,,. ~ .. ~ 49 — ~~~~4. ~iti Ki~~ ~ ♦ ~~~~ ~:- , 4~. • , `~` ~`~ '~~~:~,;~^at _ , C is' .•~.. . .-•••~ ~af 48 -- vl~, r~~ ~ ~ y,. ,..AS:: 47 — ~ ~A~ i, ~`. 4 ~ e ._ 2.:3.+ ~-..G?Y' 46 — ~ a - ., . \ . . . ` "'0.1S. - , ~ ~~rs.~.r • `~ : ~ . v ' S; w .• `,.-2:-.1 t ,,,...15,--,,,,,,,,.,., 45 — :N.,. ~M . •,h,, ♦` ~. .. ~/ ~ .♦ 44 • [ .•~,~~ V 4 ~C~r~ .~.I.+~-, 3.'~1~y. a ''~► .'% ~~; ~ ~,~ ~•~ • a3 • -.'•'• ~'xh~',. -.~~~ .~r,ag; 43 -- i -~~~ ~' ~~t ~, 42 — ~~ ~ , 4.7 \.. ~.'~ .•~ ~ ~.. w ~ ~ M 1~~,t.• `; t 1 • \~y ~~\•~,a . . ? 41 — J.~; . ` _y T,.`. , L~ . .C" ', 4. e 40 — •. `~a. ~~ 1~ ,~~C~ ~,. 4`,. l~r ~ L~ \ +~~ ' i~ ~~~[ ,~ ~G !a 1.,..,..':, ► • 39 — a~lN , ri~. 36 .1:. \ 4 ,y !~+,~,~~~~ Z rj~ . 1: 1\ . ~ ~ 37 '7-• \, .Y ~ ~ .- ''~: _ . al . ... ., ~.~... u , ---~~ypp,,,~~~ a ~ ~~ ~~~~L 4~~~~~C,-,.:-A-,'.~' ~ .'S+ 1.,.-..,,-...---t~ -7425' -7430' -7425' -7420' -7415' -7410' -7405' -74 VO -7355 Levé gravimétrique - Dundee Figure 5: Topographie de la région étudiée — Projet Dundee

6 3.0 AÉRONEF ET ÉQUIPEMENT

3.1 Aéronef

Chacun des levés a été effectué à l'aide d'un avion bimoteur turbocharge Piper Navajo PA-31. C- GPVN, loué de Brucelandair International, a été utilisé polir le levé magnétique (Matapédia) tandis que C-FDME, également de Brucelandair, a été utilisé pour le levé gravimétrique (Dundee).

C-GPVN

Levé magnétique

Matapédia

C-FDME

Levé gravimétrique

Dundee

Figure 6: Les deux avions Piper Navajo bimoteurs utilisés

Chacun d'eux avait la puissance, le taux de remontée et la flexibilité de manoeuvre adaptés à l'environnement de la région étudiée. Ces avions sont approuvés par pour la réalisation de levés géophysiques aéroportés.

7 Les principales caractéristiques techniques de ces avions sont résumées dans le tableau suivant:

Caractéristiques du Piper Navajo Type Piper Navajo PA-31 Puissance d'un moteur 2 310 cv Poids à vide 1 710 kg Charge maximale 2 950 kg Plafond 8 320 m Taux de remontée 7.1 m/s Gradient de remontée 12.8% Vitesse des levés 75 m/s (146 noeuds) Type de carburant AVGAS 100LL Consommation de carburant (2 moteurs) 110-125 litres/hre Consommation d'huile Négligeable Autonomie de levé 6.5 heures Autonomie maximale 7.5 heures

3.2 Levé magnétique

3.2.1 Magnétomètre en vol

GDS a utilisé un magnétomètre à pompage optique, constitué d'un senseur et d'une consolé fabriqués par la firme Geometries, modèle G822A. Ce senseur possède une gamme dynamique de 20 000 à 100 000 nanoTeslas (nT) et une enveloppe de bruit inférieure â 0.10 nT. Le taux d'échantillonnage du magnétomètre était de 10 lectures par seconde. Le senseur magnétique était incorporé à l'intérieur d'une coquille de kevlar fixée à la queue de l'aéronef

Magnétomètre: Avion C-GPVN Manufacturier Geometries Modèle Cesium G822A Numéro de série 75464-C2424 Plage ambiante 20 00.0 - 100 000 nT Sensibilité 0.003 nT Précision absolue < 3.0 nT Enveloppe de bruit < 0.10 nT Intervalle d'échantillonnage 10 Hz Erreur de cap < 2.0 nT

3.2.2 Compensateur magnétique et système d'enregistrement de données

Un compensateur et un système d'acquisition de données ont été utilisés. Le compensateur magnétique, inclus dans le système d'acquisition de données DAARC500 de RMS, utilise 3 magnétomètres de type fluxgate. Ceux-ci permettent de suivre les manoeuvres de l'avion par rapport au champ magnétique ambiant. En mode de calibration (durée approximative de 6 à 8 minutes), les données de positionnement et les lectures du champ magnétique sont utilisées afin d'établir une solution comprenant environ 30 termes et permettant de compenser les mouvements de l'avion. Cette solution constitue un modèle mathématique qui décrit précisément les interférences magnétiques de l'avion en mouvement. ,.~

+.....~ ,. ~.. ~ i e i":"... . . . ... _ 1• Mn .. -,:b - DAARC500 1 ~ : a ._a~~~r

iW, . _ •, _ __ _ .. _ ~

Figure 7: Le RMS DAARC500 et son interface graphique

Le DAARC500 utilise une technique de traitement du signal très sophistiqué qui permet au système de compensation de recueillir les données de façon continue à partir du signal d'entrée, ce qui permet ainsi d'améliorer la solution pour obtenir une compensation optimale.

En complément au système de compensation, le DAARC500 possède un système d'acquisition de données très flexible. Les instruments et senseurs externes, avec système de sortie digitale ou analogique, peuvent être connectés directement au DAARC500. L'instrument possède entre autres 8 sorties et entrées RS232 à haute vitesse et complètement isolées, 16 entrées analogiques différentielles et une entrée Ethernet haut débit.

Les données reçues sont traitées en temps réel. Les données de sortie sont disponibles rapidement avec des fréquences aussi élevées que 40 Hz, 115.2 kbps via des ports séries, pour enregistrement sur mémoire USB, ou visible sur écran couleur de 6.5 po. En plus des données brutes et compensées, des sorties séries comprennent les composantes vectorielles triaxiales du champ magnétique, le nombre de fiducie et la quatrième différence du magnétomètre.

Compensateur: Avion C-GPVN Manufacturier RMS Instruments Modèle DAARC500 Numéro de série 0710989 Compensateur mag. Intégré

9 En résumé, pour le traitement informatique ultérieur du levé, toutes les données des magnétomètres, des altimètres, du positionnement GPS, de la caméra ainsi que le temps ont été enregistrées sur support magnétique de façon synchrone. Le tableau 3, ci-après, présente la sensibilité et l'intervalle d'échantillonnage de chacun des paramètres qui ont été enregistrés.

Tableau 3: Spécifications de l'enregistrement digital des données en vol , Intervalle Enregistrement Sensibilité d échantillonnage Magnétisme (Champ Total) 0.005 nT 0.1 sec Altimètre Radar 3 mètres 0.2 sec Temps de fiducie 0.01 sec 0.1 sec GPS 3 mètres 1.0 sec

3.2.3 Station de référence au sol

Une station de référence magnétique était disponible à la base d'opérations où étaient effectué la compilation, le traitement et le contrôle de qualité des données.

Un magnétomètre GSM-19 fabriqué par la firme GEM System a été utilisé. L'instrument avait une gamme dynamique de 20 000 à 120 000 nT, une sensibilité de 0.01 nT et un niveau de bruit inférieur à 0.10 nT. Les lectures du champ magnétique total ont été enregistrées de façon synchrone avec le magnétomètre de bord grâce à une référence temporelle provenant d'un GPS interne.

v aTa P ' : 0 û , a no ; GSM— 19 Overhauscr R Magnetomefer an® ^t J ~ . ~ . \ -- •

Figure 8: Station de base magnétométrique et console

10 Les spécifications techniques du GSM-19 sont représentées ici-bas :

Station de base magnétique Manufacturier GEM System inc Type Overhauser Modèle GSM-19 avec GPS Numéro de série 7052348 Plage ambiante 20 000 - 120 000 nT Sensibilité ± 0.01 nT Intervalle d'échantillonnage 1 Hz Enveloppe de bruit 0.10 nT

Tableau 4: Spécifications de l'enregistrement digital des données au sol Intervalle Enregistrement Sensibilité d'échantillonnage Magnétisme (champ total) 0.01 nT 1.0 sec Temps 0.01 sec 1.0 sec

3.2.4 Système vidéo

Une caméra vidéo couleur de marque Samsung et un système d'enregistrement numérique filmaient la trajectoire de vol sous l'avion en format NTSC couleur. Cette caméra avec objectif à grand-angle et posemètre automatique assuraient une bonne mise au point sans nécessiter d'ajustements de la part de l'opérateur.

;~ , a~ ,_ {~~t. ~~~_ ` ,',.~. S~{11SU~6 T .• N,,.~~ , , . w.~~wÛ.~LY-0 pxa'A l . ~! 1 .J~~t•15_fA1~y(Ay~ ' i E+tC~ fi7.`i7J8w3{! ~•ü;

Figure 9: Caméra vidéo Samsung SDC-415 et système d'enregistrement

ïl La caméra vidéo enregistrait sur chacune des images les données suivantes en format alphanumérique: la date, l'heure et la position Latitude, Longitude et Z de l'avion. Le tableau suivant présente les spécifications techniques du système vidéo installé dans l'aéronef:

Camera video: Avion C-GPVN Manufacturier Samsung Modèle SDC-415 Installation Verticale Enregistrement vidéo Archos 5 / numérique Format NTSC Couleur Résolution 520 lignes

3.2.5 Système de positionnement GPS différentiel

Le système de navigation et de positionnement électronique comportait un récepteur GPS bi- fréquentiel (L1/L2) à 12 canaux de marque Novatel DL-V3, un système OmniStar GPS différentiel ainsi qu'un système de navigation LiNav de Agnav. Ce système présente une résolution de 0.1 mètre et une erreur de localisation inférieure à 3 mètres. L'antenne GPS était fixée au cockpit de l'avion.

Figure 10: Récepteur GPS Novatel et système de navigation Linav 3D

Les coordonnées de chacun des sommets de la zone à étudier (dans le système Longitude/Latitude NAD83) ont été programmées dans le système de navigation LiNav (AGNAV) de l'avion. Le système a permis de guider le pilote le long des lignes de vol espacées de 300 mètres ainsi que sur la surface de vol prédéfinie. Les caractéristiques techniques du récepteur GPS sont:

Système de navigation: Avion C-GPVN Manufacturier Novatel Modèle DL-V3 Bi-fréquence Numéro de série NBV07400024 / NBV07240010 Nombre de canaux 12 Intervalle d'enregistrement 5 Hz Système de navigation Agnav (LiNav)

12 3.2.6 Altimètre radar

Un altimètre radar à haute résolution de marque Rockwell. Collins avec gamme dynamique de 0 à plus de 900 mètres et précision de 2% a été utilisé. Les données altimétriques ont été enregistrées sous forme digitale. Le taux d'échantillonnage de l'altimètre radar était d'au moins 5 lectures par seconde. Le tableau suivant présente ses caractéristiques techniques:

Altimètre radar: :'Avion C-GPVN Manufacturier Rockwell Collins Modèle ALT-55B Numéro de série 3488 Gamme dynamique 0 to 930 m Précision 2 %o Résolution digitale 0.3 m Taux d'échantillonnage 5 Hz Gamme de température -54° to +71°C

3.3 Levé gravimétrique

Pour ce levé, un gravimètre GT-1A, installé à l'intérieur de l'aéronef, a été utilisé. Ce gravimètre est composé de trois unités de base: le capteur principal, la table de rotation et le système antichoc. Une liste détaillée de l'instrumentation relative au levé gravimétrique est présenté à la section 3 de l'annexe B.

13 CO PERSONNEL IMPLIQUÉ

M. Mouhamed Moussaoui, président de GDS, était responsable de la coordination et de la gestion générale du projet. Le chargé de projet et responsable du contrôle de la qualité sur le terrain était M. Saleh Elmoussaoui. M. Carlos Cortada et Mme Helen Tuckett (CMG) étaient responsable respectivement du traitement final des données magnétiques et gravimétriques.

Tout le personnel de terrain et de bureau impliqué dans la réalisation du projet est présenté au tableau 5.

Tableau 5: Personnel impliqué Fonction Nom Gestionnaire de projet • Mouhamed Moussaoui Responsable sur le terrain Saleh Elmoussaoui Contrôle de qualité sur le terrain: - Magnétisme Saleh Elmoussaoui _ - Gravimétrie Matthew Gray (CMG) Opérateur : - Magnétisme Pierre Filion - Gravimétrie Charles Heyneke (CMG) Pilote : - Magnétisme Walter Fiesel, Brian Irvine - Gravimétrie Mew Cowen, Brian Irvine Traitement final des données : • - Magnétisme Carlos Cortada - Gravimétrie Helen Tuckett (CMG) Mise en plan des produits finaux Albert Sayegh Rapport final Mouhamed Moussaoui, François Caty

14

5.0 CALENDRIER DES TRAVAUX

5.1 Levé magnétique

Le nombre de kilomètres linéaires nécessaires pour couvrir la zone étudiée était de 32 157. La préparation et l'installation des équipements ont débuté le 23 décembre 2010 tandis que l'avion utilisé a mobilisée à Dalhousie, Nouveau-Brunswick le 14 janvier 2011 et démobilisée le 15 mars. Le premier vol de production a été réalisé le 15 janvier tandis que le dernier a eu lieu le 14 mars.

Excluant les vols de calibration et de test, au total 37 vols furent nécessaires pour couvrir le secteur demandé, ce qui correspond à un peu plus de 143 heures de vol. Les cartes et données finales furent remises à la fin avril 2011.

5.2 Levé gravimétrique

La zone d'étude correspondait à 2 573 km linéaires de données géophysiques. L'installation des systèmes nécessaires à ce levé a eu lieu les 16 et 17 février 2011. La calibration des appareils s'est déroulée les 2 jours suivants pour ensuite mobiliser à la base d'opérations de Lachute, Qc le 20 février. Le premier vol de production a été réalisé le 22 février tandis que le dernier a eu lieu le l`r mars. L'avion a démobilisé le 2 mars.

Huit vols furent nécessaires pour couvrir la zone d'étude, en omettant les vols de calibration et de test, correspondant à un peu plus de 25 heures de vol de production. Les produits finaux furent remis à la fm avril 2011. La section 4 de l'annexe B traite plus en détail les informations relatives au déroulement du levé gravimétrique.

Tableau 6: Période de productivité Janvier Février Mars

C-GPVN - Levé Magnétique

C-FDME - Levé Gravimétrique

15 Tableau 7: Statistiques de chaque levé C-GPVN C-FDME Fourchette des numéros de vol 01 - 37 01 - 13 Vols d e production 37 8 Jours de production 31 7 Jours sans production 28 5 (test, mauvaise température, maintenance) .

Préparation et installation des équipements 2010-12-23 2011-02-15 Date de mobilisation 2011-01-14 2011-02-21 Premier vol de production 2011-01-15 2011-02-22 Dernier vol de production 2011-03-14 2011-03-01 Date de démobilisation 2011-03-15 2011-03-02

Temps de vol en production 130:46 25:18 Temps de vol en déplacement 12:18 3:42 Temps de vol total 143:04 29:00

Km-linéaire produits 32 157 2 573

Le tableau 8 présente le nombre de kilomètres linéaires nécessaires pour couvrir les zones à étudier par chacun des avions.

Tableau 8: Nombre total de kilomètres survolés

Bloc Aéronef Type de ligne Km linéaire Km total Traverse 29 139 Matapédia C-GPVN 32 157 Contrôle 3 018 Traverse 2 185 Dundee C-FDME 2 573 Contrôle 388

16

6.0 TESTS ET ÉTALONNAGE

Afin d'obtenir des données précises et de qualité, les tests et calibrations de l'instrumentation constituent une composante importante d'un levé géophysique aéroporté. Les tests et calibrations du levé gravimétrique sont traités à la section 5 de l'annexe B tandis que ceux du levé magnétique sont résumés ici.

Les tests relatifs au levé magnétique se résument par ceux-ci :

• Test des altimètres; • Test de la parallaxe; • F.O.M.

Cette section présente un résumé de tous les tests et calibrations réalisés avant, pendant ou après la période d'acquisition des données. Les résultats de ces tests et calibrations sont détaillés à l'annexe A. •

Tableau 9: Dates des tests et calibrations Test C-GPVN FOM 2011-01-15 Parallaxe 2010-10-07 Altimètres 2010-10-07

6.1 Étalonnage du magnétomètre

Une figure de compensation (FOM, Figure of Merit). fut effectuée près de la base d'opération de Chario, NB. Cette procédure a pour but d'éliminer l'influence des manoeuvres de l'avion (roulis, tangage et direction) qui induisent des champs magnétiques altérant ainsi la .qualité des données. Le test fut réalisé à haute altitude dans un secteur magnetiquement calme. Les manoeuvres de l'avion impliquaient des mouvements de roulis de ±10°, de tangage de ±5° et de direction (lacet) de ±5° suivant les orientations nord, sud, est et ouest durant un temps d'enregistrement du champ magnétique total de 4-5 secondes. La figure de compensation est évaluée en calculant la somme des amplitudes pic-à-pic des 12 signatures ainsi obtenues. Le FOM fut inférieur à 1.5 nT, tel que requis par les spécifications contractuelles.

6.2 Étalonnage de l'altimètre radar

L'étalonnage des altimètres radar a été effectué au-dessus de pistes d'atterrissage de niveau connu avant la mobilisation du personnel sur le terrain. Des vols furent réalisés à différentes hauteurs, représentatives' des conditions de terrain du bloc, couvrant une gamme d'élévation se situant 17 entre les altitudes minimales et maximales qui devaient être rencontrées. Au moins six altitudes différentes furent sélectionnées par sauts successifs et- égaux. Les hauteurs de vol ont été déterminées à partir des données GPS en temps réel et par les données provenant de l'altimètre radar.

63 Test de la parallaxe (lag test)

Dans te but d'évaluer le décalage spatial entre les données du système de navigation (i.e. les coordonnées X-Y) et les données du champ magnétique total, un test de décalage fut réalisé. Ce test impliquait l'enregistrement des données X, Y et du champ magnétique total lors d'au moins deux passages dans des directions opposées au-dessus d'une structure métallique produisant une anomalie magnétique étroite et bien définie. Les' résultats du test de l'a parallaxe sont présentés en annexe.

7.0 CONTRÔLE DE QUALITÉ SUR LE TERRAIN

Les levés furent réalisés suivant les spécifications techniques contractuelles. Une copie de ces spécifications techniques était . en possession de chacun des membres du personnel de GDS présent sur le terrain.

Le système de traitement des données sur le terrain était composé d'un ordinateur équipé des logiciels appropriés, commerciaux ou créés par les spécialistes de GDS, incluant Geosoft Montaj et d'autres logiciels utilitaires pour le tracé des profils et 'du plan de vol ainsi que pour le calcul des . intersections, le nivellement et le maillage préliminaire des données magnétiques et gravimétriques.

Les données digitales étaient vérifiées quotidiennement afin de se conformer aux spécifications techniques contractuelles. La précision des données de positionnement GPS, corrigées de façon différentielle à l'aide de la station de base, et le respect du plan de vol furent rigoureusement vérifiés sur le terrain.

7.1 Contrôle quotidien des données '

Le contrôle de qualité sur le terrain relatif au levé, gravimétrique se retrouve en section 6 de l'annexe B tandis que cette étape du traitement des données correspondante au levé magnétique est décrite ici.

Le système de navigation et de positionnement électronique comportait un récepteur GPS bi- fréquentiel (Ll/L2) à 12 canaux de marque Novatel DL-V3. Ces systèmes présentent une résolution de 0.1 mètre et une erreur de localisation inférieure à 1 mètre. 18 Le service en ligne Precise Point Processing (PPP) du Système Canadien de Référence Spatiale (SCRS) offert par Ressources Naturelles Canada, Division des levés géodésiques a permit de traiter quotidiennement les données de positionnement, de contrôler la qualité du plan de vol et de s'assurer du respect des normes contractuelles.

Après chaque vol, les données du champ magnétique total, du radar, incluant les données GPS différentielles et les données des stations de base, étaient cumulées dans une base de données. Les données brutes étaient vérifiées, mises en ordre par numéro de ligne de vol, éditées, corrigées et, lorsque nécessaire, -filtrées. Les profils du champ magnétique total et gravimétrique étaient examinés en détail en utilisant la puissance de visualisation, de traçage et de changement d'échelle du logiciel Montai. Les principaux points de vérification et de contrôle concernaient surtout les sauts de vitesse dans les données GPS, les variations diurnes, les données -altimétriques (hauteur de vol, intersections avec les lignes de contrôle) et les profils magnétiques et gravimétriques. Le plan de vol était vérifié et comparé au plan de vol théorique et un modèle digital d'élévation était calculé. Toute erreur était notée et des reprises de vol étaient réalisées si nécessaire.

7.2 Spécifications du plan de vol

GDS s'est assuré que les spécifications suivantes soient rencontrées. Dans le cas contraire, GDS a, à ses frais, survolé â nouveau les traverses ou les segments de traverse non-conformes -aux spécifications contractuelles.

Ligne de traverse Ligne de contrôle Levé magnétique Direction N145°E N55°E Espacement 300 m - 3 000 m Hauteur de vol nominale 125. in au-dessus du sol Séparation min/max permise 225/375 m sur plus de 1000m Levé gravimétrique Direction N90°E N45°E Espacement 500 m 3 000 m Hauteur de vol 400 m au-dessus de l'ellipsoïde * Séparation min/max permise 425/575 m sur plus de 1000m * moyenne de 380m au-dessus du sol

19 Pour le levé magnétique, l'altitude de vol a été moulée selon une surface de vol prédéfinie. La hauteur de vol nominale était de 125 mètres au-dessus du sot, sauf aux endroits où les règlements de Transport Canada l'interdisent et dans les régions de topographie accentuée. Par contre, il fait noter que la surface de vol prédéfinie contribue à élever la distance moyenne par 'rapport au sol tout en permettant une faible différence d'altitude aux intersections des lignes de traverse et de contrôle. Les traverses et les lignes de contrôle ont été volées en essayant de respecter le plus possible une tolérance maximale de 20 mètres de différence à leur intersection.

Pour le levé gravimétrique, l'altitude de vol a été réglée à 400m au-dessus de l'ellipsoïde WGS84. Les traverses et les lignes de contrôle ont été volées en essayant de respecter le plus possible une tolérance maximale de 15 mètres de différence à leur intersection.

La figure 11 présente un histogramme des différences d'altitude obtenues aux intersections sur l'ensemble du levé (haut), un histo . e. oo e de la distance par rapport au sol (centre) ainsi qu'un histogramme de l'altitude de vol par rapport à la surface moulée prédéfinie ou l'ellipsoïde selon le levé (bas).

Les segments de ligne qui ont été revolés dans le but de compléter ou reprendre une traverse ont recoupés des lignes de contrôle à chacune de leur extrémité et ont rejoint la traverse originale suivant un angle faible, à un point où les données sont conformes aux spécifications techniques. Réciproquement, les segments de lignes de contrôle ont débuté et terminé en recoupant une quelconque traverse.

Afin que l'information soit valide au-delà des limites du levé les traverses ont débuté et se sont terminées en recoupant une ligne de contrôle. Lors de chaque vol, les lignes adjacentes ont été survolées successivement et dans des directions opposées. Le circuit de vol en « hippodrome » n'a pas été utilisé.

73 Vitesse de l'avion et taux d'échantillonnage

Lors du levé,.le pilote maintenait une vitesse de croisière faible réduisant, de ce fait, la consommation de carburant et le temps nécessaire pour se repositionner entre deux traverses tout en augmentant le taux d'échantillonnage des données.

Pour le levé magnétique, la vitesse de l'avion fut maintenue entre 69 et 94 m/s plus de 95% du temps, correspondant à une distance moyenne de 8.1 mètres entre les données du champ magnétique total.

Pour le levé gravimétrique, l'avion a conservé, plus de 95% du temps, une vitesse comprise entre 58 et 69 m/s, espaçant les données gravimétriques d'une distance moyenne de 31 mètres.

La figure 12 présente un histogramme de la vitesse de l'avion pour chacun des levés.

