Introduction to Lie Groups and Lie Algebras Alexander Kirillov, Jr. Department of Mathematics, SUNY at Stony Brook, Stony Brook, NY 11794, USA E-mail address:
[email protected] URL: http://www.math.sunysb.edu/~kirillov Contents Chapter 1. Introduction 7 Chapter 2. Lie Groups: Basic Definitions 9 §2.1. Lie groups, subgroups, and cosets 9 §2.2. Action of Lie groups on manifolds and representations 12 §2.3. Orbits and homogeneous spaces 13 §2.4. Left, right, and adjoint action 14 §2.5. Classical groups 15 Exercises 18 Chapter 3. Lie Groups and Lie algebras 21 §3.1. Exponential map 21 §3.2. The commutator 23 §3.3. Adjoint action and Jacobi identity 24 §3.4. Subalgebras, ideals, and center 25 §3.5. Lie algebra of vector fields 26 §3.6. Stabilizers and the center 28 §3.7. Campbell–Hausdorff formula 29 §3.8. Fundamental theorems of Lie theory 30 §3.9. Complex and real forms 34 §3.10. Example: so(3, R), su(2), and sl(2, C). 35 Exercises 36 Chapter 4. Representations of Lie Groups and Lie Algebras 39 §4.1. Basic definitions 39 §4.2. Operations on representations 41 §4.3. Irreducible representations 42 §4.4. Intertwining operators and Schur lemma 43 §4.5. Complete reducibility of unitary representations. Representations of finite groups 45 §4.6. Haar measure on compact Lie groups 46 3 4 Contents §4.7. Orthogonality of characters and Peter-Weyl theorem 48 §4.8. Universal enveloping algebra 51 §4.9. Poincare-Birkhoff-Witt theorem 53 Exercises 55 Chapter 5. Representations of sl(2, C) and Spherical Laplace Operator 59 §5.1.