20 nee 450 ffillai0 Z 90% Zgps intersection 90% intersections (m) Samples: 10167 - 70g, Samples: 562 7016 Minimur c -8772 Mmuninc -55.9 Maximum: 134.04 ~~ Maximum 37.7 Mean: -0.14 r9; 1 Mean: 0.8 30 Geo Mean: 5.6 50% Geo Meat 6A1 505. 225 Median: -0.15 Median: 1.6 Mode: -15.03 Mode: -55.9 SldDev.: 12.63 - Std.Dev.: 12.21 30% Std.Err.: 0.1253 I' 30% Std.Err.: 0.5149 Skew: 0.1032 Skew. -0.3259 Kurtosis: 2.004 Kurtosis: 1.739

10% 10%

-60 80 -60 60

- 250000 4000 - ground distance 90% Radar 90% (m) (.9 lm) Samples: 80966 4037705 l 70% 70% MiSees'niru:m 32.61 I Minimum: 324.83 Maximum: 649.58 i Maximum: 428.73 Mean: 219.19 - Mean: 380.80 GeoMean: 209.63 2000' 50% Geo.Meen: 380.61 125000 50% Median: 201.61 Median: 381.71 Mode: 32.61 Mode: 324.83 Std.Dev.: 67.72 Std.Dev.: 12.14 30% Std.Etr.: 0.0337 35% Std.Err.: 0.04268 Skew: 1.034 Skew -0.3824 Kurtosis: 0.8499 Kurtosis: 1.837 10% _!.. 10% 0 0 700 320 440

i mmi 200000 =ma 8000 90% Zgps-Drapa 90% Z - ellipsoïde

Samples(m)4037705 r Samples:. 80966 70X lAnimera: 70% M nimum: -54.84 r, i Maximum: 183.06 MAslirnan 45.60 Mean: 2.36 Meer: -2.41 Geo.Mean: 5.50 Moen: 50% 3090 50% 100000 s Median: 2.37 ,3 01 Mode: 51.84 Made:~ y 1.84 SId.Err.: 9.144 30% 30% Std.Err.: 0.00455 aErr .: 0.030073 Slew: 0.2047 Satyr. 0.01395 Kurtosis: 2.889 Kurbele: 2.454 10% ~. .~;.:. 10% C , , .---4 _.r_-`---`---- -5C 50 -40 40

1 Levé magnétique Levé gravimétrique Figure 11: Statistique de la hauteur de vol

4500 Speed speed (Ws) m's Samples: 4037705 Samples: 8081388 Minimum: 55.07 lAnimurc 53.81 Maximum: 101.63 Melinv r: 78.07 Mean: 81.57 Mean: 63.60 Geo.Moen: 81.41 2250 Geo.Mean: 63.54 Median: 81.81 Madan: 63.22 Mode: 55.07 Made: 53.81 Std.Day.: 6.377 Std.Dev.: 2.759 Std.Err.: 0.003173 Std.Err.: 0.009706 Skew -0.1681 Skew 0.4925 Kurtosis: -0.07664 Kurtosis: 0.6432

0 55 105

Levé magnétique Levé gravimétrique

Figure 12: Vitesse des avions par rapport au sol

21 7.4 Dérives diurnes

La station de base magnétique enregistrait les variations du champ magnétique total à toutes les secondes et ses données furent utilisées sur une base quotidienne afin d'appliquer les corrections diurnes et ainsi contrôler la qualité du levé magnétique. Les lectures du champ magnétique total à bord de l'avion et à la station de base étaient enregistrées de façon synchrone via le temps GPS.

La déviation maximale tolérée d'une longueur de corde équivalant à 60 secondes pour la station de base était de 3,0 nT (crête à crête). Cette spécification a été vérifiée sur le terrain avant la démobilisation. La station de base magnétique était située aux coordonnées NAD83 suivantes:

Latitude Longitude

Base magnétique 47°59'14.31" N 66°19'28.13" O

7.5 Données magnétiques

Le niveau de bruit des données du champ magnétique total fut vérifié, au moyen d'une inspection de la trace de la quatrième différence. La quatrième différence est calculée à partir de l'équation suivante : 4X1 = X1+2 - 4X1+1 + 6X1 - 4X1.1 + X1.2

Où Xi est la lième lecture du champ magnétique total. Sous cette forme, les unités de la quatrième différence sont des nanoTesla. Le bruit à haute fréquence devait être de telle sorte que la quatrième différence divisée par 16 soit inférieure à ±0.1 nT. L'examen minutieux de la quatrième différence a permis de corriger les éventuels pics (spikes) présents sur les données magnétiques.

Lorsque suffisamment de données furent recueillies, les valeurs du champ magnétique obtenues aux intersections des traverses et des lignes de contrôle furent comparées et un nivellement préliminaire fut réalisé. Des cartes préliminaires de contours et de maillages des données furent produites pour fin de vérification de la qualité du levé.

22 8.0 TRAITEMENT FINAL DES DONNÉES

La compilation et le traitement final des données du levé magnétique ont été réalisés au bureau de GDS situé à Laval, sous la supervision de M. Carlos Cortada. L'annexe B relate en détail à la section 7, le traitement final de données gravimétriques fait par Mme Tuckett à partir du bureau de CMG à Perth, Australie.

Toutes les étapes du traitement réalisées lors des travaux de terrain du levé magnétique ont été vérifiées avant de poursuivre plus à fond. Ceci impliquait :

8.1 Traitement des données magnétiques Vérification complète des profils du champ magnétique et élimination des pics Correction du décalage (Lag). Élimination du bruit à hautes fréquences présent sur les données de la station de base (filtre passe-bas Butterworth 10 000m) diurne (moyenne: • 54054 riT) et application de la correction. Nivellement du champ magnétique total à partir des intersections et en suivant les étapes présentées au tableau 10. Les valeurs du champ magnétique total, de l'altitude et du gradient aux points d'intersection, ont été déterminées' sur les lignes transversales et sur les lignes de contrôle. Les différences relevées en ces points ont été compilées et imprimées sous forme de tableau. Les différences relevées aux intersections ont 'été soigneusement analysées et réparties le long des lignes de contrôle et des lignes transversales pour obtenir ainsi une valeur identique du champ magnétique total à une intersection donnée. Des corrections ont été apportées pour supprimer les écarts dus- à l'altitude. GDS a utilisé les données de positionnement électronique (GPS) pour s'assurer que ces écarts étaient minimaux.

Tableau 10: Nivellement par ligne de contrôle Passe Filtre Contrôle Traverse 1 Trend(0) x x 2 Trend(0) x x 3 ' Trend(0) x x 4 Trend(1) x x 5 Trend(1) x x 6 Butterworth(10000,6) x 7 Butterworth(1500,8) x

Des valeurs finales ont été attribuées aux traverses à chacune des intersections retenues. Ces valeurs ont été utilisées comme correction. Dans les zones caractérisées par un gradient magnétique , prononcé ou par une topographie escarpée, les ajustements d'intersection ont été supprimés ou une correction judicieuse a été attribuée à la ligne transversale.

23 Application d'un micro-nivellement sur les données. Les données du levé de 2004 ont été incorporées et ajustées à la surface de vol du présent projet en utilisant une correction d'altitude appliquée localement sur les données. Cette correction est basée sur une continuation vers le haut et le bas en fonction de l'altitude de l'avion par rapport à la surface de vol prédéfinie. Soustraction du champ géomagnétique international de référence (IGRF) modèle de 2010 défini à une altitude de 530 m et en date du 11 février 2011. La soustraction de l'IGRF, qui représente le champ magnétique terrestre modélisé, a permis d'obtenir le champ résiduel essentiellement relié à l'aimantation de la croûte terrestre. Maillage des données suivant une maille régulière de 40 mètres en utilisant la routine « Minimum Curvature » de Geosoft, laquelle respecte autant "les données des traverses et des lignes de contrôle tout en produisant une surface pour laquelle la courbure totale est minimale. Calcul de la première dérivée verticale.

8.2 Traitement des données de positionnement et d'altimétrie Vérification complète des différents champs de données tel que X, Y, Z, temps GPS, altitudes radar et lectures barométriques. Correction de façon différentielle des données GPS brutes de positionnement à l'aide du service en ligne Precise Point Processing (PPP) du Système Canadien de Référence Spatiale (SCRS). Les latitudes et longitudes résultantes ont par la suite été transformées à la projection UTM du datum NAD83. Un contrôle de qualité du plan de vol a été effectué entre autres à l'aide du calcul de la vitesse permettant de repérer des zones à problème qui seront par la suite retraitées. Le plan de vol fut coupé afin de s'ajuster aux limites du bloc. Le plan de vol final ainsi obtenu fut comparé au plan de vol théorique afin de vérifier la conformité avec les spécifications techniques dû contrat. Les données de positionnement furent finalement importées dans la base de données principale. Génération d'un modèle topographique de terrain en utilisant le Z GPS post-traité moins l'altitude radar. Ce modèle ainsi calculé est ensuite comparé avec la topographie connue.

24

Mag Data Processing — Flight format

Diurnal Data GPS Base Aircraft files • . Raw fife "Trr-yr,

Convertto Convert to Convert to TOL TBL GDB

base.tbl wpg-AV-Abl magtilitt.gd

QC raw Checktime synch; data and data

Import PP, calculate QC speeds, check radar. position drape. Calculate DTFA

Import ma g base station QC data. Remove cultures, diurnal apply small filter

Apply lag, calculate 4" QC nag diff and noise, check data compensation.

1 Cutthe lines I Line data base Merge with other flights

25 Meg Data Processing -`Line formai

Line data base (Block DB)

Altitude torr.

1

Diurnal co IT.

--~-* Tie-line leveling

r.licro levelling

i

IGRF remov.

i

•-} Gridding

i

Line data base (Block DB)

26 9.0 PRODUITS FINAUX

Tous les documents et cartes exigés par l'entente contractuelle furent remis à la fin avril 2011.

9.1 Paramètres utilisés

Les données ont été compilées et mises en plan à l'échelle 1:50 000 en utilisant les paramètres suivants :

Levé magnétique

Projection : NAD83, compatible avec le système WGS84 UTM z19 Cellule de maille: 40 mètres Nombre de cartes couvertes: 12 ( 1:50 000) 1 (1:250 000)

7 22B10

/ 22B06 22B07 22B08N.

±/.....„..21B03 22B02 22B01

14 210 2101fi

21011

47°30'N 66°001N

Figure 13: Index des cartes — Projet Matapédia

Levé gravimétrique

Projection : NAD83, compatible avec le système WGS84 UTM z18 Cellule de maille: 125 mètres Nombre de cartes couvertes: 1

27 9.2 Produits finaux

Trois copies d'un DVD incluant les éléments suivants ont été livrées:

Bases de données • Base de données magnétiques (tableau 11) • Base de données gravimétriques finale (Annexe B appendice X) • Base de données gravimétriques — Ligne de répétition Alliston (Annexe B appendice X) • Base de données gravimétriques — Ligne de répétition Dundee (Annexe B appendice X)

Cartes

Toutes les cartes finales suivantes ont été fournies sous forme numérique en format Geosoft Map et PDF avec une résolution suffisante aux fins de reproduction (300 dpi). De plus, trois copies papier à l'échelle 1:50 000 de chacune des cartes ont également été fournies. Pour le projet Matapédia, une carte couvrant toute la zone d'étude à l'échelle 1:250 000 pour le champ magnétique résiduel et sa première dérivée verticale ont aussi été imprimées.

• Champ magnétique. résiduel (IGRF soustrait) ombragé en couleur avec contours • Dérivée première verticale ombragée du champ magnétique • Anomalie de Bouguer ombragée • Dérivée première verticale ombragée de l'anomalie de Bouguer

Mailles • Champ magnétique total résiduel • Dérivée première verticale, du champ magnétique total résiduel • Anomalie à l'air libre • Dérivée première verticale de l'anomalie à l'air libre • Anomalie de Bouguer • Dérivée première verticale de l'anomalie de Bouguer

Rapport final

Le rapport technique présentant un compte-rendu complet des opérations sur le terrain, la description de la compilation des données et l'inventaire des produits finaux, fut remis en format numérique PDF. Trois copies papier ont également été fournies.

28 Tableau 11: Liste des champs de la base de données magnétiques Champ Description Unité UTC Temps UTC en seconde après minuit seconde Line Numéro de ligne Flt Numéro de vol Date Date du vol aaaa/mun/jj Lon ' Longitude (NAD83) dd.mm.ss:s Lat Latitude (NAD83) dd.mm.ss,s X Coordonnées X (NAD83 UTM Z19) mètre Y Coordonnées Y (NAD83 UTM Z19) mètre Z Altitude GPS (NMM) mètre Raffle , Altimètre Radar corrigé mètre DTMc Modèle digital de terrain mètre BaseA Données corrigées et filtrées de la station de base magnétique nT mfluxX , Fluxgate composante X originale nT mfluxY Fluxgate composante Y originale nT mfluxZ Fluxgate composante Z originale nT MBu Données magnétiques non-compensées brutes nT MBu1 ' Données magnétiques non-compensées laguees - nT MBc ` Données magnétiques compensées originales nT MBcic Données magnétiques éditées et.laguees nT Drift LF Correction diurne du champ magnétique nT Magbc Données magnétiques corrigées de la diurne nT Cmagi ! Correction magnétique d'altitude ni Magbi Données magnétiques corrigées de l'effet d'altitude ' "- nT Corlvl Valeur de correction du nivellement nT Maglvl Données magnétiques nivelées nT cormicro Correction de micronivellement nT Magmicro ' Données magnétiques micronivellees ni SRVMGLEV ':'Données magnétiques, du levé de 2004 nT Cor 2011 Valeurs d'ajustement appliquées aux données du levé de 2004 nT r magfinal Champ magnétique total (levé 2004 inclus) nT -' IGRF Champ IGRF local nT RMI Champ magnétique résiduel (corrigées IGRF) ni

29 10.0 CONCLUSIONS

Un levé magnétique aéroporté à haute résolution ainsi qu'un levé gravimétrique aéroporté furent réalisés par Géo Data Solutions GDS Inc. entre le 15 janvier et le 14 mars 2011 pour le compte de Gastem Inc, respectivement sur le Projet Matapédia, Péninsule Gaspésienne et sur le Projet Dundee, au sud-ouest de Montréal. Au total, 32 157 kilomètres linéaires de données magnétiques et 2 573 kilomètres linéaires de données gravimétriques furent acquises.

Les travaux de terrain furent réalisés dans le temps alloué prévu à cet effet et tous les produits exigés par l'entente contractuelle figent remis à Gastem dans les délais requis. ,

Toutes les données enregistrées à bord des avions et par la station de base magnétique sont d'excellente qualité. Les données du champ magnétique total ont été acquises lors de périodes d'activité diurne favorables et les données gravimétriques ont été enregistrées lors de conditions atmosphériques calmes.

La surface de vol prédéfinie fut bien suivie permettant ainsi un nivellement facile et optimal des données magnétiques et gravimétriques. Quant au niveau de bruit du champ magnétique total, contrôlé à l'aide de la quatrième différence, il fut bien en dessous de t'enveloppe acceptable de 0.1 nT.

Les données de positionnement GPS sont de grande qualité, le plan de vol fut bien respecté et les données ne démontrent aucun saut anormal.

Il est à espérer que l'information présentée dans ce rapport, ainsi que sur les cartes qui l'accompagnent, s'aura orienter les prochaines campagnes d'exploration et sera utile dans l'interprétation des données géologiques qui peuvent y être reliées.

Respectueusement présenté,

Mouhamed Moussaoui, Eng. Géo Data Solutions Inc OIQ Membre #39716

30 ANNEXE A

ÉTALONNAGE ET TESTS

C-GPVN FOM Test Location: Charlo,NB Date: 15/01/2011 Pilot Walter (Brucelandair) Aircraft: C-GPVN Operator: Pierre Fillion Configuration: Tail Stinger Compiled by: Saleh Altitude: 3000 m

Sensor3 - Tail Stinger

Uncompensated Compensated NORTH (360°) Fid range Improv. Ratio mag(nT) - mag .(nT) PITCH 5/070.8 to57077.0 0.736 0_052 .14.154 ROLL 67084-4 to 570984 . 0.952 0:098 ' ' 9114 YAW 57104.1 to 57116.4 0.550. 0_079 6.962 TOTAL 2.238 0.229 9173

Uncompensated Compensated West (270°) Fid range Improv. Ratio mag (nT) mag (nT) PITCH- 57150.;8 td.57165.8 ' 0.476 0_102 4.657 ROLL 57183.7 to 57198.7 • 1_329 0.070 , 18_986 YAW 57202.6 to 57217_5 ! .0_535; 0_147 3_639 TOTAL 2.339. 0319 7_332

'Uncompensated: Compensated: SOUTH (270, , Fidrange Improv. Ratio • 'mag,(nT) ' rriag.(ni) PITCH: i .57285.7tii 57284_3 , 0.626 0:099 6.323 ROLL 57.301.5`to-57311.6 _. 0.759' 6.089 '8_528 YAW 57319.:3to 57329.6 0.269 0.219,i 1,228; . 'TOTAL 1.654 0.407 - 4.064

, Uncompensated ' Cdmpensated East (90° 'Fid range Improv. Ratio mag (nT) . mag (ni) PITCH 57392,9 to 57401_9 0.232 , 0_142 1.634 ROLL : 57405:-6 tO 57416,9 ; 0.489 0.121 ; 4.041 YAW 57425.'9 to 57433.8 0.386 0_164, 2_354 ' • TOTAL 1.107:- 0.427 2593

Uncomp. mag C°11113. mag Improv. Ratio (rTT) inT) 7.338 1.382 5.310.

Geo Data Solutions GDS Inc.

ALTI M ETER CALI BRATI O N

Location: Gatineau, QC Date: 7-Oct-10 Pilot: Aircraft: C-GPVN Operator: Jean-Yves Compiled by: Carlos Cortada

Antenna Height (m): 2.5

Terrain clearance Radar raw Zgps Topo Altitude (ft) (mvolt) (m) (m) (m) 100 0.41 91.62 59.82 29.30 150 0.62 107.10 59.90 44.70 200 0.79 119.58 59.78 57.30 300 1.19 148.09 59.85 85.74 400 1.65 181.47 59.82 119.15 600 2.57 247.83 59.85 185.48 800 3.34 302.77 59.69 240.58

radar(m)= 72.08 x (mvolt) _ 0.05

Radar vs Altitude 400.00

350.00

330.00

250.00

200.02 y = 72.079x + 0.0529 R2 = 1 150.00

100.00

50.00

0.00 0.00 100 2:00 3.00 4.00 5.00 e.0~ GeoData Solutions GDS Inc.

LAG Test

Location: Ottawa Aircraft:.0-GPVN Date: 7-Oct-10 Configuration: Tail Stinger Compile: Carlos Cortada Apply Tail Lag: +0:70

Vi V2

(X,, Y,) (X,. Y,)

M3o = +0.70 fid x y. z m3o vx vy vt A) 90000 S 53342.15 369708.82 5052390.66 201.63 55104.851 10.89 78.50 79.25 B) 90000 N 53213;55 369727.53 5052496:61 206:17 55099.482 -6:29 -73:21 73.48 Diff= 18.71 105:95 - 4.54 Ave= 76.37 mis Dist= 107.59 m - ANNEXE B

RAPPORT DU LEVÉ GRAVIMÉTRIQUE PROJET DUNDEE AIRBORNE GRAVITY SURVEY FIELD OPERATIONS AND FINAL DATA PROCESSING REPORT

DUNDEE PROJECT SOUTH OF AREA, , CANADA

FOR

GASTEM. INC.

by

GEO DATA SOLUTIONS INC (GDS) and CANADIAN MICRO GRAVITY LTD (CMG)

APRIL 2011

GT-1A

i

Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 2

TABLE OF CONTENTS

Page #

1 INTRODUCTION 7

2 SURVEY AREA • 8

2.1 Survey Parameters 10 2.2 • Flight plan - 10

3 AIRCRAFT AND EQUIPMENT 13

3.1 The Aircraft 13 3.2 The Survey Instrumentation 14 3.2.1 Survey System Overview 14 3.2.2 The GT-1A Mobile Gravimeter System 15 3.2.2.1 Gravimeter Sensor 16 3.2.2.2 Gravimeter Platform 16 3.2.2.3 Automated Operation 16 3.2.2.4 Dynamic Range 17 3.2.2.5 Gravimeter Operating System 17 3.2.2.6 GT-1A. Control and Display Unit (CDU) and Logging Computer 17 3.2.2.7 Uninterruptable Power Supply (UPS) 17 3.2.2.8 Dual-Frequency GPS 18 3.2.3 GPS Base Stations 18

3.2.4 Field Computer Workstations 20

4 SURVEY OPERATIONS 21

4.1 Base of Operations 21 4.2 Survey Conditions 21 4.3 Survey Specifications 21 4.3.1 . Flight Specifications 21

4.3.2 Data Recording 22 4.4 Field Processing & Quality Control- 22 4.5 Job Safety Plan 22 4.6 Daily Activity Report - Acquisition 22 4.7 Project Personnel 23

5 INSTRUMENT CHECKS AND•CALIBRATIONS 24

5.1 Gravimeter Calibrations and Monitoring - 24 5.1.1 GT-1A Reference Measurements 24 5.1.2 Alllston Repeat-Line 25 5.1.3 Dundee Repeat-Line 25 cca oAr~ aotunor im 4 CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 3

5.2 Absolûte Gravity —Tie to Canadian Gravity Standardization Network 27

6 QUALITY CONTROL AND FIELD DATA PROCESSING 28

6.1 Field Data Processing Equipment 28 6.2 Field Data Processing - Quality Control 28 6.2.1 Navigation Tolerance 28 6.2.2 Gravimeter Data 30 6.2.3 GPS post-processing proprietary software GTNAV 31 6.2.4 Acceleration QC software GTQC20 31 6.2.5 • RMS errors of computed anomaly from proprietary software GTGRAV 32 6.2.6 Estimate of Errors for Repeat-Line Passes 32

7 FINAL GRAVITY DATA PROCESSING 33

7.1 Estimate of intersection Errors 33

7.2 Proprietary software GTGRAV 35 7.3 Geosoft Oasis montaj 36 74 G ridding 37

8 DELIVERABLE PRODUCTS 38

9 REFERENCES 39

fk) CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 4

LIST of FIGURES

Figure 1. Overview location map of the Dundee survey area 8

Figure 2. Location map with the Dundee survey area indicated — Source GoogleMaps 9

Figure 3. Dundee project survey flight plan with SRTM30 digital terrain model 12

Figure 4. Aircraft C-FDME used for the gravity survey 13

- Figure 5. GT-1A gravimeter installation in aircraft C-FDME. 16

Figure 6. Thal'es Z-Max GPS receiver 18

Figure 7. Z-Max Base GPS receiver Base 1 on location at Lachute Airport — Looking North 19

Figure 8. The survey aircraft C-FDME (Left) and aircraft parking/GT 1A reference location at Lachute Airport (right). 21

Figure 9. Project repeat-line location with'SRTM30 OEM. 26

Figure 10. Aircraft reference and Hotel De Ville gravity tie locations • 27

Figure 11. GT-3A gravity data processing flow-chart 30

Figure 12. Raw intersection errors (meal} 34

Figure 13: First-order intersection errors (meal) 34

~

C:t7S rdOOATA 60tVItON! Inu CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 5

LIST of TABLES

Table 1: Survey parameters for the Dundee project 10

Table 2: Survey block coordinates • 11

Table 3: Survey block topography range 11

Table 4: Aircraft specifications 13

Table 5: List of survey instrumentation 14

Table 6: GPS base station coordinates 19

Table 7: Survey data sampling rates. 22

Table 8: Project personnel 23

Table 9: Reference point GPS antenna position- Lachute-Airport 24

Table 10: Gravimeter GSE offsets 25

Table 11: Alliston. repeat line flight plan coordinates 25

Table'12: Dundee Repeat line flight plan coordinates 26

Table 13: Absolute gravity value reference locations 27

Table 14: Survey altitude statistics 29

Table 15:. Survey speed statistics 29

Table 16: GT»1A residual errors 32

Table 17; QC repeat-line error analysis 32

Table 18: Estimates of intersection errors 33

Table 19: Delivered final line data files • 38

Table 20: Delivered f

Table 21: Delivered final grid data files 38

4727.S7 Gc4 wu e014.110113 CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

APPENDICES

Appendix I-Flight Plan Lines

Appendix!! - Survey Flight Path

Appendix M! - Equipment Registry

Appendix IV - CSRS-PPP GPS Processing Reports

Appendix V - Summary of Daily Activity

Appendix Vi - Reference Measurement Statistics

Appendix VII- 1GNS71 Gravity Tie

Appendix VII'! - Repeat-line QC Parameters

Appendix IX - Survey Line QC Parameters

Appendix X - Data File Description

Appendix XI - Geophysical Maps

- Appendix Xii - Reference Paper

:~~ C.t}Cr. 6eo"Dardynoco~ x~l: CANADIAN MICRO GRAVITY

Gastem Inc., Dundee Project, Quebec, Canada {4.k171--4- L GT-1A Airborne Gravity Survey 7

1 INTRODUCTION From February 22nd to March 1st, 2011, an airborne gravity survey was conducted over the Dundee Project in the region south-west of Montreal, Quebec, Canada. The survey was con- ducted by Geo Data Solutions GDS Inc. (:GDS) and Canadian Micro Gravity Ltd (CMG). During this survey, GDS leased the gravimeter and- services of a geophysicist from Canadian Micro Gravity Ltd.

The project area consisted of a single survey block with flight lines orientated East/West at a spacing of 500m. Tie lines were oriented obliquely (45°/225°); to the traverse lines at a spacing of 3,000 metres. The nominal flying altitude was set at 400 metres constant altitude above the ellipsoid. A total' of 2,572 line km of data were acquired over the area of approximately 1,076 sq km.

Aircraft and gravimeter equipment installation took place at the hanger of Bruceland Air Inter- national at Marton airport, Ontario between February 15th to 17th, 2011. Auto-calibration of gravimeter was successfully completed on the evening of February 17th.

The period 1-8th and 19th February was subject to poor weather conditions which hampered any airborne operations. A verification test flight was conducted on February 20th in clear con- ditions with•four repeat-lines flown on a 40 km test fine (See Appendix VIII - Alliston Repeat-Fine QC Parameters), Based on the acceptable results of the verification flight, the aircraft and crew mobilised to the town of Cornwall on the evening of February 20th.

Intended as the base of survey operations, the facilities at Cornwall Airport proved :unsuitable to maintain. the airborne operation, therefore a new operating base was designated at the town of Lachute, Quebec. Mobilisation of the aircraft and crew to Lachute occurred on February 21st with establishment of the GPS base station positions and aircraft parking position the same day.

The aircraft operated out of the Lachute airport from February 22th to March 1st while flying the survey block. The first; production flight commenced oh February 22nd, while the fast survey flight was completed on March 1st. The ground gravity tie to the aircraft parking .position was performed on March 1st. On March 3rd, the project operations, aircraft and crew. de-mobilised to their respective home bases.

The GT-1A gravimeter (Berzhitzky et. Al., 2002) was developed by JSC STC Gravimetric Technol- ogy of Moscow, Russia (GT). CMG operates the GT-1A gravimeter worldwide on airborne geo- physical surveys.

The GT-1A is a 'GPS-INS system which is operated independently from other equipment carried on the survey aircraft. The gravimeter is differentiated from: existing, commercially available airborne gravimeters by:

® small size and low power, consumption • ease of operation, with no on-board- operator required

A vertically constrained accelerometer which minimises cross-coupling

G..D.S' a) eeo- DATA aaevn°vi .4 CANADIAN MICRO GRAVITY

Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 8

dynamic range of at least ± 500 Gals allowing high quality data to be collected during turbu- lence a advanced data processing routines which remove the effects of changes in the system ge- ometry

o ability to operate in a wide range of survey conditions with high levels of productivity

2 SURVEY AREA

The Dundee survey location is shown on the following maps of Canada in the following figures.

< . s.,.+~ ) F r -- AFr~~ liC UCÉJiN 'v.~ .. , •i1+r,'.~.e~ ~ pY 1 ~°'r i f `,' • ----<:::' yyç~ '' 1 /. ~"' U 4 f`ti.P--;----: i L ~ f•.1~rs1/.ÿ ~ ~~~ ~. ~r N. . ~ ~ , , -,,, ~-:, r~~ ' ~~~~~QaWSO ~ • ~ Nonïli ,..' 'JLTLAN{TtC Whileherso 6cF'Ati

Fkettod1 ., .~ ï . ;'-,t-:~C~—TC11111, ~ 1Dundcc Survey \ St. John's NORTH ~ • PACrf7c { —` Se i!eS. r`ti`v Edn>rnion f r• /w ~pGlJiN "'.° ~+. ~ ~~ ~ Va .1 .Cah3àrÿ ~ t Victor J Regina. 4'A nni{~ cJ Thunder Québ~c~ ~a Ba 4TTAWA 4 int Jo 0 400 e00m+• i• c~n ]tkti onto .n UNITED 1STATES arniRoL •

Figure 1. Overview location map of the Dundee survey area

-76.00' -75'20' 74'40' -74'00' -73'20'

. . . ti ro.e.e,, .w:c` ..1..a .r.N» • \-"z.Nn

lY .1pa.: SfMi.P: III . - e.• w... .; "Ni. 1-•I`1..- l.N.-Y.n.. . .trp..nA.:xa Sta.un`. ~.~,.~y M,r.rfaw 7 ^'^f.^g! P • ~ ymbyv~ ~ : Y, - fA/Nr~Nyy~nlyp .T/ . l ... . { n'1;::.7."'„;:.;:.... M,r,W,.W t ô .~iLA4r•YP ~~~~~°~'~~~`rSa r~TP.rM. / I Pw.....+.a. . ~+WA:..w>t „-..~ ....~Sf.Y r, 1MVr~ti / P-.~pvr, sv. E.cf, s..a Puv.d~ . i~ ~~y 'Vf .i~ ~ 1' PaLC.•---,-,_.7:. / v-r '•.'t +.. e. .v-. 1r. ~w.ryp,~ 6 y . +. . ..-~, Ofrn..r '. s.,., ~ .P ! 4, ]Mon4..1 - • r,. `-.> —.l" M,,.« ~rpe1 ~ ~~.-- ~ . Ykmr .IW }O~ 1•v.SsnR•.,.Na•.•~ " •:•;^ 30.„,,,,..,..,,..„..: .„.,..,...46,....0 ' L 1Fw,~.tl.H+eco! ! .f„,« Fs. e.qw Caw ✓ 1`e . OIWPér,~ ~!\\ ' i ~~ ~IA....,t t:a/ :.r.0., lWl 0..a, .4.„.7,„1„,,..a.,..,,,,, ~. T ~- . C z~w ..r ! N,,,...... ‘„, j...w.àa . ► Ô 1. C r P. ~ G,. .~ 4 a n.. , .. ,. '',..A,.;.?! .. v.a.. - Au-. . Ç~c+.^ ~ Yw+~r'1 . ~b " â. ~ Au.ur.~ r ~ ~ k firn "q+•„Aunts, Iw. yw AY . S.-1 CPrf..eew f ,_ W., a+ C1 .u.+~- ~ ..w..a R: ~t1T in a'.- `.. '^~- - faw.w-n ic•A Rlr_ -' - . _ - -.- _-ur..aw1--R. -.- t7 r:..a{- 11 w..e• .a ..414 g . M ln.w.Y ati Co. w~ ¢ ' G....~ r.w,uiO.cW Yw .-z...... , •~ I~.Ya~ - bM+.1^. Wk•..h,a .. l' wa trury Gr4 ~v Re ~. f mvrva . *Mane / ' ...IA.-A: ~ .4.V.R.nrr . aax.x ti L...-',,,,-..,-'"''.."....* .flaaix .r~ .c"'"" 7L• .e.1 .wU.lGala .,.,..

-75'00' - -75'20' -74'40' -74'00' . -73'20'

47 VS. LEO'OIT/ SOtV1IONS Inc (. AN,,-,1)11:,,! MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-SA Airborne Gravity Survey 9

Figure 2. Location map with the Dundee survey area indicated — Source GoogleMaps

G.I'S ~ COMAen amunew ~~ how CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 10

2.1 Survey Parameters The survey parameters for the Dundee gravity project are listed in Table 1:

Parameter Specification Units Total planned line length 3,211 km Total planned line length 2,573 km (excluding lead-in and lead-out) Lead-in and 'lead-out 5,000 m Traverse-line spacing 500 m Traverse-line direction 90/270 deg Traverse-line numbers 110010 to L16500 Traverse line length 2,185 km (excluding lead-in and lead-out) Tie-line spacing 3,000 m Tie-line direction 45/225 deg• Tie-line numbers T50010 to T50140 Tie-line length km (excluding lead-in and lead-out) 388 Flying height : 400 constant altitude above ellipsoid m Height tolerance . Not to exceed +/-15 m for more than 1,000 m Speed 120 knots (222 km/hr, 62 m/sec) Navigation tolerance Not to exceed 75 m off-track for more than 1,000 m PDOP > 4 5, number of satellites < 6, Automatic re-flight specifications or error > 1.5 mGal RMS for ail cross-overs on a line

Table 1: Survey parameters for the Dundee project

2.2 Flight plan

The flight plan for the survey area included a lead-in and lead=out of 5 kms to allow. for aircraft manoeuvring .whilst turning onto and off the survey lines. Due to the nature of the 100-sec Kalman filter used in the GT-1A post-processing software, gravity data can be affected by air- craft manoeuvring for at least half the wavelength of the filter, depending on the severity of the manoeuvre: If the aircraft is travelling at a speed of.70 m/sec, half the wavelength will be 3,500 m. The Dundee survey block boundary coordinates (excluding lead-in and lead-out) are pre- sentedTable 2.

G'I.pS~' ~.GfO OATH SMUMN~ I~ a CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey' 11

WGS 84 WGS84, LïrM Zone 18N Point Latitude Longitude East North No. (degree) (degree) (m) (m) 1 45.0655 -74.5977 531675 4990300 2 45.1187 -74.5217 537623 = 4996250 3 45.1189 -74.5753 533400 4996250 4 45.1682 -74.5050 538900 5001750 5 451684 -74.5590 534657 5001750 . 6 45.2261 -74.4764 541107 5008200 7 45.2263 -74.5304 536864 5008200 8 45.2854 -74.4470 543365 5014801 9 45.2814 -73.9028 586053 5014801 10 45.2112 -74.0034 578259 5006900 11 45.2102 -73.8953 586745 5006900 12 ' 45.1259 -74.0181 577222 4997400 13 45.1254 -73.9641 581465 4997400 14 45.0616 -74.0571 574307 4990300 15 45:0648 -74.5977 531675 4990300

Table 2: Survey block coordinates

The final flight plan lines are presented in Appendix I - Flight Plan Lines, with a 'fist of line coordi- nates. Appendix ll - Survey Flight Path presents the actual survey flight path achieved.

The survey flying height was set at 400 metres constant altitude above the ellipsoid within the survey block -boundary including a 10 to 15 kilometre "buffer" zone beyond the survey bound- ary. The 'highest point was determined by examining SRTM 90m topography data. The topogra- phy range for the survey block is presented in the Table 3.

Topography Topography Survey Altitude Survey Altitude Min. (m ASL) Max. (m ASL) (m ASL) (m Ellipsoid) 7 103 430 400

Table 3: Survey block topography. range

The project survey flight plan superimposed on an SRTM30 digital: terrain model is presented in . Figure 3.

~'27. S. 1> - ~.~-+ :A DATA 501I1f70R1 Im CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 12

FLIGHT PLAN -74'30' -74'20' -74'10' -74'00'

t ry 4, ..pC ~~~SC ~~6C ~~0~,~0 ~ho~g0 ~•_~O AR 4,,10 ~S~O,o 4 L10490' y~ tg 10490 1405. —' ,10470 t ro 110410 51 / 1 (43050 °: 170410 -- 10410 ~: 110390 II ~ 10390 ,.~ 110370 ~~—t~~ I I M I r 10370 . S—~ 035, L10~3 10330 L10310 :—~ 10310 110290 0 10270 t ô L1Ô260~ A~ 102s0 °: L1 , r O 10230 ô 10210 10 110121 0190 L10170..11112111111111111111•11111,211111W~~~5 10170 010150 1101300—®`— As 1 130 L10110 /10110 L10090 10090 t L10070 ; / __ 10070 _ c^ ô P 110050 `10050 v, â L10030 i 10030 110010 ~~ 1, o0p o09 ',o ,44 ,4' , ,~ 10010 O~ .,4) 4r 4 4f 4. 4h 4. 4, S 4, 41 4 -74°30' -74°20' -74'10' -74'00'

Flight Plan Summary DUNDEE PROJECT Traverse Spacing: 500 metres SOUTH OF MONTREAL AREA —p) — Traverse Direction: 2,18 degrees C QUEBEC - CANADA Traverse Kilometers: 2,185 Tie Line Spacing: 3,000 metres Tie Line Direction: 45/2255ticgrces ~l GT-1A GRAVITY SURVEY Tie Line Kilometers: 3 8 5000 0 5000 10000 15000 20000 Total Kilometers: 2,573 (exclude lead Inlout) 6,Ds, g _„," Topography Range; 7- 103m (ASL) •j—' metres mKanceavnr WGS84/UTM zone 18N G~

Figure 3. Dundee project survey flight plan with SRTM30 digital terrain model

G.D.S. 1 acôat,Taamunew last. CANADIAN MICRO GRAVITY i; `rte Gastem Inc., Dundee Project, Quebec, Canada EGA;; GT-1A Airborne Gravity Survey 13

3 AIRCRAFT AND EQUIPMENT

3.1 The Aircraft The survey was flown using a Piper PA-31-310 Navajo aircraft, registration number C-FDME, op- erated and owned by Bruceland Air International. This aircraft features up to 6.5 hrs flight dura- tion with the geophysical system and a crew of 2 persons onboard. The aircraft specifications are presented in Table 5, and the aircraft is presented in Figure 4.

Item Specification

Aircraft registration C-FDME

Model Piper PA-31-310 Navajo

2 x Lycoming TIO-540-A2C turbocharged, Engines 6 cylinder piston aero-engines

Propellers Three-bladed, metal Hartzell propellers

Empty weight 4,248 lbs

Gross weight 7,810 lbs

Maximum cruise speed 180 kts 428 km/h

Service ceiling 24,000 ft (with oxygen) 7,315 m

Standard fuel AVGAS 100LL 888 litres (useable)

Table 4: Aircraft specifications

Figure 4. Aircraft C-FDME used for the gravity survey

4°,27S i¢ ceâ uan aoivnowf uc, -4 CANADIAN MICRO GRAVITY Gasterm Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 14

3.2 The Survey Instrumentation

3.2.1 Survey System Overview The major components of the system are listed in Table 5.

Airborne Gravimeter

Type : GT-1A ; Serial Number SN003 ' Dynamic range (coarse channel) ` Greater than ± 0.5 g 300 Hz measurement, 18.75 Hz recording, 2 Hz final Sampling Interval processed data Maximum roll and pitch angles ± 45° Latitude measurement range ` 85° S to 85° N Operating ambient temperature ; + 5°C to + 50°C

Gravimetric anomaly evaluation error ' 0.6 mGai RMS (over bandwidth of 0.0100 Hz) - under ideal conditions ; 1.0 mGal' RMS (over bandwidth of 0.0125 Hz) Weight 150 kg , Dimensions .0 60.0 mm x 920 mm H Power consumption 150 W System readiness from cold start 48 hrs GPS:Receivers . Type : Thales and Ashtech dual frequency receivers Model Z-Max 03 cm:+ 0.5 ppm (horiz.) Accuracy . 1.0 cm + 0:5 ppm (vert.) Sampling interval 2 Hz

Survey Navigation Type ` GARMIN 430 , Auto-pilot ' Century IV

Table 5: List of survey instrumentation

G°.pS 6[4"wTa aoumori a CANADIAN MICRO GRAVITY Gastem Inc, Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 15

3.2.2 The GT-1A Mobile Gravimeter System The GT-1A is an airborne, single sensor, vertical axis, scalar, GPS-INS. gravimeter with a Schuler- tuned three-axis inertial platform consisting of three basic units: the main sensor, the rotation table, and the shock-mount.

The main sensor weighs 50 kg. Together with the rotation table it measures 40 x 40 x 70 cm. The shock-mount' has a cut-off frequency of approximately 5 Hi and is 60 cm in diameter by 22 cm high, giving an overall 'height to the gravimeter of 92 cm.

The main unit houses most of the electronics in the top third; while the main :gravity sensor is held vertically by the Inertial platform in the bottom two-thirds; the rotation table provides the platform's azimuthal axis.

Connections to the gravimeter include a 28 Vdc power source drawing approximately five amps. A GPS RS-232 serial link providing velocity and coordinate data is used to assist in aligning the platform vertical; and there is a second serial connection to the control and display unit (COU).

The data acquisition computer doubles as the COU for the gravimeter. The gravimeter also con- tains a microprocessor, input/output interfaces, and secondary power supplies, all within the electronics bay at the top of the main unit.

The performance of the system is defined as follows:

The gravity anomaly evaluation error is 0.5 mGal RMS using a 100-sec filter (0.01 Hz cut-off) un- der the following conditions:

• vertical accelerations up to ± 0.5 g (±.500,000 mGal) at 300 Hz • correct gravimeter and' GPS antennae installation on aircraft and at base stations • use of dual-frequency GPS receivers witha data acquisition-rate of at least 2 Hz • visibility of 6 or more satellites • PD'OP not greater than 2.5 • GPS base line length less than 100km

Installation. of the gravimeterin the survey aircraft is shown in- Figure 5.

G.,F.~,S` (MAMA tCtUflClIS'h¢. CANADIAN MICRO GRAVITY

Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 16

Figure 5. GT-1A gravimeter installation in aircraft C FDME.

3.2.2.1 Gravimeter Sensor

The vertical accelerometer, or gravity sensing element (GSE), has a bandwidth of 300 Hz. It has an axial design with a reference mass on a spring suspension, a photoelectric position pickup, and a moving-coil force feedback transducer. The GSE suspension design minimizes the effect of cross-coupling, an undesirable effect which contaminates vertical-axis gravity measurements with components of horizontal accelerations induced by aircraft motion. This feature allows the GT-1A to collect data in the presence of large horizontal accelerations.

3.2.2.2 Gravimeter Platform The GSE is installed on the gyro-stabilized platform contained in a double-axis gimbal suspen- sion. The platform also holds two horizontal accelerometers, a dynamically tuned gyro with a vertical angular momentum, and a fibre optic gyro for azimuthal control. In operation, the GSE is limited to 45 degrees in both the pitch and roll axes.

The GSE is located in a double-loop constant-temperature environment on the inertial platform. Additional elements installed on the platform, plus the current regulator of a code-to current converter within the gyro control circuit, are individually temperature controlled.

3.2.2.3 Automated Operation The gravimeter is fully automated and requires no operator on board the aircraft while collect- ing data in survey mode. All systems including stabilization servo systems, temperature control systems, and gyroscopic correction systems, are controlled by the built-in microprocessor. The computer also controls actuation, reference measurements, balancing, and measurements dur- ing survey mode. A vertical-gyro correction system using GPS-derived information on heading, latitude and aircraft speed provides vertical gyro stability. An optimal Kalman filter is imple- mented in control algorithms for both the stabilization servo system and the vertical gyro cor- rection system.

CDS! p, G[O DATA fOU1TIOUT uc. CANADIAN MICRO GRAVITY

Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 17

3.2.2.4 Dynamic Range The expanded dynamic range of the GT-1A is measured and recorded simultaneously in two output channels to maintain consistency with the GT-1A. The first channel (referred to as the "fine channel" for historical reasons) has an artificially limited dynamic range of ± 250,000 mGal, and is used to assess turbulence for quality control purposes. The second channel is referred to as the "coarse channel" and contains measurements over the, full dynamic range of the instru- ment.

Data is acquired through short periods of accelerometer saturation in severe turbulence by the automatic application of a reduced-order Kalman filter, enabling platform misalignment to be computed and hence controlled.

3.2.2.5 Gravimeter Operating System The gravimeter is operated by programs running on the CDU which also acts as the data acquisi- tion computer. The easy-to-use programs include calibration and diagnostic functions.

The calibration program has two modes for carrying out automatic GSE calibration. A 3-hour measurement period provides GSE calibration coefficients, while over a period of 5:5 hours the program determines the above coefficients plus the off-perpendicular angular errors between the.GSE and the platform surface. This program is normally run once before each survey project and does not usûally need to be run at the .completion of the ,project.

The diagnostic program maintains a running check on the serviceability of all gravimeter sub- systems.. Warnings regarding data quality are presented through visible and audible warnings from the control computer.

3.2.2.6 GT-1A Control and DisplayUnit (CDU) and Logging Computer The CDU and data acquisition module •is a - small, ruggedized coamputer with IBM PC architecture. It executes a proprietary program for gravimeter system control, plus data acquisition and re- cording. Control commands are provided: to the GT-1A microprocessor by way of menu com- mands. During system operation the CDU displays operational information on the main screen.

The operator initiates data recording prior to take-off and stops recording when the aircraft re- turns from each survey flight.

Raw gravimeter data is recorded on the COU as a "G" file containing :horizontal' and vertical ac- celeration data at 18.75 Hz, and as an "S" file containing platform misalignment information at 3.125 Hz.

3.2.2.7 Uninterruptable Power Supply (UPS) Ground power (120 to 240 Vac, 50 — 60 Hz) is supplied to the gravitrieter via the UPS, which converts AC input to 28 Vdc. The UPS provides backup power from internally mounted, sealed batteries for up to 15 minutes in the case of a power failure.

6727,7 1') Gcorv,~T,:aunewi m~. CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 18

3.2.2.8 Dual-Frequency GPS The gravimeter measures total vertical acceleration which is a combination of inertial and gravi- tational accelerations. In order to separate gravitational acceleration from the total measured acceleration, a Thales Z-Max dual-frequency GPS is used to record GPS data at a frequency of 2 Hz; the GPS data is used to compute the inertial vertical acceleration of the gravimeter.

Thales Z-Max GPS Receiver Specifications

GPS Satellite tracking channels: 24 parallel channels, L1 C/A code & carrier, L1/L2 P-code, full wavelength carrier, Z-Tracking & multipath mitigation.

Typical post-processed accuracy (up to several hundred kms depending on satellite geometry): 0.5 cm + 0.5 ppm (horizontal) 1.0 cm + 0.5 ppm (vertical)

Figure 6. Tholes Z-Max GPS receiver

The GPS data is post-processed and the vertical inertial acceleration is calculated, which allows the gravity anomaly to be derived, once the GPS data is integrated with accelerometer data from the gravimeter.

The GPS data is recorded on an internal SD format disk, however data is also provided to the gravimeter microprocessor in real time for system timing and synchronisation, and to assist with real-time control of the inertially stabilised platform in which the GSE is housed. The GPS re- ceiver is dedicated to the gravimeter operation and is independent from any other GPS re- ceiver(s) dedicated to aircraft navigation or other applications.

3.2.3 GPS Base Stations The primary GPS base station, Base 1, consisted of a Thales Z-Max dual-frequency GPS receiver which has an integrated antenna and which is powered by an internal 12 V battery pack. The backup GPS base station, Base 2, was also a Thales Z-Max dual-frequency GPS, with the same configuration as the primary Base. Both GPS base stations were located in a clear area with an unobstructed view of the sky within the bounds of the Lachute Airport.

The GPS base station coordinates were determined by submitting at least 6 hours of static data to the Canadian Spatial Reference System (CSRS) Precise Point Processing (PPP) on-line GPS Processing Service offered lay Natural Resources Canada, Geodetic Survey Division (reference Appendix IV - CSRS-PPP GPS Processing Reports).

Base 1 was the primary GPS base station and was used for all survey flights while operating out of the Lachute airport with the exception of flights 8 and 12. Base 2 was the back-up base sta- tion, and the data from this base station and was used for processing the gravity data on flights 8 and 12.

G° DS GEC OATA SOLUTIONS Ivc Cr\NADI'. MICRO GRAVITY ! Gastem Inc., Dundee Project, Quebec, Canada i QJRStoic ' GT-1A Airborne Gravity Survey 19

The calculated GPS base station antenna coordinates, together with the flight numbers that these positions were used for in the processing for the survey blocks at each airport, are pre- sented in Table 6.

Base Antenna Height (m) Flight No. Latitude Longitude PPP GPS Report No. Pos. Ellipsoid Geoid Appendix IV CSRBAS PPP Base 1 `2-7,11,13 45:38:27.7976 -74:21:58.2109 33.669 66.281 GPS Processing BAS PPP Appendix IV - CSRS-PPP Base 2 8,12 45:38:27.6324 -74:21:56.7569 ' 32.690 65.301 GPS Processing BASE2.pdf

Table 6: GPS base station coordinates

The same base station locations were maintained throughout the survey flights at the Lachute airport.

Figure 7. Z-Max Base GPS receiver Base 1 on location at Lachute Airport — Looking North

C.0tS

CEO OtTAtOtVT1ONt4-- I,r. .. CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 20

3.2.4 Field Computer Workstations A dedicated PC-based notebook computer was used as a workstation at the base of operations. The workstation, which is designed to use the proprietary GT-1A and Geosoft Oasis montai data processing software packages, is capable of processing and imaging geophysical and navigation data acquired during the survey, producing semi-final, preliminary-levelled grids and maps.

The workstation was used to carry out the following:

® Quality Control/Digital Data Verification - flight data quality and completeness were as- sured by both statistical and graphical means on a daily basis

a Flight Path Plots - flight path plots were generated from the GPS data to verify the com- pleteness and accuracy of each day's flight(s)

a Preliminary Maps - the Geosoft software system permitted preliminary maps to be quickly and efficiently created for errors and coherency 'checks.

G°.F 9 _GM DATA IOU/I1010 lot, ea CANADIAN MICRO GRAVITY

Gastern Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 21

4 SURVEY OPERATIONS

4.1 Base of Operations The survey operation was based at Lachute Airport, Quebec. Aircraft, C-FDME, was operated in coordination with Transport Canada regulations.

-.L

• ,"- ~„'.,.,.+.,.,•-~

.

_

Figure 8. The survey aircraft C-FDME (Left) and aircraft parking/GT-1A reference location at Lachute Airport (right).

4.2 Survey Conditions

Weather conditions during the Dundee project were generally poor with snow and freezing rain contributing to short duration sorties or days of no flights. Temperatures were generally well below freezing. The survey conditions were recorded on a daily basis and are presented in Ap- pendix V - Summary of Daily Activity.

4.3 Survey Specifications

4.3.1 Flight Specifications The following technical flight specifications were proposed:

a) Survey Lines: maximum deviation from the nominal survey line location should not exceed 75 m over a distance greater than 1 km, except where safety requirements take prece- dence:

b) Survey Altitude: maximum altitude deviation should not exceed ± 15 m over a distance of 1 km, except where safety requirements take precedence.

Gs.ï.~>a^. 02DRIL30tuiWM1t Ye. CANADIAN MICRO GRAVITY

Gastem Inc., Dundee Project, Quebec, Canada 2 GT-1A Airborne Gravity Survey 22

4.3.2 Data Recording The following gravity system parameters were recorded during the survey:

Survey Parameter Sample Rate

Gravimeter GSE acceleration data 18.75 Hz

•Gravimeter GV platform data 3.125 Hz

Airborne gravimeter GPS Rover data 2 Hz

Ground gravimeter GPS Base data • 2 Hz

Table 7:. Survey data sampling. rates.

4.4 Field Processing & Quality Control The survey data was transferred to portable media on a flight-by-flight basis, and was then cop- ied to the data processing workstation. Quality control and: preliminary data processing was •undertaken in the field by the CMG Geophysicist and included reduction of the data to Geosoft's GOB database format and inspection of aildata for adherence to contractual specifications.

4.5 Job Safety Plan

On this project CMG adopted and worked: under the GDS and Bruceland Air Occupational Safety and: Health Management System and the IAGSA safety and security standards.

4.6 Daily Activity Report - Acquisition

A report of daily activity covering the period February 12th to March 4th, 2011 may be found in Appendix V - Summary of Daily Activity. The report covers . crew mobilization and de- mobilization, production figures, flight duration and times, andtemperature for each flight.

l'a°.,Il3'. ~ ~50 a_ CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 23

4.7 Project Personnel

The following personnel participated or supportedthe field operations of the acquisition of the GT-1A gravity data during the data acquisition, QC and processing periods:

Project Personnel

Name Position Location Mouhamed Moussaoui (GDS) Project Manager Montreal office ing. . Montreal office, Wiarton and Saleh eiMoussaoui (GDS) Operations Manager Lachute field bases Geophysicist Matthew Gray (CMG:) Wiarton and Lachute bases GT-1A QC Data Processor

Charles 'H'eyn: eke (CMG) - GT-1A Operator Wiarton and Lachute bases Helen Tuckett (CMG) Final Data Processing - Perth office Mery Cowan Pilot & Owner Bruceland Air ' Wiarton andLachute bases Brian Irvine Co-Pilot/Navigator = Wiarton and Lachute bases Zdenek Duchoslav(Zebra Gravity —Tie Consultant Lachute base EarthSciertcesl'nc):

Table 8: Project personnel

C.D.S. *3 .CEO ÔATl10tOncYt Ivi. CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 24

5 INSTRUMENT CHECKS AND CALIBRATIONS

5.1 Gravimeter Calibrations and Monitoring

5.1.1 GT-1A Reference Measurements A "reference location" for the aircraft was chosen at the start of the project. This position was where the aircraft parked between survey flights and was marked on the airport apron.

At the start and end of each survey flight, the aircraft was parked at the reference location and a gravimeter reference measurement of at least 15 minutes duration was recorded. The position of the GSE when the aircraft is parked at the. reference location is referred to as the "reference point".

The reference location .Rover GPS antenna position was determined by submitting at least 6 hours of static data to the Canadian Spatial Reference System (CSRS) Precise Point Processing (PPP) on-line GPS Processing Service offered by Natural Resources Canada, Geodetic Survey Di- vision (reference Appendix IV - CSRS-PPP GPS Processing Reports).

The calculated position of the aircraft GPS antenna at the reference location at Lachute Airport was:

LACHUTE AIRPORT : WGS 84 Aircraft Reference Position Ref. Flight Antenna Height (m) Latitude Longitude PPP GPS Report No. Pos. No. Ellipsoid Geoid Appendix IV - CSRS-PPP ROVER 1 2-13 ' 45:38:30.1488 -74:21:58.4509 34.573 67.185 GPS Processing FDME.pdf

Table 9: Reference point GPS antenna position- Lachute Airport

The same reference location was used for all the survey area flights.

The pre- and' post-flight reference data were used by CMG proprietary software GT-GRAV to correct for in-flight gravimeter drift. There is no need to correct for drift between flights, as the relative free-air anomaly is assumed to be equal to zero at the reference point by the post- processing software, thus the gravimeter is effectively reset for each flight.

The reference measurement data also give an indication of the stability of the instrument over the period of the survey. These data are presented in Appendix VI - Reference Measurement Statistics.

The offsets of the GSE relative to the aircraft GPS antenna (where X is positive to starboard, Y is positive forward and Z is positive upwards). are presented in Table 10 - Gravimeter GSE offsets.

C.St'S'V crn ÔCTA 601.17110.1i CANADIAN MICRO GRAVITY • Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 25

GT-1A GSE Offsets

Rover GPS antenna offsets relative to the GSE

X (positive starboard) 0.11 m

Y (positive forward) 0.50 m

Z (positive upward) + 0.80 m

Reference point and reference location offset

GSE to ground + 1.45 m GPS antenna to ground + 2.15 m

Table 10: Gravimeter GSE offsets

5.1.2 Alliston Repeat-Line Prior to survey operations the GT-1A was test flown over the established CMG Alliston repeat- line in order to evaluate and verify repeatability of the GT-1A airborne gravimeter system after installation. The repeat-line was located 95 km southeast of the Wiarton Airport and was 40 km in length. This repeat-line was flown a total of four times on Flight 1. Data acquired on the re- peat -line were processed in the same manner as normal survey data.

ALLISTON: Repeat Line WGS84, UTM Zone 17 North coordinates Point No. Easting (m) Northing (m) Comment

1 560000. 4890000 East End

2 600000 4890000 West end'

Table 11: Alliston repeat-line flight plan coordinates

To quantitatively measure the :repeatability 'of the airborne gravimeter system, the final proc- essed repeat-line data were statistically analysed using the Green and Lane method, see Appen- dix XII - Reference Paper. The error of fit to the mean of all passes was 0:62 mGal RMS, well within. the repeat-line specification: of 1;0 mGal. The OC parameters for these test-lines are pre- sented in. Appendix VIII -Repeat-line OC Parameters

.5.1.3 Dundee Repeat-Line The survey repeat line was established in order to evaluate and verify repeatability of the GT-1A airborne gravimeter system during the course of the project. Data acquired on the repeat-line were processed in the same manner as normal survey data..

The Dundee repeat line was 20 km in length, located within the survey block as the eastern segment of traverse line L10330. This repeat-line was flown a total of four times during the sur- vey. The error of fit to the mean of all passes was 0.31 mGal RMS, well within the repeat-line specification of 1.0 mGal. aims! 1; ~aATA i0lOT1O3 Iw CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 26

To quantitatively measure the repeatability of the airborne gravimeter system, the final proc- essed repeat-line data were statistically analysed using the Green and Lane method, see Appen- dix XII - Reference Paper. Additional processing information and statistics can be found in Sec- tion 6.2.6.

DUNDEE: Repeat Line WGS84, UTM Zone 18 North coordinates Point No. Easting (m) Northing (m) Comment

1 586557 5006263 East End

2 564471 5006283 West end

Table 12: Dundee Repeat line flight plan coordinates

The repeat-line flight plan, superimposed on an SRTM30 digital terrain model is shown in Figure 9.

FLIGHT PLAN -74'30' -74°20' -74'10' . -74°00' j

R9030000 / R:076LDD Repeat )Erne Location

.

P _I_ _ — o

-74'30' -74'20' -74.10' -74'00' DUNDEE PROJECT Dundee Repeat Line Plan Summary —F,I — SOUTH OF MONTREAL AREA QUEBEC - CANADA Repeat Line Direction: 901270 degrees t Repeat Line Kilometers: 22 (exclude lead In/out) GT-1 A GRAVITY SURVEY Topography Range: 37- 52m (ASL) 5000 0 5000 10000 15000 20000 Gl7471_" __ _ .. metres ra ' MICRO GRAVITY WGS 84 / UTM zone 18N

Figure 9. Project repeat-line location with SRTM30 DEM.

71. MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GA TEM GT-1A Airborne Gravity Survey 27

5.2 Absolute Gravity—Tie to Canadian Gravity Standardization Network

The GT-1A data processing stream produced absolute free air gravity anomalies relative to the reference location at Lachute Airport. During the survey, the aircraft reference location at the Lachute Airport was tied to an absolute gravity base station located at the town of Lachute, network station number 9437-1964 located in front of the Hotel De Ville. This station is a recog- nized as a part of the International Gravity Standardization Net 1971 (IGSN71). The gravity tie was performed using a portable Scintrex CG-5 gravimeter (SN 49361) operated by Zebra Earth Sciences Inc.

Figure 10. Aircraft reference and Hotel De Ville gravity tie locations

An A-B-A-B-A-B-A-B-A loop covering a 3 hour period was conducted between absolute station 9437-1964 at the Hotel De Ville and the aircraft GT-1A "reference location" at the airport.

Station Identification Absolute Gravity Value

Hotel De Ville - 9437-1964 980631.70 mGal

Lachute Airport - GT-1A Aircraft Reference Location 980626.95 mGal

Table 13: Absolute gravity value reference locations

A processing report of the gravity tie was provided by the Zebra Earth Sciences can be found in Appendix VII - IGNS71 Gravity Tie.

CDS! ?' ~~,,. ~ MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 28

6 QUALITY CONTROL AND FIELD DATA PROCESSING Data quality control (QC) and data processing were carried out in two stages. The initial QC and field processing was completed on-site at the base of operations in the survey area. The data were progressively processed during the course Of acquisition to a semi-final stage by the end of the survey. The final data processing was then completed both CMG's offices iin. Toronto, Can- ada and Perth, Australia. A summary of the basic procedures conducted during each data proc- essing stage is presented in section 6.2.2.

6.1 Field Data Processing Equipment A laptop computer was used in: the field processing centre for the purpose of data retrieval from the aircraft, GPS data download, preliminary processing and QC checks on the acquired data. The suite of post-processingsoftware consists of the following two commercial:products:

e Waypoint GrafNav , GPS processing

• Geosoft Oasis montaj Geophysical processing

and the following two CMG proprietary software, products:

o TIMELAG and GTNAV GPS processing software

o GTQC20 and GT-GtRAV Free-air anomaly computation

Section 6.2.2 covers the data processing software used in QC and Section 7 covers the final data processing in more detail.

6.2 Field Data Processing - Quality Control

• 6.2.1 Navigation Tolerance The flight path, was calculated using the GPS data recorded with the .gravity acquisition system. It was recorded at 2Hz in WGS 84 latitude, longitude and altitude relative to the ellipsoid. These were converted to coordinate systems East and North, UTM Zone 18 North for the data processing stage and final data products.

The navigational tolerances for cross-track, altitude holding, and speed can be found in Section 2.1- Table 1.

Maintenance of altitude is a critical aspect of any airborne gravity survey. Table 14 presents sta- tistics on the survey altitude for all accepted traverse and tie lines in each of the survey blocks.

as Q ccc oara mwnmi3 a CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 29

GPS Altitude (m)

Relative to: Minimum Maximum Mean Altitude Standard Dev.

Ellipsoid 362.7 445.80 397.50 4,63

Table 14: Survey altitude statistics

The average flying speed statistics for each of the survey blocks are presented in the Table 15. The" 100-sec Filter Mean Spatial Resolution (mr equates to the half-wavelength in, metres.

Survey Speed (m/sec) 100-sec Filter Mean Spatial Minimum Maximum Mean Resolution (m) 59.33 70.09 63.81 3,190.6

Table 15: Survey speed statistics

£`.D.S` uo ôiTa wumerI i~ ANADIAN MICRO GRAVITY (C Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 30

6.21 Gravimeter Data The data processing sequence to produce the relative free-air gravity anomaly is presented in Figure 11.

CT•1A FLIGHT C•Fll.Alr 1.375 Hz

GT-1A POST REF. Altsmahvs G-FIiAlr G - CPS Flow 5.775 ih -- - Altsmativs CPS Flow ; AsoltiontlYpuu SzGUM.SVs WSkAng _ __ _ _ ___. _. _ ____t__r,__ ___~

Various Rover CPS OTHAV Log =NAY Logs bFlN.gpb PhasiLOC 2Hz SAC. *Am 2Hz t.T%T

CC Statistics CC Slats_ 4 i IFIINo.Wn GeosoR OC Flt Um List OC statistics Flt(FTWo.).g1 G3JFANo.).tiG

OC Statistics RssIEuals.g4

FLIGHT 143 FLIGHT Frog Alr Anomaly Platform Flt(FltNo).g7 GTOC2$ Log _4,~ 1I„. OC Statistics 34111A00 Pro-$-Fil.Air 2Hz 3.121 Hz !

Figure 11. GT-1A gravity data processing flow-chart

On a daily basis, the GPS data were processed, checked for adherence to specifications, and in- tegrated using the CMG proprietary program GTNAV. The resulting processed GPS data were imported into an Oasis montaj "flight" QC database where the results were examined.

The raw GT-1A gravimeter data files were checked for quality, examined for missing records and the number of saturations was checked using the CMG proprietary program GTQC20.

An in-flight drift correction was determined from the pre- and post-flight reference measure- ments and was applied to the raw gravimeter acceleration data. The GT-1A gravimeter system parameters were examined during the modelling of a typical 100-sec filtered free-air gravity anomaly. At this time, other filter lengths were applied to evaluate data quality.

The processing sequence produces a large number of QC parameters. The parameters listed in the following sections are the most reliable indicators of data quality, and these were examined on a daily basis as the data from each flight were processed. Where the value of a parameter exceeded its nominal value, closer inspection was made of the data. Where the occurrence was outside the survey boundary, the value was ignored. Where the occurrence was on line within the survey boundary, this was noted, but unless there were multiple parameters not meeting specifications the data were not necessarily rejected.

C°IiS 4 GCD Data fOtÜnWl1 Lr.. (AN/ DI1\N MICRO GRAVITY

Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 31

6.2.3 GPS post-processing proprietary software GTNAV Parameters examined and their nominal specifications are:

• SVs >= 6 The number of satellites used in processing the current epoch • PDOP < 2.5 •The Position Dilution of Precision

• 'RMS < 1.0 Li Root Mean Square • • RMS Velocity < 0:05 Root Mean Square of Velocity Differential Solution • Type =1 Differential Phase Velocity SolutionFlag, Type =1 Indicates anacceptable solution • Alpha 1 < 0.0333 • "Estimate of platform x-axis misalignment error (dig) • Alpha 2 <0.0333 Estimate of platform y-axis misalignment error (deg

6.2.4 Acceleration QC software GTQC20 Parameters exàmined and their nominal specifications are:

• Fine-channel saturations Flagged No saturation = 0, Saturation =1

• Coarse-channel saturations Flagged No saturation = 0, Saturation =1

• Lost, missing, extra or corrupted records Flagged • Gravimeter hardware status problems Flagged

Flight condition problems, mostly associated with turbulence, are the major cause of the gra- vimeter instrument saturating, or the software flagging "fine-channel" saturations. Acceptable gravity data is sti'llrecovered inmost cases where the dynamic range is exceeded: However, the quality of the resulting output depends on both the number of times the instrument has satu- rated and the distribution of the saturations along the survey line. When saturation points are frequent, the resulting free-air anomaly will be "over-smoothed" and of poor quality, particu- larly in the higher frequencies.

wo é~r~ aownowi u.~ •a CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 32

6.2.5 RMS errors of computed anomaly from proprietary software GTGRAV As a further internal test of data quality, both the peak-to-peak and RMS residual errors are cal- culated by CMG's proprietary program GTGRAV when the gravity anomaly is computed. If a sin- gle survey line has an RMS error less than 1,000 mGal.sec, then the result is considered accept- able; however, a value greater than 1,000 mGal.sec does not necessarily mean that the data is unacceptable.

. GTGRAV Residual Errors (mGal.sec

Minimum Maximum •—• Mean 252.95 705.75 470.35

Table 16: GT 1A residual errors

6.2.6 Estimate of Errors for Repeat-Line Passes The Dundee repeat lines data were processed in the same manner as the survey block flight Dines, with the sameQC parameters being examined. The repeat-line QC summary is presented in Appendix VIII - Repeat-Line QC Parameters.

The repeat-line :passes were trimmed to exclude the lead-in and lead-out. They were then re- sampted and re-oriented if necessary so the data samples coincided as closely as possible.

For QC purposes, the errors of the 100-sec filtered free-air data were then estimated using the •method outlined in Green and Lane (2003). The error was calculated for each valid pass by comparison with the mean of all passes. In addition to the error for each pass, the overall error . for al'l passes was calculated.

The results presented in Table 17 are the best estimates of the noise on each of the repeat4ine passes.

RMS,Noise Repeat-Line Flt No. Date Flown Estimate Comments Number (mGal) 9030071 007 25 Feb 2011 0.30 OK 9030081 008 26 Feb 2011 _ 0.25 - OK 9030111 011 27 Feb 2011 ' 0.31 . OK - 9030131 013 01 Mar 2011 0.38 OK

Overall RMS of accepted lines ' 0.31 -

Table 17: QC repeat-line error analysis

47:Pï.SV GPA.OlTI eownovd a CANADIAN. MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 33

7 FINAL GRAVITY DATA PROCESSING The final data processing step involved the use of the CMG proprietary program GT-GRAV, where modelling of the free-air anomaly is calculated iteratively. A filter length of 10D seconds was selected to compute the-final free-air anomaly.

From GT-GRAV, the data were imported into the Geosoft Oasis montaj environment, where each stage of levelling was performed, final corrections and adjustments were applied to the data, and final products were produced.

7.1 Estimate of Intersection Errors Intersection errors were generated at three stages of gravity processing. The first two stages, consisting of raw data intersections and intersections after zero-order levelling (removal of off- set); were carried out in the field during the course of the survey to determine and plan any re- quired re-flights. The third set of intersection errors were generated from the final levelled data. The tatter errors and those produced after zero-order levelling are considered the best indicators of overall data quality.

Errors were estimated by calculating the standard deviation of each intersection, then calculat- ing: the mean of the standard deviations for each line and multiplying the resulting value by 1/x12. This is a statistically robust method for distributing the error between the traverse and tie lines.

A summary of the intersection values is presented in Table 18.

Appendix IX - Survey QC Parameters details the intersection statistics for each line at each-stage of processing intersections for each survey block.

Overall Intersection Errors (mGal RMS)

Raw Intersections 'ist-order Intersections Final Intersections

1.10 0.49 0.00

Table.18: Estimates. of intersection errors

C..DS 4 ,. cu out sourness ti CANADIAN MICRO GRAVITY

Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 34

DUNDEE PROJECT X-OVER DIFFERENCES SOUTH OF MONTREAL AREA (mGai) c QUEBEC-CANADA • .4 GT-1A GRAVITY SURVEY • 1 <1• 2 ®

al i.n,,•_,1<•.'MIC4OGRAM'

Figure 12. Raw intersection errors (mGal)

1st ORDER TIE LEVEL INTERSECTIONS

-74°30' -74°20' -74'10' -74'00' -73°50'

. . ... . . . .• .• ...... '. ~ ._ ... . - li..- ..._. ._.._... .. .. .: . . .._. .__...... _.. @ . .. i 9 . . . . I.•- - _. â ~ • ._ :+1 - - • n -~ . : •:°. t :XI v . ..•, - . - . ._ .. - .-... . . . . -- d__ .. ... ._.. .- -• -- • - -

. •. . _.. c _, • _ ...... . ~• . . ~. • _. .. Û ,.- ... . ~ Y:_ - ~ - I ~ Ô .~ •• • - ---

• . _ - .- ___ : •." i ._.... . p . ._, ! • •~ 1 ~ _i~T .. . _ p - . . .C•--T - ~ •--0., • . -I - Ÿ . - a~=-_- .. ~ R o ~ - 3 ~ -- •

1 -74°30' -74°20' -74'10' •74°00'

DUNDEE PROJECT X-OVER DIFFERENCES SOUTH OF MONTREAL AREA (mGal) —VI— QUEBEC -CANADACANADA - >4 C 3-4

GT-1A GRAVITY SURVEY o i - i • < 1 E3I 5000 0 5000 10000 15000 20000 Cjy,r p

metres W7 - ralrea ctlAvrtr • WGS 84 / UTM zone 18N 4

Figure 13. First-order intersection errors (mGal)

0J~S. ~ it CEO DATA EGLUTiGMS AD! AN MICRO GRAVITY

Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 35

7.2 Proprietary software GTGRAV The GTGRAV program models the free-air gravity anomaly, and includes the following correc- tions:

a) Static correction based on pre-flight and post-flight reference measurements to remove drift. within each flight;

b) Eotvës correction:

2 2 V. V. + =1- COVe COS 4:1) RN + h RM +h

`1_e2) where RN =aJ All— e2 sin2(0) and RM =a (1 —e2 sin2(}

c) Subtraction of Theoretical Gravity. The GRS80.formula was used to calculate Theoretical, or Normal gravity (r) in mGals:

y= ye xr1-f-J * sin' (0)-4.Î4 s1112 (24:0)1 ~

d) Free-air correction in mGals, using the standard formula:

gfa -0:3086 xh

e) Note: The GT-GRAV program: assumes that the free-air anomaly at the reference point is zero, and that data produced for survey lines are therefore free-air values relative to the reference point, and with: respect to the ellipsoid.

Ve where = Velocity in the East (x) direction (m/sec)

Vn = Velocity in the North (y) direction (m/sec)

RN = Radius of curvature in the prime vertical (m)

RM = Radius of curvature in the meridian (m)

h = Altitude above the WGS84 ellipsoid (m)

w = Angular velocity of the Earth{rad/sec)

= 2 x 7.2921157 x 10-5

ye = Normal Gravity at the Equator

= 978032.7 mGal

Li.27S ~ CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 36

cp = Latitude (rad)

a = WGS84 Semi-major axis (m)

= 6378137:0000 m

e2 = WGS84 First eccentricity squared

= 6.6943799901413 x 10-3

f * = gravity flattening

_ Yb — Ya Ya

= 5.3024 x 10'3

l4 '= — Zf 2 fm +2

toZa m Ya

7.3 Geosoft Oasis monta] The following processes were then applied in the Geosoft Oasis montaj environment:

f).: Zero-order tie-Pine levelling correction, based on intersection values, removing offset ;

g.) Application of the CMG proprietary Noise Removal Algorithm. (NRA).

h) Geosoft FFT decorrugation micro-levelling algorithm. Final absolute. free-air gravity is.gFA m.Gal.

I) Calculation of a Simple Bouguer correction for a density of 2.67 g/cc using the formula:

® gCesim = 0.0419088 * (2.67* DEM + (1.02*water depth - (2.67*water depth)) mGal;

A digital elevation model (Shuttle Radar Topography Mission) SRTM 3 second data was used in this process for the ground elevation, in metres relative to the ellipsoid. The SRTM grid-data were downloaded from the USGS. A digital' 100m gridded bathymetry dataset was used for river depth below the St Lawrence River. The depth information was digitised from 1:25K maps produced by the Canadian Hydrographie Service (CHS) — See References (Sec- tion 9).. The SRTM and the bathymetry data were merged to produce a seamless OEM for the survey area. For calculation of the Simple Bo.uguer Correction over the St Lawrence River, the.DEM height is taken as the river surface.

ceao►ra~ CANADIAN' MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 37

j) Calculation of the Bullard (earth curvature) correction for a density of 1.0 g/cc using the formula:

• BULL = ((1.464 * (DEM/1,000)) - (0.3533 * (DEM/1,000)2') + (0.000045 * (DEM. / 1,000)3)) * (1.00/2.67) mGal;

k) Calculation of a normalised terrain correction for a density: of 1.0.g/cc using Geosoft Oasis montaj Gravity and Terrain correction software. The method involves the combination: of aircraft GPS height above the ellipsoid and the terrain elevation, and a regional terrain ele- vation grid which extends 300 kilometres beyond the survey boundary. The following is an excerpt from the Geosoft Oasis montaj Help menu.

"The terrain corrections are calculated using a combination of the method described by Nagy (1966) and Kane (1-962)'. To calculate corrections, the DEM data is "sampled" to a grid mesh centred on the station to be calculated. The correction is calculated -based. on near zone, intermediate zone and far zone contributions. In the near zone .0-to 1cells from the station), the algorithm sums the effects of four sloping triangular sections, which describe a surface between the gravity station and the elevation at each: diagonal corner. in the inter- mediate zone 11 -to 8 cells); the terrain effect is calculated for each point using the flat- topped square prism approach of Nagy (1964 in the far zone, (greater than 8 cells), the terrain effect is derived-based-on the-annular ring segment approximation to a square prism as described by Kane .(1962). However, terrain- corrections for ship-borne and airborne sur- veys are calculated using the flat-topped square prism approach of -Nagy (19661 for all near zones, intermediate zones and far zones."

• GRREGTER.gx — creation of a regional terrain correction grid; • ' GRTERAÎN:gx — calculation of the terrain correction; Filtering of the simple -eouguer, Bullard and terrain. corrections was performed--using a 1-D along-line filter matching the GT-GRAV Kalman 100-sec filter length. This process was un- dertaken to match the frequency-content of the final relative free-air anomaly data;

m) Calculation of the simple Bouguer anomaly for a density of 2.67 g/cc using the formula:

• gesim = gFA — 'gCBsim --(gBULL * 2.67) mGal; n) Calculation of the complete- Bouguer anomaly for a density of 2.67 g/cc using the formula:

• gBcom =-gesim + (terrain correction * 2.67);

Appendix XI - Geophysical Maps contains images of the resulting data. -

7.4 Gridding The final corrected and- levelled data were used to generate free-air anomaly and Bouguer anomaly grids using the Geosoft Oasis montaj- bi-directional line gridding method. A grid cell size of 125 m was chosen along with a cubic down-line and across-line method. f'.i.l%S'. e' CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gtavity Survey 38

8 DELIVERABLE PRODUCTS. Final processed survey line data are provided as ASCII.XYZ files and also as a Geosoft GDB data- base files. The final processed grid data are provided as Geosoft binary grids. The final field op- erations and processing report, "DUNDEE-FINAL-REPO'RT.pdf", is provided in an Adobe pdf for- mat.

Data and channel descriptions for the final line data files are described in Appendix X - Data File Descriptions.

FINAL LINE DATA PRODUCTS Line Data File Name Data Type Description Final gravity line data - ,DUNDEE FINAL-GRAVITY ' ASCII XYZ & Geosoft GDB 2Hz,100-sec filter ALLISTO.N-REPEAT-LINE ASCII XYZ & Geosoft GDB Repeat-line Data DUNDEE-REPEATLIME ASCII: XYZ & Geosoft GDB Repeat-line Data

Table 19: Delivered final line data files

FINAL REPORT PRODUCTS Report File-Name Report Type Description

DUNDEE-FINAL-REPORT Adobe .pdf Final field operations and data; processing report

Table 20: Delivered final report products

FINAL GRID PRODUCTS Grid Name Grid Types Description DUNDEE-FREE-AIR Geosoft GRD Absolute free-air anomaly (mGal). Absolute free-air anomaly, 1st vertical derivative DUNDEE-FREE-AIR 1VD Geosoft GRD .(meal/m)

Absolute complete Bouguer anomaly (mGal) DUNDEE-CBGR267 Geosoft GRD (density 2.67 g/cc)

Absolute complete Bouguer anomaly, 1st vertical DUNDEE-CBGR267-1VD Geosoft GRD derivative (rnGal/m) (density 2.67 g/cc) Note: Grid cell size = 125 m

Table 21: Delivered final grid data files

DEODATA 10t1If a Inc; CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey 39

9 REFERENCES Green, A., and Lane, R., 2003. Estimating Noise Levels in AEM Data. Extended Abstract, ASEG le Geophysical Conference and Exhibition, February 2003, Adelaide. A copy of the Green & Lane paper is in Appendix.X - Reference Paper.

Canadian Hydrologic Service Map #1432 -1:25000 - St-Laurence River, St-François Lake —1999

Canadian Hydrologic Service Map #1411 - 1:25000 - St-Laurence' River, Beauharnois canal, St- Louis Lake - 2003

Respectfully submitted,

Canadian Micro Gravity Ltd. 9 Altaura Blvd; Unit 1 Aurora, Ontario CANADA, L4G 3N2

April 14, 2011

c. A,rs fhr. CANADIAN MICRO GRAVITY fJ Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

Appendix I - Flight Plan Lines

~~~ ~ CANADIAN MICRO GRAVITY "GEOo4TA~ Gastem Inc., Dundee Project, Quebec, Canada G7-1A Airborne Gravity Survey

FLIGHT PLAN -74°30' -74°20' -74°10' -74'00' I ~~o,~C Croo,~a Croo,~0 . ~~o~ ` ~~~o i~oro ~C~o\O A r . cr~o~o ~C' e • ~C•g~ ,~o 110490 10490 '110470 10470 L10450 S — 1•~—~I~10450 G1040 10430 --N L10410~~s~~ 1i 10410 ' L10390 ~~r 10390 ~ 9~ 110370 10370 •yo, 110350 ~- 1035~ ~ L 0330 ~~S ~ • > 10330 41'031'0 10310 41029 10290 1 ~ =10270 o 4 027 +~ ~ L1025 r "'"~~~ ~~ ' 10250 '1 10230 ` L 0210 , `~~—~W—~ Ô10 4 Ô170~ ~~~ ~17Ô L1.0150: L10150 110130 10130 110110 / 101'10 L10090 / / ' 10090 i, L10070 ! 10070 L10050 ~ 10050 rr ôv L10030 - / ~ / 10030 LT0010~ ogo Oro ,t5 O~O O ,~o ~^O Nia 4,~0 ,~0 10010 ~~oa d ~r0 ~ k"' ~ro 1~ i ~`~ ~~I 1 50 I ~~ ....`° I -74'30' -74°20' -74°10' 44°00'

DUNDEE PROJECT Flight Plan Summary Traverse Spacing: 500 metres —~—PPP SOUTH OF MONTREAL AREA Traverse Direction: 00/270 degrees . QUEBEC - CANADA Traverse Kilometers: 2,105 • Tie Line Spacing: 3;000 metres ' Tie Line Direction: 451225 degrees /MR GT-1 A GRAVITY SURVEY Tie Lind-Kilometers: 308 1111 tY.p -ci- -r, Total Kilometers: 2,573 (exclude lead inlout) C47S; 5000 0 . 5000 10000. 15000 20000 3 Topography Range: 7. 103m (ASL) metres — * CANADA., MICRO GRAVITY WGS 84 / UTM zone i8N

G'.4.S' vp~ ` Gr0 eATL toi.: CANADIAN MICRO GRAVITY

Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

Dundee WGS 84, UTM Zone 18 North - Flight planned nine co-ordinates and distance:

FROM TO TOTAL Line No. Distance X Y X Y (Km) .L10010 531676.00 4990300.00 574308.30 4990300.00 42.63 L10020 532175.40 4990800.00 574812.80 4990800.00 42.64 L10030 532674.90 4991300.00 575316.10 4991.300:00 42.64 L10040, 533174:40 4991800:00 575820.60 4991800.00 42.65 L1:0050 533673.80 4992300.00 576325.20 4992300.00 42.65 L10060 534174.60 4992800.00 576828.50 4992800.00 42.65 L10070 534674.00 4993300.00 577333.00 4993300.00 42.66 L10080 535173.50 4993800.00 577836.30 4993800.00 42.66 L1-00.90 535673.00 4994300.00 578340.80 4994300.00 4267 L10100 536173.70 4994800.00 578845,40 4994800.00 42.67 L101-10 536673.20 4995300.00 579348.70 4995300.00 42.68 L1.0120 537172.60 4995800.00 579853.20 4995800.00 42.68 L10130 533448.90 4996300.00 580356.50 4996300.00 46.91 L10140 533949.60 4996800.00 580861.00 4996800.00 46.91 1.1.0150 534449.10 4997300.00 581364.30 4997300.00 46.92 .L10160- 534949.80 ' 4997800.00 577624.00 4997800.00 42.67 L10170 535449.30 4:998300.00 57812 -4..80 4998300.00 42.68 1.10180 535948.70 4998800.00 578625.50 4998800.00 42.68 L1.0160 536449.50 4999300.00 579127.50 4999300.00 42.68 L10200 536948.90 4999800.00 579628.30 4999800.00 42.68 L10210 537449.70 500030:0.00 580130.30 5000300.00 42.68 1.10220 537949.10 5000800.00 580631.00 5000800.00 42.68 L10230 538449.90 5001300.00 581131.70 5001300.00 42.68 1.10240 534705.80 5001600.00 581633.70 5001:800.00 46.93 L10250 535206.50 5002300.00 582134.50 5002300.00 46.93 L10260 535706.00 5002800.00 582635.20 5.0.02800.00 46.93 L10270 536206.70 5003300.00 583137.20 5003300.00 46.93 L10280 53670620 5003800.00 583637.90 5003800.00 46.93 L1029U 537206.90 5004300.00 584139.90 5004300.00 46.93 L1030.0 537706.40 5004800.00 584640 70 5004800.00 46.93 L1031'0 538205.90 5005300.00 585141.40 5005300.00 46.94 L1,0320 538706.60 5005800.00 585643.40 5005800.00 46.94 L10330 539206.10 5006300.00 586144.20 5006300.00 46.94 L10340 539706.80 5006800.00 586644.90 5006800.00 46.94 L10350 540206.30 5007300,.00 578654.70 5.0.07300.00 38.45. L110360 540707.00 5007800.00 579147.90 5007800.00 38.44 L1:0370 536961.70 5008300.00 579641.00 5008300.00 42.68 L1;0380 537454.80 5008800.00 580134.10 5008800.00 42.68 L1A390 53794.6.60 5009300.00 58062720 5009300.00 42.68 L1040'0 538439.70 5009800.00 581120.30 5009800.00 - 42.68 1.10410. 538931.50 5010300.00 581-613.40 5010300.00 42.68

G'.£>.5° m a CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

L10420 539423.40 5010800.00 582106.50 5010800.00 42.68 L10430 539916.50 5011300.00 582599.60 5011300.00 42.68 L10440 540408.30 5011800.00 583092.70 5011800.00 42.68 L10450 540901.40 5012300.00 583587.10 5012300.00 42.69 L10460 541393.30 5012800.00 584080.20 5012800.00 42.69 L10460 541886.40 5013300.00 584573.30 5013300.00 42.69 L10460 542378.20 5013800.00 585066.40 5013800.00 42.69 L10460 542871,30 5014300.00 585559.50 5014300:00 42.69 L10460 543363.20 5014800.00 586052.60 5014800.00 42.69

T50010 536928.60 5008199.20 543531.00 5014801.60 9.34 T50020 534721.30 5001749.30 547773.50 5014801;40 18.46 T50030 533464.30 4996249.50 552016.00 5014801.30 26.24 T50040 531755.70 4990298.30 556258.50 5014801.10 34.65 T50050 535998.20 4990298.20 560501.90 5014801.90 34,65 . T50060 540241.60 4990298.90 564744.30 5014801.70 34.65 T50070 544484,00 4990298.70 568986.80 5014801.50 34.65 T50080 548726.50 4990298.60 573229.30 5014801.40 34.65 T50090 552969.00 4990298.40 577471.80. 5014801.20 34.65 . T50100 557211.50 4990298.30 581714,30 5044`801.10 34.65 T50110 561453.90 4990298.10 585957.60 5014801.80 34.65 T50120 565697.30 4990298.90 582298.70 5006900.20 23,48 T50130 569939.80: 4990298.70 586541.20 5006900.10 23.48 , T50140 574182.30 4990298.50 581284.30 4997400.60 10.04

TOTAL survey line distance: 2,573 kms

r

CANADIAN MICRO 'GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

Appendix II — Survey Flight Path

®

;CEÔ CATA 9~CN~Inc CANADIAN MICRO GRAVITY

Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity. Survey

SURVEY FLIGHT PATH . -74°30' -74°20' -74°10' -74°00' -73°50' - 1 ~ ~ ~ ~ } A g~ ~s ~q ~p ~+ ,E~ ~,p` aummm_t~p !`~ ,F .~ ,e . 6~ N' t~, ~ F , - lawwïfowt~+°.i LW!. iïZOi~ û ~ __._ mâ~o.n°irâns.~~~~~~~ . a °~vw

au,m a üi 4 ÔÎ / ~tm SFAIrrAdOr w T .."W6'"'Il. /~ : ~a°re w, 4. 1 ° ¢ 4.2.77t.'n At ih~ ~~ ~ii" `° ~~ I Ila5n ' ô A id>'~99'' ~ aw ~~ ~iiô10m $ â ° " m ~~~~~®~~~~ ° j, _ io- rôr, ~~~ ~~5 ~~~ or r w~®5 41:iw row-m A J CA a~nôi~ ' ' aro°i > , u ;i . ~ `q 4‘' 9 / ~ a~ '"`~ ' ~ f I ~ / , -74°30' -74°20' -74°10' -74°00' DUNDEE PROJECT SOUTH OF MONTREAL AREA Flight Path Summary —ri:-- QUEBEC - CANADA Traverse Spacing: 500 metres G ) Traverse Direction: 001270 degrees Traverse Kilometers: 2,189.65 GT-1A GRAVITY SURVEY .~ Tie Line Spacing: 9,000 metres Ill Tie Line Direction: 45/225 degrees :C.1:574 l Tie line Kilometers: 988.88 5000 0 5000 ...... _10000 15000._ ___. 20000, G D6 4 Total Kilometers: 2,572.52 metres a, WGS84/UTMzone 18N. f

tGL'tS cr»~ ctôoiTAxtonox3 roe: a CANADIAN MICRO"GRAVITY

writ Gastem Inc., Dundee Project, Quebec, Canada cbTimai GT-1A Airborne Gravity Survey

Appendix Ii'i - Equipment Registry

.ceô Darn soumpn u~- ,/~ CAtiADIA\! MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

AIRBORNE GRAVITY EQUIPMENT REGISTRY

Item Make Part No. Serial No.

GT-1A Gravity Equipment

GT-1A Sensor GT-1A - 003 GT-1A Rotating Table GT-1A - 004 GT-1A Power Supply GT-1A - 007

Z-Max GPS Receiver #1 Thales 800963 200703011 Z-Max GPS Antenna Thales 800961-B 2004288091

Z-Max GPS Receiver #2 Thales 800963 200617061 2-Max GPS Antenna Thales 800961-B 20062710285

Z-Max GPS Receiver #ROV : Thales 800963 200704052 Aircraft GPS 11/12 AT2775-42W-TNCF- AeroArttenna 10469 Antenna 000-RG-36-NM PDS3 PEI P053-01 812401

Navigation System

AGIS System PEI AGIS-XP 811017 " AGIS Display PEI DOD8400R+T 44266-94674

PGU (Pilot Display) PEI - -

Data Acquisition System

Gravity Acquisition System PEI GDAS 8118001

Aircraft Equipment

Auto-Pilot • Century IV - , - Aircraft GPS GARMIN 430 - - Field Data Processing Equipment

Processing Laptop Dell Inspiron 1525 -

C:ANADIAN MICRO GRAVITY ' Gastem Inc., Dundee Project, Quebec, Canada GT-3A Airborne Gravity Survey

Appendix OV — CSRS-PPP GPS Processing Reports

~ ~ CANADIAN MICRO GRAVITY CSRS-PPP (Processing Software Version: 1.04 1087 )

Processing Summary for BAS1.110 Data Start Data End 2011-02-25 12:39:30.00 2011-02-25 21:49:30:00 Apri / Aposteriori Phase Std Apri / Aposteriori Code Std 0.015m / 0.011m 2.0m / 1.078m Observations Frequency Mode Phase and Code LI and L2 Static Elevation Cut-Off Rejected Epochs Estimation Step 10.000 degrees 0.00 % Same as Input RINEX File Antenna Model APC to ARP ARP to Marker Ant. not in PPP (0 rn) 0.000 m (APC = antenna phase center; ARP = antenna reference point)

Estimated Position for BAS1.110 Latitude (+n) Longitude (+e) Ell. Height (dins) (dms) (m) ITRFO5 (2011) 45 38 27.7976 -74 21 58.2109 33.669 Sigmas 0.004 m 0.011 m 0.017 m Apriori 45 38 27.791 -74 2158.171 35.681 Estimated - Apriori 0.193 m -0:862 m -2.011 m Orthometric Height CGVD28 (HTv2.0) 66.281 m (click here for model and accuracy) (Coordinates from RINEX file used as apriori position)

04:38:46 UTC 2011/03/19 / BAS1.110 1 IGS Final ! w Estimated Parameters & Observations Statistics

Pseudo-Range Residuals Sky Distribution

90---

I : 40

r . --~o- -

PRN82 i PRN@6 PRN10 PRN14 i----; PRN21 : PRN25 PRH31 PRN03 + i PRN@7 PRN11 +--+ PRN15 1-----+ PRN22 +-+ PRN26 PRN04 + + PRN@8 PRN12 PRN17 PRN23 + s PRN27 PRN05 + + PRN09 + + PRN13 ^ PRN18 + + PRN24 1-----1 PRN29

IGS Final 2 04:38:46 UTC 2011/03/19 / BAS1.110 •

Corrections to apriori position (minus final corrections) (metres)

T-----,

. ~

~,

-1 5 1.5

.' \ ~ ~~ \ \ ff ! ~ / iI / '- ; , + ti ~~ ~ + "` . ~i - ~4~~~ ~~ ~~ ‘ \ ~r TTi ~ . 4 r+ / ` -.. ~i ~ . ~4_ `~--y _' ______

(1 sigma std of position corrections) ' 25 (1 sigma std of initial position correction) / 25 (1 sigma std of final position correction) / 25 ~

Ellipsoidal Height Profile (2011-02-25 12:39:30.00 GPS> 34.6 34.4

34.2

34

33.8

33.6

33.4 12 00 13:00 14 00 15:00 16.00 17 00 18 00 19 00 20 00 21:08 22 80

04:38:46 UTC 2011/03/19 / 8AS1.110 '3 IGS Final Latitude Differences (2011-02-25 12:39:30.00 GPO) 0.4 18 9 0.2 8 ) 0 7

6 tres âi -0.2 L 5 +~ (me

•a" -0.4 4 ma

-0.6 3 ig S 2 -0.8 1 -1 0 12 00 13 00 14 00 15:00 16 00 27.00 18 00 19 00 20:00 21.00 22 00

Longitude Differences (2011-02-25 12:39:30.00 GPS) 0.2 7 -igma 0 - 6

-0.2 ) Xw. 5 -0.4 .• es w 4 tr L -0.6 3.1 ~a (me x ~ 3 -0.8 ma -1 2 4,„ Sig -1.2 1 -1.4 0 12 00 13 00 14 00 15:00 16:00 17 00 18 00 19:00 20 00 21 00 22 00

Height Differences (2011-02-25 12:39:30.00 GPS) 1 ' 16 'Sigma ~ -1.2 14

12 )

-1.4 s 18 âr -1.6 tre X. L 8

É -1.8 (me 6 ma 2 ig

4 S -2.2 2 -2.4 0 12:00 13 00 14:00 15:00 .16100 17 00 18 00 19 00 20.00 21:00 22 00

IGS Final 4 04:38:46 UTC 2011/03/19 / BAS1.110 04:38:46 UTC2011/03/19 /BAS1.110 -p> â £ i â 3 S m 1 L

nanoseconds ------12 00 6 0 4 -80 -60 -40 -20 5 7 L 2.32 2.34 2.36 2.38 2.42 3 2 2.24 2.26 2.28 1 100 160 140 120 y PRNO4 PRN03 PRN05 PRN02 2.3 2.4 12 00 0 12 , 00 . ~ 13:00 .lgma ; + ~ a 13 00

Estimated TroposphericZenithDelay(2011-02-2512:39:30.00UPS) . + + 13 00 x ~ f~ ~; .. a PRN09 xPRN13-PRN18•PRN24 PRN08 PRN07 PRNO6 • S~y # t { t ~ • 14:00 14'00 14 00

Station ClockOffset(2011-02-2512:39:30.00GPS) i Ambiguities (2011-02-2512:39:30.00GPS) 15:00 15.00 15 00 PRN11 •PRN15xPRN22 PRN10 PRN12 •PRN17PRN23 ~ +w~~~ 16 16 00 16:00 00 PRN14 17 00 ~~yry~~~ 17 00 17:00 5 -- 18 00 18 00 18:00 PRN21 ' 19 00 19:00 2000 19:00 20 00 PRN29 - PRN27 • PRN26 PRN25 •PRN31 [Sigma 20:00 s I• \ 21 00 x ~~- ~ ■ 21 0022 21:00 22 ' ~ 00 (

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0. 1 - - ^ _ _ 22 00 0 7 6 2 9 8 5 3 1 4 IGS Final Sigma (nanoseconds) Sigma (metres)

Pseudo-Range Residuals (2011-02-25 12:39:30.00 GPS) 10 8 6 N 4 •a 2 0 s -2 -4 -6 8 12 00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22 00

PRN02 PRN06 PRN10 PRN14 PRN21 • PRN25 • PRN31 PRN03 ~ PRN07 PRN11 • PRN15 PRN22 PRN26 • PRN04 • PRN08 PRN12 PRN17 PRN23 * PRN27 • PRN05 • PRN09 x FRN13 • PRN18 PRN24 x FRN29 -

Carrier-Phase Residuals (2011-02-25 12:39:30.00 GPS) 0.2 0.15 0.1 0.05 i 0 � -0.05 -0.1 -0.15 -0.2 12 00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22 00

PRN02 PRN06 PRN10 PRN14 PRN21 PRN25 . PRN31 • PRN03 x PRN07 PRH11 • PRN15 x PRN22 PRN26 • PRN04 • PRN08 PRN12 PRN17 PRN23 • PRN27 • PRN05 PRNO9 x PRN13 - PRN18 PRN24 x PRN29 -

IGS Final 6 04:38:46 UTC 2011/03/19 ! BAS1.110 — Disclaimer — Natural Resources Canada does not assume any liability deemed to have been caused directly or indirectly by any content of its PPP-On-Line positioning service.

If you have any questions, please feel free to contact: Geodetic Survey Division Canada Centre for Remote Sensing Natural Resources Canada Government of Canada 615 Booth Street, Room 440 Ottawa, Ontario MA 0E9 Phone:613-995-4410 FAX: 613-995-3215 EMail: [email protected]

, ~® Natural Resourcos Ressources naturolEos Canada Canada Canada~rGiri~d

r.

04:38:46 UTC 2011/03/19 / BAS7.110 7 IGS Final CSRS-PPP (Processing Software Version: 1.04 1087 )

Processing Summary for BAS2.110 Data Start Data End 2011-02-25 12:38:30.00 2011-02-25 21:48:30.00 Apri / Aposteriori Phase Std Apri / Aposteriori Code Std 0.015m / 0.011m 2.0m / 1.128m Observations Frequency Mode Phase and Code L1 and L2 Static Elevation Cut-Off Rejected Epochs Estimation Step 10.000 degrees 0.00 % Same as Input RINEX File Antenna Model APC to ARP ARP to Marker Ant. not in PPP (0 m) 0.000 m (APC = antenna phase center; ARP = antenna reference point)

Estimated Position for BAS2.110 Latitude (+n) Longitude (+e) Ell. Height (dms) (dins) (m) ITRFO5 (2011) 45 38 27.6324 -74 21 56.7569 32.690 Sigmas 0.004 m 0.011m 0.017 m Apriori 45 38 27.624 -74 21 56.715 34.671 Estimated - Apriori 0.252 m -0.910 m -1.981 m Orthometric Height CGVD28 (HTv2.0) 65301 m (click here for model and accuracy) (Coordinates from RINEX file used as apriori position)

04:39:46 UTC 2011/03/19 / BAS2.1.10 1 IGS Final Estimated Parameters & Observations Statistics

Pseudo-Range Residuals Sky Distribution

n-~

PRN02 , PRN06 t t PRN10 PRN14 t : PRN21 ' PRN25 t --t PRN31 PRN03 t --t PRN07 1 1 PRN11 PRN15 PRN22 t PRN26 t--t PRN04 t---- PRN08 PRN12 t t PRN17 I I PRN23 t P RN 27 t--- t PRN05 t t PRN09 t-i PRN13 t-t PRN18 PRN24 t PRN29

IGS Final 04:39:46 UTC 2011/03/19 / BAS2.110

Corrections to apriori position (minus final corrections) (metres) ----- E iy ~ ,----*°--- r ~ ' ,..-4.6--- -~ -.. ~{ ~ `` a~ 1 7-.'..\\ ~\ -.~ ~ / //1 rr \)----- ~ ,~ ~..,--. ~ - ~~' ` f `•* ~~ ,. /j. ,r ,~-~ ,r., ~ •i /r ~w .` .• / A.

C''` ''~ti ,/ ,%I/~~~ ~,~\=1"—'5'-----t-,,„„7..,/ i ~ ~~ ~ ~X ` ~,, % ff ~.. rt ` :~1 ~ \ ~~! \

/ JrjrJ ~\ ~ ( ~ `~~ ~. ~ ~~ \ ~ ~ ' ••-,.,.../ I ~ ~\ ti i i~ i/

i

-4& 5 -4 -3 5-

,--. + ~ ~ %' `7` \ ~~~ ~ ~ .. ,/ ~ ~• N/ \~ ,/,,,.... /,,.., ~~1- \ i~. ><:.---,./`\~~ f` ~ 5— ~y ,sr.,., ~r ~ \ 4 1 }'~~ •t~ ~~L J - '3--- ~\ T 1 ~+t 1 Î .-- it f r i il -- }r --r ~.~ ~ ~~t f ^~"'ti_~~r ~~ .---'

(1 sigma std of position corrections) / 25 , (1 sigma std of initial position correction) / 25 (1 sigma std of final position correction) / 25

Ellipsoidal Height Profile (2011-02-25 12:38:30.00 GPS) 36 35.5 35 34.5 34 33.5 33 32.5 32 12 00 13 00 14 00 15 00 16 00 17 00 18 00 19 00 20 00 21 00 22 00

04:39:46 UTC 2011/03/19 / BAS2.110 3 IGS Final Latitude Differences (2011-02-25 12:38:30.00 GPS) 0.5 14 !Siam - 12 • ) 10 -0.5

a tres 8

d e i'L t 4 E x 6 (m

-1.5 ma 4

x Sig

2

w r . 0 12 00 13 00 14 00 15 00 16 00 17 00 18:00 19108. 20:00 21t00 22 00

Longitude Differences (2011-02-25 12:38:30.00 GPS) 3.5 16 igma 3 14 2.5

12 ) 2 10

ala 1.5 tres L 1 8 (me •e 0.5 6 ma

X

4 Sig

2 • ~ 0 13:00 14 00 15 00 16 00 17 00 10:00 19 00 20 00 21:00 22 00

Height Differences (2011-02-25 12:38:30.00 GPS) 1.5 20 igma 1 - 18 - 16

0.5 )

- 14 s 0

!4 - 12 tre 10 Cme

- 8 ma - 6 Sig - 4 2

-2.5 0 12 00 13 00 14 00 15:88 16:00 17:00 18 00 19 00 20.00 21 00 22:00

IGS Final 4 04:39:46 UTC 2011103/19 / BAS2.110 Estimated Tropospheric Zenith Delay (2011-02-25 12:38:30.00 GPS) 2.44 0. 1 Oigma 2.42 0.09

2.4 • 0.08 ) 2.38 0.07

2.36 0.06 tres â • 2.34 0.05 (me

É 2.32 0.04 ma 0.03

2.3 ig 2.28 0..02 S 2.26 _. _ w~~~~ ~~■_~ 0.01 2.24 0 12 00 13 00 14 00 15 00 16 00 17 00 18 00 19 00 20 00 21'00 22 00

Station Clock Offset (2011-02-25 12:38:30.00 GPO) 30 `lgma 14 20 . 12 )

10 • ds n 18

ds 0 f

n x eco -10 : 8 s

eco r+t SI -20 6 • «i' i• (nano -30 ~ nanos x , . , - 4 a -40 m ^ ~~ ig ♦' . = 2 S -50 , ♦ _ j. ti * ~• -60 0 12 00 13 00 t4100 15100 16:00 17 00 18 00 19 00 20 00 21 00 22 00

Ambiguities (2011-02-25 12:38:30.00 GPS) 5 4 3 • 2 •i 1 d-+ ~ W E -1 -2 -3 4 12 00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22 00

PRN02 • PRN06 PRN10 PRN14 PRN21 PRN25 • PRN31 • PRN03 F PRN07 PRN11 PRN15 x PRN22 PRN26 • PRN04 • • PRN08 PRN12 PRN17 • PRN23 PRN27 • PRN05 • PRN09 x PRN13 PRN18 • PRN24 a PRN29 -

04:39:46 UTC 2011/03/19 / BAS2.110 5 IGS Final

Pseudo-Range Residuals (2011-02-25 12:38:30.00 GPS) 10 8 6 4 â 2 L 0 i' • -2 -4 -6 -8 -10 12 00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22 00

PRNO2 PRN06 PRN10 PRN14 PRN21 PRN25 • PRN31 PRNO3 PRNO7 PRN11 • PRN15 PRN22 - PRN26 PRNO4 PRN08 PRN12 • PRN17 PRN23 , PRN27 • PRN05 PRN09 PRN13 PRN18 PRN24 . PRN29 -

Carrier-Phase Residuals (2011-02-25 12:38:30.00 GPS) 0.2 0.15 0.1 â 0.05 • 0 •E -0.05 -0.1 -0.15 -0.2 12 00 13: Cie 14:00 15:00 16:00 17:00 16:00 19:00 20:00 21:00 22 00

PRN02 PRNO6 PRN10 PRN14 PRN21 PRN25 • PRN31 PRN03 PRN07 PRN11 • PRN15 r PRM22 PRN26 • PRN04 PRN08 PRN12 • PRN17 PRN23 • PRN27 • PRN05 PRN09 x PRN13 - PRN18 PRN24 . PRN29 -

IGS Final 6 04:39:46 UTC 2011/03/19 / BAS2.110 — Disclaimer — Natural Resources Canada does not assume any liability deemed to have been caused directly or indirectly by any content of its PPP-On-Line positioning service.

If you have any questions, please feel free to contact: Geodetic Survey Division Canada Centre for Remote Sensing Natural Resources Canada Government of Canada 615 Booth Street, Room 440 Ottawa, Ontario K1A 0E9 Phone:613-995-4410 FAX: 613-995-3215 EMail: [email protected]

Natural. Rssources Rossau~rces naturolles {mach Canada Canad~+m~

04:39:46 UTC 2011I03/19 / BA62 110 7 IGS Final CSRS-PPP (Processing Software Version: 1.04 1087 )

Processing Summary fôr ROVE.110 Data Start Data End 2011-02-25 15:22:00.00 2011-02-25 21:15:30.00 Apri / Aposteriori Phase Std Apri / Aposteriori Code Std 0.015m / 0.010m 2.0m / 2.716m Observations Frequency Mode Phase and Code L1 and L2 Static Elevation Cut-Off Rejected Epochs Estimation Step 10.000 degrees 0.00% Same as Input RINEX File Antenna Model APC to ARP ARP to Marker Ant. not in PPP (0.m) 0.000 m (APC = antenna phase center; ARP = antenna reference point)

Estimated Position for ROVE.11o, Latitude (+n) Longitude (+e) Ell. Height (dms) (dms) (m) ITRF05 (2011) 45 38 30.1488 -74 21 58.4509 34.573 Sigmas 0.010 m 0.030 m 0.038 m Apriori 45 38 30.206 -74 21 58.422 36.357 Estimated - Apriori -1.767m -0.637 m -1.784 m Orthometric Height CGVD28 (HTv2.0) 67.185 m (click here for model and accuracy) (Coordinates from RINEX file used as apriori position)

04:42:30 UTC 201'1103/19 / ROVE.110 1 IGS Final Estimated Parameters & Observations Statistics

Pseudo-Range Residuals Sky Distribution

IGS Final 2 04:42:30 UTC 2011/03/19 / ROVE.110

Corrections to apriori position (minus final corrections) (metres)

~~

r.. ,( / \~ ~— / ~ i'` \,41~ ~~. y\t,.~ T., ,,/ ~,~~ r~/ ~ ~ 4 ~S r ` f+` _ '~---~..~ " 0' .S- // ~~~~

-3 =0-.~`.~ ,f f' .\r' ~ '$11.1*. i \ f \ __-.V- j~~ \ /.--- r1f 1 - ~ ! ., ,~ ~ ~ } ~ j.1 i \ r ~ ~ + :~ ~` ~ ~ ~~r-t i ~~ ~l. ~ ~ ~ ; ( t~~`~~`ti. .,-^". , ~- _ 1 4 r ~ j~ ~k ,~ , ç \ ~ ~ ~ ~~ ~ ~ f~ f ~ .~~~~~~ '4 ~ ~ . ~ til , \ /~`~ --- ` . N -;-7( -"-- i , ',~•,,,,,,,,,, t , v.,,,,__L,

Cl sigma std of position corrections) ' 25 (1 sigma std of initial position correction) / 25 (1 sigma std of final position correction) ' 25

Ellipsoidal Height Profile (2011-02-25 15:22:00.00 GPS) 37 36

N 35 a w i'i 34 • t ~~~• ; e 33 .~a~

32

31 212. 22•2 15:00 15 30 16 00 16 30 17 00 17 30 18 00 18 30 19:00 19 30 20 00 20 30 21 00 21 30

04:42:30 UTC 2011l03119 ! ROVE.110 3 IGS Final Latitude Differences (2011-02-25 15:22:00.00 GPS) 0.5 14 iama 0 12

10 ) -0.5 . ~

~ tres w 8 i 1

w 6 (me E **, : a -1.5 m 4 Sig 2 --'~— 2 -2.5 0 15 00 15 30 16 00 16:30 17 00 17.30 18.00 18:30 19 00 19 30 20 00 20:30 21 00 21 30

Longitude Differences (2011-02-25 15:22:00.00 GPS) -0.5 ~ 10 igma 9 1 8

J;~l+ ) -1.5 .s4 7 • .

6 tres ~w 2 z - i f 5 . â -2.5 f 4 (me ma C• ~ 3 s 3 ig 2 S -3.5 4-; 1 -4 0 15 00 15 30 16.00 16:30 17 00 17 30 18 00 18 30 19 00 19 30 20 00 20:30 21 00 21 30

Height Differences (2011-02-25 15:22:00.00 GPS) 1 25

0 20 ) 1 es ~ 15 tr (me

18 a m 4 5 Sig 5

6 ...... , -, ~~ . ~ ~ . . . . 0 15 00 15 30 16 00 16 30 17•00 17•30 18 00 18 30 19 00 19.30 20 00 20 30 21 00 21 30

IGS Final 04:42:30 UTC 2011/03/19 / ROVE.110 04:42:30 UTC2011/03/19/ ROVE.110 ~ E m 5 nanoseconds -100 -140 - - • - - -5 - - 20 2.38 2.32 2.34 2.36 ' 2.42 2.44 120 10 10 15 25 160 15 0015:3016:0016:3017:0017:3018:00 18:3019:0019:3020:0020:3021:002130 60 80 40 20 El 2.3 2.4 , 15 00301616:3017181919.302020'3021:0021 PRN05 PRN03 PRN02 15 00301617180018192020:3021:0021 ....i...... . -- . + .1. #• 1 . + Estimated TroposphericZenithDelay(2011-02-2515:22:00.00GPS) R ~ x i . i .... * .... . ~h s ; .... 1. ' + ; ,ry~,~, ~ : + + 4~* TT .i....i....~

.... PRN09 PRN08 PRN06 .... ` ► ~ Station ClockOffset(2011-02-2515:22:00.00GPS)

. 4 ' 3`' ...... ~~t ~ - I . + , .... , .1 •• Ambiguities (2011-02-2515:22:00.00GPS) i.r. ~ ► ~~ +°* .... ` ~~++r ....I.... ~s . PRN14 PRN12. PRN10 _s+1111111M1011P + .... 1 � • . ~ . • ' .• ... - ~ .~ .... , Ar , I 5 ~»s~y . .,1 .... , • PRN21 MIC . PRN18 PRN15 .. > . :....i....i....i.... ~ .. + ~~â~~~ • - . ..,. , f 1

-

. I11- , ~

~~ . . ~~ .... PRN26 PRN25 PRN22 .... "~~. lgtt-I-L7--1 Isigaka ,... - 4.)400"---- + ....i...... PRN31 PRN29 PRN27 .... . - - - r. — 1 - ' 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0'09 0.1 .

6 8 4 2 12 14 10 •

IGS Final Sigma (nanoseconds) Sigma (metres) Pseudo-Range Residuals (2011-02-25 15:22:00.00 GPS) 25 20 15 10 5 0 -5 -10 15 00 15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21 30

PRN02 t PRNO6 PRN10 PRN15 PRN22 PRN27 • PRN03 PRN08 PRN12 PRN18 PRN25 PRN29 PRN05 • PRN09 PRN14 PRN21 PRN26 ■ PRN31

Carrier-Phase Residuals (2011-02-25 15:22:00.00 GPS) 0.15 0. 1 0.05 a 0 s a -0.05 E -0.1 -0.15

15:30 16:00 16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:08 20:30 21:00 21 30

PRNO2 PRNO6 PRN10 PRN15 PRN22 PRN27 • PRNO3 PRN08 PRN12 PRN18 PRN25 PRN29 PRN05 PRN09 PRN14 PRN21 PRN26 • PRN31

IGS Final 6 04:42:30 UTC 2011/03/19 / ROVE.110 — Disclaimer -- Natural Resources Canada does not assume any liability deemed to have been caused directly or indirectly by any content of its PPP-On-Line positioning service.

If you have any questions, please feel free to contact: Geodetic Survey Division Canada Centre for Remote Sensing Natural Resources Canada Government of Canada 615 Booth Street, Room 440 Ottawa, Ontario K1A 0E9 Phone:613-995-4410 FAX: 613-995-3215 EMail: [email protected]

Natural, Resources Ressources naturelles 1+11 Canada Canada Canadil

04:42:30 UTC 2011/03/19 l ROVE.1 to 7 lGS Final Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

Appendix V — Summary of Daily Activity

CZ'S! IV ; CANADIAN MICRO GRAVITY .GEdraATA'MMPONi a GAsiie Gastem Inc., Dundee Project, Quebec, Canada

Total Test Repeat Repeat Survey Survey Survey Flight Start End Final Kms Date AMlPM - Hours KmslHour Kms Kms " Kms Kms - Kiss Kiss Comments No: Time Time „Prosented Flown Flown Surveyed Accented Surveyed Scrub Acçeoted 12-Feb-11 _ - it . _... " .. Matthew Gray arrive Toronto • 13-Feb-11f... - - - -arrive- Charles --14-Feb.11 - - .• • - + - - - - Preps ration for mobBisation in Aurora office CMG crew' mobilise - 15-Feb-11 - - - - _ from Toronto to Wiarton. Gravinïeter started at 15:00 at . _ ...... _.:. ' BrucelandAlihanger. Aircraft installation commenced. 16-Feb-li - Gravimeter treating-pAâse: Aircraft installation continues

- 17-Feb-11 ------ . Gravimeter heating-phase continues. GT-1A Installed Into aircraft at 12.00 and hot- _,. started, Gravimeter autoallbretbnc performed overnight and results accepted: • .18 Feb 11 .. - .. - . - - - - _. - - _ :: -. . aorweathercronditrorrsH igh ti. P Na flights • 19-Feb-11 - _ - . -... - - _ -. Poor lWeathé cenddlona No f 9h iston repeat Una flown (4 passes): Aircraft ferry to Cornwall, Crew mobtised tô 1 20-Feb-11 AM 10.15 12:16 2.0 0.00 0.00 159.87 159 87 0 00 0.00 0.00 Cornwall Ecdreemely cold temperatures overnight. Aircraft AOG in the nioming. Ni) surveil " • 21-Feb-11 - . ------ i - - _ flights.. GDS Project Manager decides to relocate operation to Lachute. Quebec. CMG crew and aircraft mobilise in the afternoon. Set-up of operating base at Lachute Aerodrome. 2 22-Feb-11 AM 8:10 9:10 . 1.0 52.69 0.00 0.00 • 0.00 52.69 52.69 0.00 0.00 Test traverse line. Aircraft returned early reporting problems with navigation. onFight= 4"tréverselines. ro 3 22-Feb-11 PM 13:00 14:40 1.7 123.98 0.00 0.00 0.00 210.76 1.81 208.95 170.65 P blems with aircraft heater and aufoptlot height holding 4 " 23-Feb.11 AM 10:32 11:44 1.2 66:77 .80.12 .0.00 OAO 0.00 _ 0.00 . `.. _. 0.00 :. 0.00 Test flight', GPS height eilibratkin tésis chi Lachute Test Liüe A (4.passës)" 5 23-Feb 11 PM 14:14 15:58 ' ' " 1.7 "' " 123.96 ." 0.00 0:00 0:00 :" 210.74 0.00 ': 210.74 170.68 Production Flight:(4 traverse lines). 6 24-Feb-11 AM 10:30 12:24 1.9 191.85 0.00 0.00 0.00 364.52' 0.00 364.52 294.38 suction Flight (7 traverse lines). Flight ended early due poor weather conditions ' Production Flight (2 traverse lines) & 1 repeat line 8903071. Right ended early due 7 25-Feb-11 AM 8:51 10:1.7 1.5 70.26 0:00 22.09 22.09 105:39 0.00 105.39 85.49 . poor weather conditions. Production Flight (3 tràversëlines).'Flight érïded early due poorwëather 8 26-Feb-11 AM 7.17 9:05 1.8 0.00 0.00 2208 22.08 170.82 0.00 170.71 140.81 . conditions.Section of L10331 used to as repeat Me R9030081 9 26-Feb-11 AM- '.1050 11:05 0:3 .0.00 0.00 0.00 0:00 0.00 ."0.00' 0.00 `'"0.00 Flight ended due.poorweatherconditions:NoProduction' 10 ' 26-Feb-11. PM . 14:18 ' 14:38 0.3 ."0.00 R." 0.00 . 0.00 .. ". 000 .; .. 0.00 • 0,00 ...' .. . 0.00 „ .. 0.00 Fight ended due significant turbutance. NO prodüétbn : 11 .. 27-Feb-11 AM ,` 1,028 '15:27 '5.0 V 142.92 0,00 22.05 22.05 71459 ' 0.00. . 714.59 584.27 Production Flight (13 traverse limes) Repeat Line 8903111 flown; ' 12 "27-Fe1r11 PM" "'1'6:23 20:58 4.6 "140.17 0.00 " " 0.00 " ` 0.00 `844:76 0.00 644.78 524.53 Production 'Flight (12 traverse lines) 13 ., . 1-Mar 11 ;" AM I." 9:53 -.15:51 8.0 131.83 0.00 22.08 22.08 790.96 0.00 . 790.96 . ' 601.71 Production Flight (5 traverse lines14 tie lineal"' CMG iiid GDS revëw ttai projëdt data. GDS iigréé thatCMG'ceü dëlnsiR the" . '. ' -.2-Mar-11 - - • ------egiupment from the aiitracft (PM): Aircraft départs late afternoon for Wiarton. CMG crew continue with de,instalation . . . • 3-Mar-11 ------. - CMG transport equipment back to Toronto office. Charles Heyneke departs Canada 4-Mar 11, .. - - -.. - . r Charles Heyneke arrives South Africa Summary. Hrs, Kms l . T9.00.1... 60.121, 24$.171 24t).i Ti 3285 23:( ...54.501 ..3210.73(, 2572.52

::,/ CAN DIAN MICRO GRAVITY 6ro OATIL ;01,1M0111 Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

Appendix VI — Reference Measurement Statistics

CANAMAN MICRO GRAVITY G.Ar;'EL : Gastem Inc., Dundee Project, Quebec, Canada

Coarse Channel References (Gra3) Flt PRE FLIGHT POST FLIGHT Date Flight Coarse No. Mean RMS Mean RMS Drift Total Start Time End Time Start Time End Time (mGal) (mGal) (mGal) (meal) (mGallh) Flt Drift 1 20-Feb-11 +14:01:07.873 +14:43:21.746 398.734 10.999 +17:24:48.275 +18:07:44.814 398.559 1.49 -0.051 -0.17 2 22-Feb-11 +12:50:00.053 +12:54:26.774 515.506 0.470 +14:43:20.014 +14:49:59.962 517.537 0.74 1.075 2.03 3 22-Feb-11 +17:27:12.306 +17:43:34.815 519.811 6.588 +20:00:00.005 +20:09:59.953 518.25 4.02 -0.613 -1.56 4 23-Feb-11 +14:28:20.004 +14:36:39.952 514.862 2.713 +16:53:20.034 +17:01:39.982 515.852 6.78 0.410 0.99 5 23-Feb-11 +18:40:00.051 +18:53:20.000 517.099 4.272 +21:04:16.820 +22:10:52.778 516.459 40.98 -0.266 -0.64 6 24-Feb-11 +15:01:40.024 +15:13:19.973 516.036 0.965 +18:36:40.010 +19:26:39.964 516.976 0.79 0.262 0.94 7 25-Feb-11 +12:47:09.343 +13:01:28.759 517.658 3.668 +15:51:40.039 +16:03:19.987 519.197 2.48 0.500 1.54 8 26-Nov-11 +11:24:34.165 +12:07:21.745 519.051 27.320 +14:12:48.163 +15:22:59.800 519.203 38.90 0.054 0.15 11 27-Feb-11 +14:09:39.823 +14:27:32.786 519.005 37.276 +26:12:18.782 +27:05:27.803 520.268 27.35 0.105 1.26 12 27-Feb-11 +14:09:39.823 +14:27:32.786 519.005 37.276 +26:12:18.782 +27:05:27.803 520.268 27.35 0.105 1.26 13 1-Mar-11 +12:54:04.347 +13:14:19.818 519.783 37.694 +21:31:15.167 +22:45:16.778 520.810 34.16 0.119 1.03

Total Drift per Flight <1.0 mGal . ■couse channel Flight Dan ZA

■ 1.0

m 0.0

4.0

.2.0 N on .r h tl r m n n

(Flight Number)

.,as " MICRO GRAVITY erQDaTatDLVnenl Inc.

Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

Appendix VII — IGNS71 Gravity Tie

C.276S7 ® GEÔ GATA 9GLUiiGN~4u. CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

GRAVITY LOOP PROCESSING REPORT

Processing Solved Project: Lachute Loop: Lachute status: (s.d. = 0,004 mGal) Instrument Scintrex Date: 2011/03/01 ! Serial No. 49361 type: CG-5 No. of Reduct. 2 No, of readings:; 9 2.67 g/cm3 stations: density: Gravity Coordinate Elevation IGS 1980 WGS-84 Ellipsoidal formula: system: datum:

Loop closure processing:

Station Local time : Instr. reading Tidal corr. : Drift corr. Abs. gravity ' Resid. Remarks , No. [mGal] [mGal] [mGalj [mGal]

1 09:40:05 : 4120,690 -0,031 0,000 980631,705 0,005 BASE

2 10:01:50 4115,934 ' -0,027 -0,010 980626,942 '' -0,007 : REP

1 10:23:58 ; 4120,697 -0,025 =0,020 ' 980631,697 . -0,003 ; BASE

2 10:59:26 : 4115,972 -0,025 -0,036 980626,956 ' 0,006 ' `REP

1 11:23;23 4120,728 : -0,026 -0,047 ; 980631,700 -0,000 BASE

2 1137:04 : 4115,985 -0,028 -0,053 980626.,949 . -0,001 REP

1 12:06:39 : 4120,757 -0,033 -0,067 980631,703 `..: 0,003 BASE

2 12:27:58 4116,020 -0,037 -0,077 980626,952 0,002 REP

1 12:47:48 ` 4120,778 -0,042 -0,086 980631,696 ` -0,004 BASE

Legend: BASE - gravity base, REP - in-loop repetition used for drift determination.

1`.a°.17,1° f «o an..oun,a3 ~. i# CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

Stations results summary:

Line Station Altitude Number Abs. gravity RMS Max. error Remarks

No. No. [m] of obs. [mGal] i[mGal] '; [mGal]

1 1 31,580 5 980631,700; 0,004 0,005 BASE

1 2 37,343 4 980626,950; 0,006 0,007 REF POSITION

14,,,, Natural Resources RessourcessDaturell ©s. enadâ Ganadg

Canadian Gravity Standardization Network (CGSN)

_STATION 1DEN'I_TIICATI[ON (IGNS71) FOR FURTHER LNFORMATION, CONTACT: NUMBER: 9431-1p64 • NAME: LACHUTE Natural Resources Canada DESCRIPTION: CITY HALL FUNDA\!EN7k18\2 36L31SR PROVINCE: QUI Geodetic Survey Division Information Management and Client Services STATION COORDINATES (SCALED) 615 Booth Street LATI'f13DE: N 45' 39' 20't 20.6m ' Ottawa, Ontario LONGITUDE: W 20' 2l' * 20.0 m KIA 0E9 ELEVATION: 63.4300* .01 ni Telephone: 613-995-4410 GRa\TTl' VALLI: 930631 7000 s..0160 meat Fax 613-995-3215 LNSPECTED: 033992 E-Mall for nation( eôd.nrcan.Ac.ca

STATION INFOR.1 ATIO1' AND LOCATION The station is located on top of the Fundamental BM in the grounds of Ciry Hall. The B\f s tablet monuments the station.

Croquis .[ Vue éloignée ) Vue r

ta°.TS°. V • GLGDAT!,701Nr10Mf,lue. a CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada Gq-mM1g GT-1A Airborne Gravity Survey

STATION No. 1 (BASE) HOTEL DE VILLE - LACHUTE

67.(J.S. rp icô osra savrwid t CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

STATION No. 2 (REP) GT-1A AIRCRAFT LOCATION AT LACHUTE AIRPORT

G..D.Sé_ 6W➢ATISOlüiiOp Yc a CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

Appendix VIII — Repeat-line QC Parameters

27tr. CEO DATA SOLUTIONS tne. CANADIAN MICRO GRAVITY GnsMi, Gastem Inc., Dundee Project, Quebec, Canada I I

-

d

GPS Time L1-File L1-File L1-File L1-File PhsQC-File ee (seconds since start GPS Ht Satellites RMSPos <1.0 RMSVeI <0.05 ber Kms

e PDOP <2.5 d

of day) Sp mean +/-15 (metres) >1= 6 (metre) (m/sec)

e

E te Kms Kms No. tion

Typ a 13 Num ht a) Lin /sec) ine

Start End m Min. Max. Mean StdDv Min. Max. Min. Max. StdDv Max. StdDv Max. L Direc Flig Flown ( co C Accep On- `Line L1 ALLISTON REPEAT LINE 9030011 E R 1 20-Feb-11 AM 39.96 0.00 39.96 .56663.0 57264.0 66.49 707.70 720.30 714.90 2.70 7 8 1.7 1.9 0.008 0.051 0.0017 0.0149 9030012 W R 1 20-Feb-11 AM 39.98 0.00 39.98 57811.5 58397.0 68.28 704.90 717.60 710.10 2.60 7 7 2.0 2.1 0.007 0.066 0.0018 0.0124 9030013 E R 1 20-Feb-11 AM 39.96 0.00 39.96 58921.5 59548.5 63.73 703.40 721.10 712.90 3.00 7 7 2.2 2.3 0.008 0.084 0.0018 0.0140 9030014 W R 1 20-Feb-11 AM 39.97 0.00 39.97 60089.5 60719.0 63.50 702.50 737.70 711.10 5.10 7 8 1.7 23 0.008 0.070 0.0018 0.0134 Average Speed: 65.50 Average Height: 712.25 DUNDEE REPEAT LINE 9030071 W R 7 25-Feb-11 AM 22.09 0.00 22.09 53617.5 53971.0 62.49 38920 402.50 396.80 3.20 7 7 2.0 2.1 0.006 0.035 0.0018 0.0104 9030081 W R 8 26-Feb-11 AM 22.08 0.00 22.08 46444.0 46815.0 59.51 393.70 40730 400.90 3.80 9 9 1.7 1.7 0.008 0.061 0.0012 0.0074 9030111 E R 11 27-Feb-11 AM 22.08 0.00 22.08 56774.5 57126.5 62.72 384.70. 397.00 389.90 2.20 9 9 1.9 1.9 0.016 0.125 0.0021 0.0148 9030131 E R 13 1-Mar-11 AM 22.08 0.00 22.08 54587.0 54909.0 68.58 375.80 403.90 391.00 6.20 8 8 1.6 1.7 0.020 0.136 0.0039 0.0208 Total Kms: 248.20 0.00 248.20 Average Speed: 63.33 Average Height: 394.65

Afliston Repeat Line - Normalised Raw Free-air Gravity (100 Sec) Alliston Repeat Line - Gravity Residuals (100 Sec) 35 R9030011 (RMS=0.47 mGal) R9030011 (RMS=0.47 mGal) R9030012 (RMS=0.78 mGal) ®R9030012 (RMS=0.78 mGal) 25 ~===..® R9030013 (RMS=0.68 meal) ~R9030013 (RMS=0.65 mGal) R9030014 (RMS=0.53 mGal) R9030014 (RMS=0.53 mGal) 15 In NM OM 61-1A Mean (12 Lines) Regional FAA (2km)

L.914 5 E 5

3 -15 1.7g4F-t4i~e 4

-25 L.:. i:._

East Length 40km VVesi. East Length 40km West

CANADIAN MICRO GRAVITY 6E0 DATA 90EU00116 Ire. GAsr Ml Gastem Inc., Dundee Project, Quebec, Canada

)

S-File S-File e d

S-File l Ba l

ASx < +I- 5.00 ASy < +1- 5.00

E-File E-File Max.

Dev.

ASz < +l- 5.00 V l ( 1= na d. e

- Alphal < +/- 0.0333 Alpha2 < +I- 0.0333 NIS = Pitch N/S = Roll Coars <1000 ber Yaw

ter Kms St d, ding ine

EIW = Roll E/W = Pitch ture

(degrees) (degrees) ls s by a Channe Typ ions ions ions

(degrees) L Ex d

t t ic hanne t t t era

(degrees) a

le (degrees) Num C te Goo ra GTGRA Line dua

is ea i f 1A Fi t V He tura tu tur 1= MS 1- ffec & Min. Max. StdDev Min. Max. StdDev Min. Max. Min. Max. Min. Max. Mean) Rep R Res Sta Fine Coarse Sa % o a Sa GR ( GT- Sa Temp Line L 0 ALLISTON REPEAT LINE 9030011 1 -0.0065 -0.0022 0.0013 0.0081 0.0109 0.0008 -2.606 2.845 -0.500 0.834 -3.439 2.993 265 29.95 0 0 0.0% 342.50 0.47 9030012 1 -0.0136 -0.0019 0.0037 -0.0050 0.0091 0.0043 -3.660 3.149 -0.678 0.624 -4.084 3.147 453 28.91 0 0 0.0% 423.82 0.78 9030013 1 0.0043 0.0051 0.0002 -0.0053 0.0013 0.0020 -3.292 2.111 -0.882 0.635 -2.618 2.276 268 31.19 4 0 0.0% 388.73 0.65 9030014 1 0.0006 0.0017 0.0003 -0.0045 -0.0004 0.0012 -2.178 2.597 -1.263 3.008 -3.450 2.744 454 32.33 13 0 0.0% 479.18 0.53 ALLISTON REPEAT LINE Overall Std Dcv: 0.62 DUNDEE REPEAT LINE 9030071 1 -0.0011 -0.0004 0.0002 -0.0023 -0.0008 0.0004 -2.141 2.642 -1.193 1.493 -3.138 2.666 803 34.43 0 0 0.0% 301.63 0.30 9030081 1 0.0049 0.0069 0.0006 -0.0029 -0.0014 0.0005 -2.974 3.535 -0.870 0.977 -2.976 2.851 448 32.66 0 0 0.0% 227.70 0.25 9030111 1 0.0009 0.0014 0.0002 0.0020 0.0027 0.0002 -3.691 4.156 -0.428 0.757 -2.010 3.015 270 34.26 19 0 0.0% 587.02 0.31 9030131 1 0.0017 0.0022 0.0001 -0.0009 0.0002 0.0003 -3.264 3.931 -3.151 2.833 -4.279 4.004 628 32.47 50 0 0.0% 530.85 0.38 DUNDEE REPEAT LINE Overall Std Dev: 0.31

Dundee Repeat line (B) - Normalised Absolute Free-air Gravity (100 Sec) Dundee Repeat line (B) - Gravity Residuals (100 Sec) 5 4 3 2

0 • w O0 0 E1 £ 5 -7R9030071(RMS=0.30 mGal) -2 -=->R9030071 (RMS=0.30 mGal) --R9030081 (RMS=0.25 mGal) R9030081 (RMS=0.25 mGal) -10 -3 ~R9030111(RMS=0.31 mGal) R9030111 (RMS=0.31 mGal) -4 ------~R9030131(RMS=0.38 rnGal) ->R9030131(RMS=0.38 mGal) -15 - -5 -I 77.41IIMIIIIIMMIFIMEEIMMEL7=7. East Length 22km West East Length 22km West

C.AIVA171A1•: MICRO GRAVITY CEO DATA SDWTIDMI 6.e. Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

Appendix IX — Survey Line QC Parameters

• CZ!aS' ® . 4 CANADIAN MICRO GRAVITY ~Asrér.~ Gastem Inc., Dundee Project, Quebec, Canada

l

d PhsQC- te L1-File L1-File L1-File L1-File GPS Time File en (seconds since GPS Ht Satellites RMSPos RMSVeI <0.05

d PDOP start of day) 400 +1- 15 (metres) =1> 6 <1.0 (metre) (m/sec) ee

<2.5 Pres ber s e

d Kms C Sp

te No. o Km Kms c) Num b Kms Pm l Typ Line ht

/ Max

wn StdDv Max StdDv ` e a; Start End Min. Max. Mean StdDv Min Max Min Max /se lo lig c; m Fina On- ( F Line Lin F Scru Accep c o Am 10010 E L 13 1-Mar-11 AM 52.63 0.00 52.63 42.44 72844.5 73635.0 66.59 388.90 417.50 404,40 ''.''i1 7 8 2.2 0.022 0.265 0.0031 0.0225 10020 W L 13 1-Mar-11 AM 52,64 0,00 52.64 42.58 71730.5 72561.5 63.36 387.70 410.70 397.70 4.10 8 8 2.4 2.4 0.021 0.134 0.0030 0.0185 10030 E L 13 1-Mar-11 AM 52.64 0.00 52.64 42.60 70593.0 71400.5 65.19 388.40 421.70 404.40 . ) 7 8 2.4 2.! 0.018 0.163 0.0038 0.0254 10040 W L 13 1-Mar-11 AM 52.65 0.00 52.65 42.62 69490.0 70327.5 62.88 387.60 411.60 397.40 4.70 7 7 2.8 3.0 0.017 0.202 0.0038 0.0243 10050 E L 13 1-Mar-11 AM 52.65 0.00 52.65 42.60 68392.0 69168.5 67.83 383.60 418.50 399.60 i 7 8 2.5 3.1 0.021 0.187 0.0042 0.0304 10060 E L 12 27-Feb-11 PM 52.65 0.00 52.65 42.60 91401.0 92186.0 67.07 391.20 404.80 400.30 3.10 8 9 1.5 1.8 0.010 0.112 0.0018 0.0179 10070 W L 12 27-Feb-11 PM 52.66 0.00 52.66 42.61 90306.0 91142.0 62.98 393.80 405.00 400.30 2.20 8 9 1.7 2.0 0.008 0.057 0.0019 0.0150 10080 E L 12 27-Feb-11 PM 52.66 0.00 52.66 42.63 89127.5 89926.5 65.90 392.20 405.30 399.80 2.90 9 9 1.9 2.1 0.008 0.079 0.0015 0.0116 10090 W L 12 27-Feb-11 PM 52.67 0.00 52.67 42.67 88002.5 88835.5 63.23 395.80 403.60 399.50 1.90 9 9 2.0 2.1 0.008 0.066 0.0016 0.0160 10100 E L 12 27-Feb-11 PM 52.67 0.00 52.67 42.65 86820.5 87629.0 65.16 389.20 408.00 400.00 4.30 9 9 1.7 1.9 0.010 0.090 0.0017 0.0142 10110 W L 12 27-Feb-11 PM 52.68 0.00 52.68 42.65 85686.0 86513.5 63.66 388.90 398.40 392.70 2.10 8 8 1.9 2.1 0.007 0.054 0.0018 0.0133 10120 E L 12 27-Feb-11 PM 52.68 0.00 52.68 42.63 84489.0 85325.5 62.99 397.10 407.30 401.90 2.00 8 9 1.5 2.1 0.010 0.078 0.0019 0.0143 10130 W L 12 27-Feb-11 PM 56.91 0.00 56.91 46.94 83303.5 84175.5 65.29 399.50 414.60 406.40 2.40 9 9 1.5 1.6 0.009 0.093 0.0018 0.0199 10140 E L 12 27-Feb-11 PM 56.91 0.00 56.91 46.90 82025.5 82930.0 62.92 387.90 406.90 399.90 3.10 7 9 1.6 2.3 0.009 0.077 0.0018 0.0139 10150 W L 12 27-Feb-11 PM 56.92 0.00 56.92 46.89 80856.0 81758.0 63.11 399.30 411.50 405.80 2.40 7 8 1.7 z . 0.007 0.052 0.0016 0.0110 10160 E L 12 27-Feb-11 PM 52.67 0.00 52.67 42.67 79634.5 80453.0 64.36 388.80 403.30 397.80 3.10 8 8 1.9 2.0 0.007 0.050 0.0017 0.0113 10170 W L 12 27-Feb-11 PM 52.68 0.00 52.68 42.70 78485.5 79355.0 60.60 397.80 416.60 404.10 3.70 9 10 1.7 1.8 0.008 0.066 0.0015 0.0159 10180 W L 11 27-Feb-11 AM 52.68 0.00 52.68 42.65 71791.0 72632.5 62.63 393.20 405.40 400.20 2.30 8 8 2.4 2.4 0.008 0.081 0.0017 0.0139 10190 E L 11 27-Feb-11 AM 52.68 0.00 52.68 42.63 70625.5 71463.5 62.88 383.20 406.30 391.80 3.10 7 7 2.7 2.8 0.009 0.067 0.0025 0.0207 10200 W L 11 27-Feb-11 AM 52.68 0.00 52.68 42.62 69450.0 70306.5 61.51 387.80 406.20 397.80 3.80 7 7 2.9 3.1- 0.010 0.072 0.0030 0.0201 10210 E L 11 27-Feb-11 AM 52.68 0.00 52.68 42.67 68312.5 69146.0 63.19 :`:7:J. ï i, 400.90 388.00 4.20 7 9 1.7 2 .': 0.012 0.106 0.0024 0.0203 10220 W L 11 27-Feb-11 AM 52.68 0.00 52.68 42.81 67133.0 67970.0 62.95 391.80 406.90 400,70 2.80 8 9 1.7 2.2 0.011 0.076 0.0022 0.0181 10230 E L 11 27-Feb-11 AM 52.68 0.00 52.68 42.66 65990.5 66821.5 63.40 384.50 400.80 392.30 '3.10 9 9 2.0 2.1 0.010 0.090 0.0020 0.0148 10240 W L 11 27-Feb-11 AM 56.93 0.00 56.93 46.85 64742.0 65632.5 63.95 386.40 413.10 396.60 3.90 8 9 1.6 1.9 0.012 0.138 0.0019 0.0153 10250 E L 11 27-Feb-11 AM 56.93 0.00 56.93 46.92 63545.5 64446.5 63.19 386.80 407.90 392.10 2.60 9 10 1.4 1.6 0.012 0.084 0.0019 0.0151 10260 W L 11 27-Feb-11 AM 56.93 0.00 56.93 46.89 62374.0 63264.5 63.93 385.90 402.80 394.20 4.70 9 10 1.4 1.6 0.013 0.136 0.0018 0.0178 10270 E L 11 27-Feb-11 AM 56.93 0.00 56.93 46.88 61134.5 62027.5 63.76 386.20 399.20 391.80 2.20 8 8 1.8 1.8 0.010 0.072 0.0018 0.0140 10280 W L 11 27-Feb-11 AM 56.93 0.00 56.93 46.92 59921.5 60801.0 64.76 387.70 410.40 395.90 7 8 1.7 2.4 0.012 0.090 0.0019 0.0123 10290 E L 11 27-Feb-11 AM 56.93 0.00 56.93 46.88 58740.0 59627.5 64.15 384.50 400.10 394.20 3.10 7 8 1.7 2.0 0.012 0.160 0.0019 0.0128 10300 W L 11 27-Feb-11 AM 56.93 0.00 56.93 46.87 57555.5 58411.5 66.52 383.00 402.30 395.50 4.70 7 8 2.1 2.3 0.011 0.107 0.0027 0.0197 10310 W L 8 26-Feb-11 AM 56.94 0.00 56.94 46.96 48890.5 49800.5 62.57 384.60 423.70 404.40 i% 8 8 2.2 2.4 0.009 0.080 0.0017 0.0179 10320 E L 8 26-Feb-11 AM 56.94 0.00 56.94 46.85 47629.0 48534.0 62.94 398.70 411.00 404.80 2.50 8 10 1.4 2.4 0.008 0.069 0.0016 0.0158 10330 W L 8 26-Feb-11 AM 56.94 0.00 56.94 47.00 46371.5 47311.5 60.58 393.10 411.80 401.70 3.70 9 9 1.6 1.7 0.007 0.061 0.0013 0.0089 10340 E L 7 25-Feb-11 AM 56.94 0.00 56.94 46.95 52286.5 53227.5 60.53 406.30 431.30 420.10 4.60 7 8 2.1 2.2 0.008 0.055 0.0016 0.0120

S-aS *" MICRO GRAVITY GUI DATA 101UT10N! fM. EMii Gastem Inc., Dundee Project, Quebec, Canada

S-File S-File d

S-File * i) te

E-File E-File ASx < +1- 5.00 ASy < +1- 5.00

) ts d ASz <+/- 5.00 an) Ga tions

Alphal < +/- 0.0333 Alpha2 < +1.0.0333 N/S = Pitch N/S = Roll ffec l

0 Me

Yaw l

a Max. rsec ts degrees) degrees) E/W = Roll E!W = Pitch ( tura 1=Ba l ( e te (degrees) 42 (m

der ec - l) ber

In

(degrees) (degrees) Sa *1 RAV <100

d, terna Kms l) ns ding Or ture ls ea ts Channe Typ t ters ions

Ga tio t le era In 1s a GTG Raw Num m l Channe idua Fi 1A Ex f Line 12 (m Min. Max. StdDev Min. Max. StdDev Min. Max. Min. Max. Min. Max. a , tur tura Coarse 2 ( tersec 1 in ine Line L1- 0&1=Goo F Coarse by RMS Res RMS 11 RMS In F GRV Hea GT- Temp Sa Sa % o * 1 10010 1 -0.0008 0.0034 0.0012 0.0002 0.0012 0.0003 -4.458 4.383 -1.950 2.345 -4.337 4.416 986 40.41 215 9 0.6% 460.17 0.67 0.53 0.00 10020 1 -0.0025 0.0008 0.0010 -0.0017 -0.0001 0.0005 -..2 Yi 3.690 -1.740 1.665 -4.500 3.068 815 40.43 370 8 0.5% 705.75 0.77 0.78 0.00 10030 1 -0.0006 0.0025 0.0008 0.0012 0.0021 0.0003 -4.941 5.579 -2.354 3.781 -3.969 4.929 986 40.42 244 3 0.2% 468.85 0.77 0.83 0.00 10040 1 -0.0022 0.0010 0.0010 -0.0016 0.0013 0.0009 -8.427 5.547 -1.592 1.078 -8.456 4.980 814 40.12 332 36 2.1% 508.30 0.84 0.81 0.00 10050 1 -0.0008 0.0012 0.0005 0.0001 0.0008 0.0002 -4.499 6:801 -2.722 2.360 -5.124 5.544 986 39.64 349 23 1.5% 610.98 0.87 0.78 0.00 10060 1 0.0009 0.0048 0.0012 -0.0006 0.0015 0.0006 -3.481 7.460 -0.852 0.817 -3.833 5.400 2784 34.62 0 0 0.0% 390.15 0.73 0.53 0.01 10070 1 -0.0021 0.0015 0.0012 -0.0011 0.0016 0.0008 -2.727 3.538 -0.691 0.759 -4.018 3.347 2617 34.76 0 0 0.0% 471.28 0.79 0.57 0.00 10080 1 -0.0032 -0.0020 0.0003 -0.0027 0.0004 0.0009 -3.927 -0.581 0.507 -r.(''"' 2.984 2425 34.97 0 0 0.0% 576.73 0.86 0.61 0.00 10090 1 -0.0038 0.0020 0.0018 0.0005 0.0017 0.0003 -3.804 3.159 -0.743 0.499 -3.931 3.245 2255 35.01 0 0 0.0% 521.14 0.71 0.56 0.00 10100 1 0.0012 0.0032 0.0007 -0.0019 0.0001 0.0005 -3.796 ;:..,?,1 I -0.838 0.990 4.125 2067 34.95 0 0 0.0% 421.63 0.56 0.39 0.00 10110 1 -0.0011 0.0023 0.0012 0.0007 0.0021 0.0004 -3.010 3.066 -0.640 0.866 -.i. i ; 1 3.563 1895 34.66 0 0 0.0% 330.37 0.68 0.47 0.00 10120 1 -0.0012 0.0001 0.0004 -0.0015 0.0001 0.0004 -2.934 2.863 -0.464 0.416 -3.988 3.166 1707 34.36 0 0 0.0% 448.65 0.68 0.39 0.00 10130 1 -0.0023 -0.0011 0.0004 -0.0010 0.0014 0.0007 -3.173 4.623 -0.642 1.457 -5.919 4.892 1535 34.46 5 0 0.0% 482.65 0.83 0.58 0.00 10140 1 -0.0027 0.0005 0.0011 -0.0019 0.0023 0.0012 -5.50' 3.628 -0.711 0.977 -5.981 4.292 1347 34.52 0 0 0.0% 489.40 0.71 0.41 0.00 10150 1 0.0001 0.0057 0.0016 -0.0014 0.0025 0.0011 -2.826 3.196 -0.643 0.739 -5.022 3.661 1174 34.46 0 0 0.0% 437.56 - 0.66 0.46 0.00 10160 1 -0.0014 0.0008 0.0007 -0.0023 -0.0002 0.0005 -2.562 2.549 -0.667 0.520 -3.998 3.302 988 34.36 0 0 0.0% 541.75 0.57 0.26 0.00 10170 1 -0.0003 0.0040 0.0012 -0.0005 0.0001 0.0002 -4.086 2.739 -1.915 0.681 -4.897 5.280 813 34.53 0 0 0.0% 340.88 0.73 0.51 0.00 10180 1 -0.0003 0.0027 0.0009 -0.0012 -0.0003 0.0002 0.383 5.154 -0.755 0.615 -5.591 2.787 454 39.54 0 0 0.0% 384.51 0.59 0.32 0.00 10190 1 -0.0033 0.0038 0.0019 -0.0029 -0.0003 0.0007 -2.784 5.970 -2.767 1.095 -3.252 4.397 268 39.31 6 0 0.0% 428.42 0.73 0.50 0.00 10200 1 -0.0024 0.0040 0.0021 -0.0013 0.0014 0.0010 7.52', 6.396 -0.773 0.795 :.15') , ."81 94 39.23 16 0 0.0% 669.81 1.06 0.82 0.00 10210 1 -0.0013 0.0014 0.0007 -0.0028 -0.0022 0.0001 -2.789 3.124 -3.511 2.244 -4.345 3.047 268 39.32 42 0 0.0% 628.12 0.85 0.62 0.01 10220 1 -0.0048 0.0000 0.0016 0.0007 0.0065 0.0019 :.s 30'7 -0.871 0.740 -5.203 6.323 94 39.47 5 0 0.0% 629.96 0.79 0.41 0.01 10230 1 -0.0027 -0.0001 0.0006 -0.0012 0.0001 0.0004 -4.671 2.590 -1.874 0.748 -4.415 3.346 269 39.61 16 0 0.0% 535.81 0.57 0.30 0.01 10240 1 0.0001 0.0019 0.0005 0.0002 0.0012 0.0004 '' 3.283 -0.992 2.429 -5.107 3.446 93 39.51 18 0 0.0% 451.50 0.60 0.57 0.00 10250 1 -0.0014 0,0010 0.0007 -0.0038 -0.0015 0.0006 -3.056 2.844 -2.613 0.800 -2.894 3.237 270 39.29 9 0 0.0% 409.88 0.57 0.43 0.00 10260 1 -0,0043 -0.0007 0.0012 0.0034 0.0107 0.0024 -4.622 3.337 -1.124 1.461 -3.619 4.464 92 38.88 4 0 0.0% 438.29 0.61 0.48 0.00 10270 1 -0.0026 -0.0001 0.0006 0.0005 0.0013 0.0002 -3.819 3.871 -0.609 0.723 -2.762 2.412 270 38.10 18 0 0.0% 344.75 0.68 0.47 0.00 10280 1 0.0011 0.0029 0.0005 -0.0019 0.0028 0.0013 -4.711 3.364 -1.135 0.811 -4.272 4.502 92 37.42 27 0 0.0% 505.64 0.70 0.51 0.00 10290 1 -0.0027 0.0000 0.0008 -0.0036 -0.0001 0.0009 -2.756 4.181 -0.838 0.749 -2,797 5.616 270 36.51 70 12 0.7% 402.45 0.95 0.66 0.00 10300 1 -0.0007 0.0017 0.0008 -0.0031 0.0008 0.0010 -4.020 3.984 -0.849 1.274 -4.502 2.975 92 35.54 11 0 0.0% 563.82 0.85 0.56 0.00 10310 1 0.0013 0.0040 0.0008 0.0003 0.0007 0.0001 -3.574 2.970 -1.173 2.850 -3.543 3.915 449 32.44 0 0 0.0% 441.08 0.47 0.33 0.00 10320 1 -0.0041 -0.0011 0.0009 -0.0010 0.0013 0.0006 -4.326 3.569 -0.655 0.657 -4.049 6.103 633 32.51 0 0 0.0% 252.95 0.47 0.41 0.00 10330 1 -0.0008 0.0069 0.0025 -0.0031 0.0010 0.0012 -4.275 3.521 -1.275 1,205 -3.310 6.101 448 32.67 0 0 0.0% 291.16 0.45 0.47 0.00 10340 1 -0.0010 0.0019 0.0007 -0.0019 0.0012 0.0007 -3.254 3.643 -1.409.1.767 -3.172 3.292 637 34.25 0 0 0.0% 429.52 0.52 0.35 0.00

{S". .s • MICRO GRAVITY CEO DATA SMARMS eAstem Gastem Inc., Dundee Project, Quebec, Canada

d PhsQC- te GPS Time L1-File L1-File L1-File L1-File File

(seconds since GPS Ht Satellites RMSPos RMSVei <0.05

d PDO<2.5 start of day) 400 +1-15 (metres) =1> 6 <1.0 (metre) (m/sec) ee Presen

<2.5

ber

e d Kms Sp

) te ion Kms Kms No. t Typ b l Kms Num lPm ht a, Line cep Start End Min. Max. Mean StdDv Min Max Min Max StdDv Max StdDv Max /sec irec

ine lig m lown F Line D L F Fina Scru o Am Ac On- (m 10350 W L 7 25-Feb-11 AM 48.45 0.00 48.45 38.54 51222.0 51948.0 66.71 413.20 437.10 423.50 4.50 8 8 2.1 2.1 0.012 0.128 0.0018 0.0137 10360 E L 6 24-Feb-11 AM 48.44 0.00 48.44 38.42 64196.0 64966.0 62.92 365.50 409.20 396.00 9 10 1.4 1.6 0.029 0.235 0.0033 0.0229 10370 W L 6 24-Feb-11 AM 52.68 0,00 52.68 42.66 63011.0 63851,5 62.64 383.10 405.20 395.50 4.10 9 10 1.4 1.7 0.016 0.143 0.0023 0,0174 10380 E L 6 24-Feb-11 AM 52.68 0.00 52.68 42.65 61755.0 62588.0 63.26 388.80 409.40 397.20 4.10 8 8 1.8 1.8 0.009 0.070 0.0021 0.0153 10390 W L 6 24-Feb-11 AM 52.68 0.00 52.68 42.67. 60498.5 61358.0 61.30 383.30 414.30 394.80 4.90 7 8 1.7 2.4 0.011 0.096 0.0021 0.0187 10400 E L 6 24-Feb-11 AM 52.68 0.00 52.68 42.67 59164.0 60029.5 60.88 381150 405.00 394.20 4.20 7 8 1.7 2.3 0.010 0.063 0.0021 0.0171 10410 W L 6 24-Feb-11 AM 52.68 0.00 52.68 42.69 58036.5 58888.0 61.88 385.70 412.60 397.20 .0.20 7 9 2.0 2.3 0.015 0.106 0.0021 0.0175 10420 E L 6 24-Feb-11 AM 52.68 0.00 52.68 42.62 56808.5 57654.5 62.29 394.60 (5.10 8 9 1.8 1.9 0.012 0.137 0.0024 0.0204 L 0.00 42.68. 10430 W 5 23-Feb-11 PM 52.68 52.68 73634,5 74489.5 61.61 385.90 412.80 398.40 4.40 78 8 2.3 2.4 0.009 0.078 0.0018 0.0136 10440 E L 5 23-Feb-11 PM 52.68 0.00 52.68 42.66 72419.5 73267.0 62.18 387.80 408.70 399.20 3.60 8 2.4 2.7 0.009 0.081 0.0022 0.0166 10450 W L 5 23-Feb-11 PM 52.69 0.00 52.69 42.69 71251.0 72108.5 61.45 392.70 409.50 400.80 3.40 6 7 2.7 3.8 0.006 0.064 0.0022 0.0190 10460 E L 5 23-Feb-11 PM 52.69 0.00 52.69 42.65 70088.0 70868.5 67.48 383.70 410.80 397.90 ü. 1 0 7 8 2.5 3.1 0.007 0.057 0.0021 0.0144 10470 W L 3 22-Feb-11 PM 52.69 0.00 52.69 42.66 69115,5 69970.5 61.64 366.60 388.00 374.10 4.00. 8 9 1.7 2.6 0.017 0.145 0.0025 0.0198 10480 E L 3 22-Feb-11 PM 52.69 1.81 50.88 42.67 67952.0 68729.5 65.44 376.70 406.30 389.90 5.10 8 9 1.7 2.2 0.020 0.167 0.0027 0.0211 10490 W L 3 22-Feb-11 PM 52.69 0.00 52.69 42.69 66826.5 67705.0 59.96 362.70 383.00 372.80 3.90 9 9 1.9 2.0 0.016 0.187 0.0031 0.0214 10501 E L 3 22-Feb-11 PM 52.69 0.00 52.69 42.64 65617.5 66413.0 66.22 380.40 400.60 388.20 3.60 8 10 1.4 1.9 0.020 0.255 0.0025 0.0225 50010 NE T 13 1-Mar-11 AM 19.34 0.00 19.34 ' 9.28 67283.5 67583.0 64.55 380.50 407.50 394.30 2.0 9 9 1.7 1.7 0.022 0.167 0.0048 0.0246 50020 SW T 13 1-Mar-11 AM 28.46 0,00 28.46 18.44 66530.5 67010.5 59.33 382.80 445.80 398.60 9.80 9 10 1.6 2.1 0.021 0.183 0.0026 0.0166 50030 NE T 13 1-Mar-11 AM 36.23 0.00 36.23 26.21 65709.5 66230.5 69.55 383.80 419.00 397.40 7.50 9 9 2.0 2.1 0.026 0.209 0.0038 0.0219 50040 SW T 13 1-Mar-11 AM 44.59 0.00 44.59 34.69 64648.5 65355.5 63.07 384.00 317.90 395.90 5.60 9 9 1.8 1.9 0.027 0.330 0.0033 0.0249 50050 NE T 13 1-Mar-11 AM 44.59 0.00 44.59 34.72 63747.0 64383.5 70.09 375.40 412.70 396.10 7.4(1 9 10 1.4 1.6 0.027 0.192 0.0031 0.0205 50060 SW T 13 1-Mar-11 AM 44.59 0.00 44.59 34.74 62718.5 63413.0 64.21 379.10 411.40 396.50 5.90 8 10 1.4 1.7 0.032 0.252 0.0056 50070 NE T 13 1-Mar-11 AM 44.59 0.00 44.59 34.72 61697.5 62359.5 67.36 380.50 433.60 397.40 9.80 9 10 1.4 1.7 0.024 0.289 0.0030 0.0206 50080 SW T 13 1-Mar-11 AM 44.59 0.00 44.59 34.75 60683.0 61416.0 60.85 369.30 419.60 394.40 (.50 8 8 1.8 1,8 0.023 0.188 0.0035 0.0250 50090 NE T 13 1-Mar-11 AM 44.59 •0.00 44.59 34.73 59721.5 60371.5 68.61 375.50 417.50 392.00 6.90 8 8 1.7 1.8 0.021 0.199 0.0030 0.0218 50100 SW T 13 1-Mar-11 AM 44.59 0.00 44.59 34.71 58675.5 59392.0 62.27 376.70 423.40 398.60 7.90 6 8 1.7 .7 0.023 0.178 0.0037 0.0277 50110 NE T 13 1-Mar-11 AM 44.59 0.00 44.59 34.72 57775.0 58411.5 70.04 384.00 426.10 399.10 7.2.0 7 7 2.2 2.3 0.019 0.136 0.0032 0.0195 50120 SW T 13 1-Mar-11 AM 33.48 0.00 33.48 23.52 56979.5 57528.0 61.04 390.60 416.90 403.60 '3.40 7 9 2.0 2.3 0.022 0.145 0.0035 0.0208 50130 NE T 13 1-Mar-11 AM 33.48 0,00 33.48 23.52 56097.5 56590.5 67.92 3/6.10 410.20 392.50 (.60 9 9 .1.8 1.9 0.020 0.186 0.0026 0.0176 50140 SW T 13 1-Mar-11 AM 20.04 0.00 20.04 10.13 55512.0 55842.0 60.71 381.20 406.50 394.90 1.90 8 9 1.8 1.8 0.027 0.214 0.0045 0.0246 10500 W S 2 22-Feb-11 AM 52.69 52.69 0.00 0.00 49057.5 49875.0 64.49 428.10 445.40 436.80 2.90 8 9 2.2 2.4 0.012 0.128 0.0018 0.0139 Total Kms: 3265.23 54.50 3210.73 2572.51 Average Speed: 63.81 Avg Height: 397.50 4.63

41.1 CANAf11Ar': MICRO GRAVITY CEO OITA 3O1.I1T10XS Inc. Gasrénn', Gastem Inc., Dundee Project, Quebec, Canada

I 1

S-File S-File d

• S-File l) )

te

E-File E-File ASx < +1- 5.00 ASy < +1- 5.00

) ts ions d

ASz < +1- 5.00 ea t

+/- 0.0333 ffec Alphal < Alpha2 < +1- 0.0333 N/S = Pitch N/S = Roll l

Ba Mean

Yaw l a (m Max. ts

tura (degrees (degrees) E1W = Roll EIW = Pitch ( l 1= ( e tersec '12 (degrees) 1000 der - ec l) ber

(degrees) Sa (degrees) < •1 In d; terna l) hanne Kms e ding ture Or GRAV ls Ga ts Typ s t ters

ions ions C Ga t t Ex In le era GT Goo (m se m Num 1s Raw Hea Line l Channe idua f 1A Fi Min. Max. StdDev Min. Max. StdDev Min. Max. Min. Max. Min. Max. ( 42 tura tura o Coar 2 tersec T- 1 ine RMS Res RMS 1v RMS In Fina Line L1- F by GRV G Coar Sa 081= Temp Sa 10350 1 -0.0046 -0.0005 0.0012 0.0089 0.0157 0.0017 -3.575 O.5 t::; -3.634 3.501 -4.388 3.852 444 34.07 0 0 0.0% 393.95 0.58 0.28 0.00 10360 1 0.0000 0.0007 0.0002 0.0011 0.0036 0.0007 , ,,.s,`,(i -3.132 2.704 -10.478 6.540 1344 36.60 319 4 0.3% 544.94 0.48 0.38 0.01 10370 1 -0.0006 0.0010 0.0005 -0.0034 -0.0016 0.0005 -3.077 4247 -1.548 1.974 -7.233 4,437 1176 36.67 21 0 0.0% 318.36 0.64 0.41 0.01 10380 1 -0.0017 -0.0001 0.0004 0.0011 0.0025 0.0004 -3.300 3.704 -1.004 0.980 -5.169 5.995 984 36.71 0 0 0.0% 407.45 0.64 0.52 0.00 10390 1 -0.0002 0.0019 0.0007 -0.0019 0.0003 0.0006 -3.146 fi.c>,^,i -1.734 1.408 -4.061 7.688 816 36.70 0 0 0.0% 510.39 0.78 0.60 0.00 10400 1 0.0000 • 0.0013 0.0004 0.0001 0.0028 0.0007 -3.493 7.t':;:u -1.646 2.379 -3.800 3.852 624 36.66 0 0 0.0% 449.77 0.51 0.32 0.00 10410 1 -0.0038 -0.0021 0.0004 -0.0036 -0.0012 0.0006 -3.357 4.429 -1.957 2.178 -4.933 4.068 456 36.60 0 0 0.0% 589.20 0.68 0.49 0.00 10420 1 -0.0026 0.0014 0.0013 -0.0019 0.0006 0.0007 -4.141 i 1 ï , -2.328 1.886 i; 4.449 263 36.36 4 0 0.0% 489.30 0.58 0.42 0.00 10430 1 -0.0022 0.0000 0.0008 -0.0004 0.0011 0.0004 -3.564 FoCir, -1.027 1.120 -3,761 -I:,'i 812 32.32 4 0 0.0% 574.50 0.51 0,50 0.00 10440 1 -0.0041 0.0030 0.0021 -0.0016 0.0004 0.0005 -3.453 3.018 -1.059 1.660 -2.419 3.288 629 34.01 4 0 0.0% 409.65 0.38 0.50 0.00 10450 1 0.0001 0.0021 0.0005 -0.0010 0.0017 0.0007 -2.729 4.309 -1.217 1.178 -3.248 2.897 452 35,38 4 0 0.0% 378.80 0.44 0.33 0.00 10460 1 -0.0024 0.0018 0.0012 -0.0015 0.0006 0.0005i2.0E3B3 5.5-!,; -1.132 3.953 `''.`;`.i1 9.950 269 36.46 4 0 0.0% 688.35 0.56 0.33 0.00 10470 1 -0.0018 -0.0001 0.0005 -0.0033 0.0031 0.0020 -3.382 4.606 -1.441 0.670 -2.423 3.814 812 27.04 75 12 0.8% 376.60 0.52 0.39 0.00 10480 1 0.0000 0.0000 0.0000 -0.0001 -0.0001 0.0000 1 ,..15

i3..0.Mi. h11CR0 GRAVITY GEO DATA IOLVi1OPIE +e. •

mom Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

Appendix X — Data File Description

CANADIAN MICRO GRAVITY DATAE O 80LVf10a1ne. Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

FINAL GRAVITY LINE DATA FORMAT

The final line data file variable/channel names, format, units and description of each variable are presented in the following table:

Filename: DUNDEE-FINAL-GRAVITY

Variable Unit Description •

Line Integer Line Number

Fit Integer Flight Number

Date YYYY/MM/DD Flight Date

GPSTime HH:MM:SS.s GPS Time since start of GPS Day

GPSSecs Seconds GPS Seconds since start of GPS Day

Fid Integer Fiducial

UTMZone String Universal Transverse Mercator Zone — 18N

Longitude DDD.MM.SS.s Longitude (WGS 84).

Latitude DDD.M•M.SS.s Latitude (WGS 84.)

X metres . Easting - WGS84, UTM Zone 18 North

Y metres ' Northing - WGS84, UTMZone 18 North

CSats Integer Gravimeter Saturations O = No Saturation, 1= Saturation

Temperature degrees C Gravirnéter Temperature

GPSHt_E metres GPS Height (above Ellipsoid) Shuttle Radar Topography Mission Data — SRTM90 merged DEM E metres — with river depth data -relative to Ellipsoid Raw Unlevelled Absolute Free-air Anomaly (100 second i RawFA100 meal filter) TLevFA100 mGal Tie Levelled Absolute Free-air Anomaly (100 second filter) r FinalFA100 mGal Final Absolute Free-air Anomaly (100 second filter)

BlldC mGal Earth Curvature/Bullard Correction (Density 1.00 g/cc) '

TerrainC mGal Terrain Correction (Density 1.00 g/cc)

SBgrC267 mGal ` Simple Bouguer Anomaly Correction (Density 2.67 g/cc)

SBGR267 mGal : Absolute Simple Bouguer Anomaly (Density 2.67 g/cc)

CBGR267 mGal Absolute Complete Bouguer Anomaly (Density 2.67 g/cc)

.CS .eeOÔ.T.fOuma+â be. a CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

Filename: DUNDEE-REPEAT-LINE

Variable Unit Description

Line Integer : Line Number

Flt Integer Flight Number

' Date YYYY/MM/DD ' Flight Date

GPSTime HH':MM SS.s GPS Time since start of GPS Day

GPSSecs Seconds GPS Seconds since start of GPS Day

Fid integer ' Fiducial

UTMZone String Universal Transverse Mercator Zone — 18N

Longitude DDD.MM.SS.s Longitude (WGS 84) , Latitude (WGS84) i Latitude D:DD.MM.SS.s X metres Lasting - WGS84, UTM Zone 18 North

Y metres • Northing - WGS84, UTM Zone 18 North

CSats Integer Gravimeter Saturations 0 = No Saturation, 1= Saturation

Temperature degrees C Gravimeter Temperature

GPSHt_E metres . GPS Height (above Ellipsoid) Raw Unlevelled` Absolute Free-air Anomaly (100second RawFA100 rnGal filter)

G.FJ.~ GN ÔATA 10WR0 In[. CANADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

Filename: ALLISTON-REPEAT-LINE

Variable Unit Description

Line Integer Line Number

Flt Integer Flight Number

Date YYYY/MM/DD Flight Date ,

GPSTime HH:MM:SS.s ' GPS Time since start of GPS Day

GPSSecs Seconds . GPS Seconds since start of GPS Day

Fid S Integer Fiducial UTMZone String . Universal Transverse Mercator Zone — 17N

Longitude DDD.MM.SS.s , Longitude (WGS 84)

Latitude DDD.MM.SS.s Latitude (WGS 84)

X metres - Easting - WGS84, UTM Zone 17 North

Y metres Northing - WGS84, UTM Zone 17 North

' CSats Integer Gravimeter Saturations O = No Saturation, 1 = Saturation

Temperature degrees C Gravimeter Temperature

GPSHt_E metres GPS Height (above Ellipsoid) Raw Unlevelled Relative Free-air Anomaly (100 second RawFA100 mGal filter)

( •

C.Z7.57 V C.E0.0ATA SfitUTI' 014 Ine. al CANADIAN MICRO GRAVITY. Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

Appendix XI — Geophysical Maps

61.27~5' e CANADIAN MICRO GRAVITY WT~9~Inc a Gastem Inc., Dundee Project, Quebec, Canada GT-IA Airborne Gravity Survey

ABSOLUTE FREE-AIR ANOMALY (100 second filter) 74'30' -74°20' -74°10' -74°00' -73'50' r

mGal

-74°30' -74°20' -74°10' -74°00' DUNDEE PROJECT SOUTH OF MONTREAL AREA — 1— QUEBEC - CANADA Colour Drape Image with NE Illumination GT-1A GRAVITY SURVEY D 5000 0 5000 10000 15000 20000 GDS;

metres MICRO CRAVRY WGS84/UTMzone 18N

CZ? S° 6r001T3 sourrlOR) CANADIAN MICRO GRAVITY

Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

ABSOLUTE FREE-AIR ANOMALY - 1st VERTICAL DERIVATIVE (100 second filter) -74°30' -74°20' -74°10' -74°00' -73°50' I

~ W ~ .' ,_ ;• tr, , Jr i:- ~i x ~ ~ N ti ~ ' ..~i ~ ,~ — ob N .....1r.1 axs — em~._ - _.~`.• . ., .. t':._ ... . ~ ~~ .. . .. It ‘917. a°0~n ~— ~ _

~ —~ 1,''c am —~ p v i ~ ~ ir+ aa~oo+ =3 -0ma amt e4•y .. - -0om -000m .. . ..,.-.. -0a. - ...... -. -0me. -000m A9R11 -5- ~ .50201 a (/ 0ôm9 °'a — -0ae-065, 11 aami 4' -000,3 -0eou mGal I -74°30' -74°20' -74°10' -74°00' DUNDEE PROJECT SOUTH OF MONTREAL AREA Colour Drape Image QUEBEC - CANADA with NE Illumination

GT.-1A GRAVITY SURVEY

5000 0 5000 10000 15000 20000 ca.si

metres . li ••: :ono GRAVITY WGS 84 / U7M zone 18N

i;7J27S Pe0 [1112CI.UM14i fee. CANADIANMICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

ABSOLUTE COMPLETE BOUGUER ANOMALY (Density 2.67 glcc) -74'30' -74'20' -74'10' -74'00' -73'50' !

;i r4 66 •. `` 45' 66 ; 6a:.tiI 15'

N — a i --- ef s , — ~ .. . . . .. V .-_. nx—. a6 — f: ~.~, .16~ P' —

.. :i." — 47 /-- 45' .5i 10' ~ - 45'

li05'

mGal . i -74'30' -74'20' -74°10' -74°00' DUNDEE PROJECT SOUTH OF MONTREAL AREA — — Colour Drape image QUEBEC - CANADA with NE Illumination GT-1A GRAVITY SURVEY

5000 0 5000 10000 15000 20000 GDS :• W metres * MICRO GRRYITY WGS84/UTM zone 18N

G.I1.S4 GIO DATA SOLUTIONS An. (,,NADIAN MICRO GRAVITY Gastem Inc., Dundee Project, Quebec, Canada tGAST~MJ GT-1A Airborne Gravity Survey

ABSOLUTE COMPLETE BOUGUER ANOMALY - 1st VERTICAL DERIVATIVE (Density 2.67 g/cc) -74°30' -74°20' -74°10' -74°00' -73°50'

a ,.,

- :J OMM -

- ; G°°°f ^+r— ; fa'~: ~~ c '', a.:0° AO. a~ s~m aaom .00006 L COW/ th OCCY O .1 WO U 47 ~i -0MT . . . . . ::~ .~ :✓ ~ 400Y mGat ~ i F -74°30' -74°20' -74'10' -74°00' DUNDEE PROJECT SOUTH OF MONTREAL AREA — - Colour Drape Image QUEBEC - CANADA with NE Illumination GT-1A GRAVITY SURVEY II3 5000 0 5000 10000 15000 20000 C,D~`

^ - metres --^ MICRO GRAVITY 84 / UTM zone 18N ~

ccô carRscUvnan PK. 4 CANADIAN MICRO GRAVITY

Ipmk Gastem Inc., Dundee Project, Quebec, Canada GT-1A Airborne Gravity Survey

Appendix XII — Reference Paper.

CEO DATA 801.U1ION7 Inc. CANADIAN MICRO GRAVITY Estimating Noise Levels in AEM Data

Andy Green Richard Lane OTBC'Pty. Ltd, Australia Geoscience Australia, Australia greenaafal ozemaf. com. a u [email protected]

Resolve system had 27 repeat lines, each about 5 km long. In the Tempest time domain data set, we have 11 repeated lines SUMMARY around 11 km in length, with 15 channels of both X and Z components. This paper reports the results of analysing AEM data where the same flight line has been flown repeatedly to A MODEL FOR NOISE monitor system performance.

When these data are corrected for the effects of variable Let us assume we have repeat flight lines where each along- survey altitude they provide a good measure of the line sample is in the same location for all lines. Then, for any reproducibility of AEM data. The analysis has been given channel, we have data X0; where I is line number and i conducted for both frequency and time domain systems is sample number. In the case of time domain data these X's and shows that, where the area is even moderately are real quantities, while for frequency domain data they are conductive, multiplicative errors will provide the complex. dominant source of noise for AEM surveys. Errors typically have standard deviations of 2 % and can easily The most general linear model for noise in these data would induce fluctuations of 10%. Moreover, because of their allow for both additive and multiplicative errors. Thus, ,,; geometric origins, these errors are highly correlated X = E11R41. +A between channels. Frequency domain HEM and Z Here the E's are multiplicative errors and A's are additive . component time domain systems produce errors that are errors that are functions of line and sample. The R's are the largely unrelated to time/frequency/conductivity. This is true ground responses uncorrupted by error. They are not a not the case for X component data from asymmetric function of line number. systems. Analysis of this model is complicated and, initially, we work Key words: Noise, AEM with simplified versions where the error is either additive (E = 1) or multiplicative (A = 0).' Taking the additive case first INTRODUCTION our error model will be X,1 =R+ A,, An accurate understanding of the noise characteristics of an If we then compute the three averages over lines (1), locations AEM system is necessary to perform unbiased manual (i) and both together: • interpretation and to correctly weight the data in most detection and inversion algorithms. 'Unfortunately, there is X., =A,; +R, - very little information on the realistic, in-flight noise levels of =Al +R. the available AEM systems.. The values commonly published X,. ,. are often for special situations such as ground-based X.,. = A.. + R. measurements of electronic noise or measurements from straight and level flight at high altitude. we can calculate a residual D,1 = X — X., — X,,. + This conservative attitude to defining noise levels is unsurprising because, when more complicated sources of = lt — A.a-Ai,•+A•,. variability -are considered, it is hard to fairly distinguish that is independent of ground response terms. between- noise and other systematic sources of variability that could, in principle, be monitored and incorporated into the It should be noted that the Ai,. term will contain any "drift" data processing strategy. At the moment the only source of variability that is routinely treated in this way is the survey errors that are constant over the whole flight line. This means altitude. However there are many other sources of geometric that our error estimates will not include an estimate for this variability that are currently unmonitored , and type of noise. uncompensated. These often .provide the major source of along-line variability and, at least until they are fully If the errors are multiplicative we can achieve an equivalent compensated, should be treated as noise. In addition to this result by taking logs• first and then applying the same geometry-related noise, other noise sources, such as drift in procedure. Thus, if we let lower case letters represent the fixed geometry systems or primary field removal errors in logarithm of a quantity (e.g. log(D;l) = du) we have variable geometry systems, are difficult to quantify. d,,, = e, — E— E,. + E.,. In this paper we report the results of analysing data where the If we have enough samples we might expect that the averages same flight line has been flown repeatedly. Two surveys are of these noise terms to be either zero or one, and thus the discussed here. One survey with' a 6 frequency Dighem

ASEG 16îh Geophysical Conference and Exhibition, February 2003, Adelaide. Extended Abstracts Noise in AEM Data Green and Lane residuals become estimates for the noise. That is for additive subsequent discussion will focus on these resampled data and multiplicative errors respectively we have, rather than the raw data.

The noise values require some form of qualification regarding D,, = A,, and the spatial processing that have been applied to the data. It is obvious that spatial filtering can be used to alter the position In the case of the complex, frequency domain data additive of the trade-off between noise level and spatial resolution. In errors should be processed on the In phase and Quadrature addition to a description of the processing applied to the data, and multiplicative errors on the log(amplitude) and phase. amplitude spectra of profile data were used to assist with the characterisation of the effects of processing. If we can assume that all the error terms are uncorrelated with each other and with the ground response ground Average along-line amplitude spectra were calculated for response .( R,) then we can make some more general both frequency domain and time domain data examples. At any point in the spatial frequency spectrum, the observed conclusions with regard to the combined multiplicative and amplitude can be attributed to a combination of geological additive model. As we shall see these assumptions are signal, noise levels and the spatial pfocessing that has been probably only valid for some types of system geometry but applied to the data. At higher spatial frequencies (ie short under this model, if we compute the residuals as an additive wavelengths), the effects of low pass filter operations often model we can obtain: dominates. In the case of the time domain data, spatial frequencies higher than 0.6 to 0.7 Hz had been attenuated by and thus expressions for the variance of the errors, spatial processing. At an average speed of 70 m/s, this corresponds to a wavelength of 100 to 120 metres. This is Var(D,„) = Var(E,, —1) 1 1 R; +Var(A,.,) consistent with the effects of the 3 second tapered stacking N, filter applied to these data. In the case of the frequency domain data, spatial frequencies higher than 1.5 to 2.0 Hz This gives us a way of estimating both multiplicative and had been attenuated by spatial processing. At an average additive noise under these assumptions. speed of 33 m/s, this corresponds to a spatial wavelength of 16 to 22 metres. This is consistent with the effects of the 0.9 second tapered profile filter applied to these data. PROCESSING When the residuals are computed as outlined in the previous The processing discussed here uses the 6 Dighem Resolve section they show a substantial variability due to altitude frequencies as an example to illustrate the analysis of variation between and along lines. As this variability is multiplicative errors. usually monitored and accommodated in processing it cannot be considered to be noise and should be removed. Figure 2 Preliminary processing is necessary to register the repeat shows the residuals for the amplitude of the 385 Hz lines to a common flight line. This common line was frequency data as a function of the residual computed on the estimated by a least squares fitting procedure that calculates a radar altimeter data. "2 way” least squares fit on the x,y data by minimizing the normal deviates from the line, York (1966).

If we now look at the normal deviates of each of the repeat lines from this common line, we get the plot shown in Figure 0.05 1 that illustrates the accuracy with which the 27 lines were flown. 0.00

10 —0.05 o É —0.10 t-10 —6 —4 —2 0 2 4 6 B 0 0h —20 Figure 2. Scatterplot showing the dependence of the 385Hz amplitude residuals (Dx) on flying height residuals —30 (Dh) before "height correction". o I 2 3 4 5 Distance along line (km) If a linear trend is removed from the data the result is much Figure 1. Deviation from the common line for 27 Dighem more evenly scattered. In some sense this removal amounts to flight lines a height correction of the data. This is a purely statistical "fudge" but it may not be too bad as a first approximation. All Once a common line is established we can resample the amplitudes and phases were "height corrected" in this variables in which we are interested onto a common set of manner. samples. Of course this new, resampled data covers only those sections of the data that are common to all lines. All

ASEG 1644 Geophysical Conference and Exhibition, February 2003, Adelaide. Extended Abstracts Noise in AEM Data Green and Lane

RESULTS . However it is also clear the effect is larger in the quadrature than the in-phase. This fact.would usually indicate a residual The profile shown in Figure 3 is of all six amplitudes for the contribution from altitude variations but the profile pattern is line with the greatest variability (line 4). They range in not the same as that of the altitude variations. More work is colour from blue for the lowest frequency to red for the required to fully understand the process operating here. highest. They have been raised to the power 10 to get back to a multiplicative factor that is an estimate for . It can be In the case of the Tempest data we have a situation where the E, X component multiplicative factor increases with time and seen that not only is the pattern the same, the plots for each the Z (generally) decreases. We can use a thin sheet model to frequency are also similar in amplitude. The corresponding examine these effects analytically. Let the depth of the Tx plot for the phases shows a similar pattern although the image below the Rx be amount of phase. shift (< 1 degree) is small. - z=(2z,- z)+ Of course, we would expect these data to be highly correlated /to S and the correlation matrix ordered from the lowest to highest where z, is the aircraft altitude and r.= is the bird distance frequency for the amplitude residuals confirms this. below the aircraft. When is the bird is x m behind the aircraft then an Rx pitch angle of /3 reduces the Z component 1.00 0.94 0.85 0:92 0.85 0.89 response' by the following factor 0.94 1.00 0.91 0.98 0.92 0.95 B:O_ 3xz sin( )+cos( ) 0.85 0.91 1.00 0.93 0.89 0.93 i3 (0) x2 -2zZ 0.92 0.98 0.93 1.00 0.95 0.95 For large z (late time or resistive ground) the geometric term 0.85 0.92 0.89 0.95 1.00 0.91 approaches zero and the factor becomes - cos(. However, 0.89 0.95 0.93 0.95 0.91 1.00 for the X component, the corresponding formula is B,(/}) 2z2 -x' The Figure 3 also shows the displacement that was made to = sin(fl)+cos(fl) the data to bring it onto the average line (in black). Clearly B.,(0) 3xz some multiplicative process is changing both amplitude and where, for large z, the geometric term increases phase for all channels and the error process is related to the proportionally with z, making the multiplicative error flight parameters. strongly dependent on time and/or ground conductivity. This theory largely explains the effects we observe in the data. Table 1 shows the estimates for the standard deviation of.the multiplicative noise when applied to the in-phase and It is noteworthy that this dependence of multiplicative noise quadrature components. on time/conductivity is a function of the asymmetric geometry of fixed wing systems time domain systems. The helicopter 385 1581 : - 3323 i 613'5 -= 25380 106140. time domain systems -are usually symmetric (x approximately 1.4%,! 1.7% . 2.0%0 : 1:8%g ' 2.2% 2.3% equal to 0) causing the multiplicative errors to be constant for 1.8% 2.3% i 2.8% . 2.5%0 ;:3.3% 5.2% all times and conductivities.

Table 1. First row: frequency (Hz), second row: standard CONCLUSIONS deviation of the in-phase residuals expressed as a percentage of the response, third row: standard deviation Analysis of repeated flight lines has shown that multiplicative of the quadrature residuals. errors will provide the dominant source of noise for AEM surveys where the area is even moderately conductive. Errors When a similar (multiplicative noise) analysis is conducted typically have standard deviations of 2 % and` can easily for early time Tempest data (the first 7 channels, times as per induce fluctuations of 10%.. Moreover, because of their the system described in Lane et al. (2000)). The results are geometric origins, these errors are highly correlated between somewhat different: The following points are worth noting: channels. Frequency domain HEM, Helicopter time domain • The (additive) noise measured at high altitude varies systems and Z component fixed wing time domain systems from 21 aT to 9 aT (early to late times) in the X produce errors that are largely unrelated to component and 14 aT to 5 aT in the Z. time/frequency/conductivity. This is not the case for X • X component residuals are much larger than for the Z component data from asymmetric systems. component. • The X component residuals (Figure 4).are largest at late REFERENCES time (a = 2.2 % of the response) and decrease steadily as you move to earliei times (a =1.2 %). Lane, R., Green, A., Golding, C., Owers, M., Pik, P., • The Z component residuals (Figure 5) are (usually) Plunkett, C., Sattel, D:, and Thorn, B., 2000, An example of 3D conductivity mapping using the TEMPEST airborne largest at early time (a = 1.3 %) and show a slight electromagnetic system: Exploration Geophysics, 31, 162- decrease (a = 1.2 %) at later times. 172.

DISCUSSION York, D., 1966, Least-square fitting of a straight line: Canadian Journal of Physics, 44, 1079-1086. The Dighem results show that the multiplicative error factor appears to be roughly the same at all frequencies. Some simple modelling of halfspace responses with changing roll angle also shows that the effect is not a function of frequency.

ASEG le Geophysical Conference and Exhibition, February 2003, Adelaide. Extended Abstracts Noise in AEM Data Green and Lane

Exponentioted Amplitude Residuals Line 4 1.10_...... ,.. i!

1.05 —

1.00

0.95

0.90

0.85

0.80

0.75'.. ... 0 1000 2000 3000 4000 5000 Along line distonce (m) Figure 3. Dighem Line 4 amplitude residuals for all six frequencies. High frequency in red through to low in blue. The black profile is of the transverse correction, C, required to move the observation points onto the common line (resealed, C/1000 +0.9).

X component exponentioted amplitude residuals Line 6 1.10 •

1.05

1.00

0.95 —

0.90 0 2.0x10 4.0x10 3 6.0x10 8.01(10 1.0x10 1.2x10` Along line distance (rn) Figure 4: Tempest Line 6 X component residuals. Early times in blue through to later times in red.

Z component exponentioted amplitude residuals Line 6 1.10

1.05

o 1.00

0 90 0 2.0x103 4.0x10 0.0x10 8.01,103 1.13x10d .2x10` Along line disionce (m) Reçu le Figure 5: Tempest Line 6 Z component residuals. Early times in blue through to later times in rrd.

0 7 2014

ASEG Id" Geophysical Conference and Exhibition, February 2003, Adelaide. Extenc~l reC 1011 du blargaLt des hydrocarbures