Introduction to Lie Groups and Lie Algebras

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Lie Groups and Lie Algebras Introduction to Lie Groups and Lie Algebras Alexander Kirillov, Jr. Department of Mathematics, SUNY at Stony Brook, Stony Brook, NY 11794, USA E-mail address: [email protected] URL: http://www.math.sunysb.edu/~kirillov Contents Chapter 1. Introduction 7 Chapter 2. Lie Groups: Basic Definitions 9 §2.1. Lie groups, subgroups, and cosets 9 §2.2. Action of Lie groups on manifolds and representations 12 §2.3. Orbits and homogeneous spaces 13 §2.4. Left, right, and adjoint action 14 §2.5. Classical groups 15 Exercises 18 Chapter 3. Lie Groups and Lie algebras 21 §3.1. Exponential map 21 §3.2. The commutator 23 §3.3. Adjoint action and Jacobi identity 24 §3.4. Subalgebras, ideals, and center 25 §3.5. Lie algebra of vector fields 26 §3.6. Stabilizers and the center 28 §3.7. Campbell–Hausdorff formula 29 §3.8. Fundamental theorems of Lie theory 30 §3.9. Complex and real forms 34 §3.10. Example: so(3, R), su(2), and sl(2, C). 35 Exercises 36 Chapter 4. Representations of Lie Groups and Lie Algebras 39 §4.1. Basic definitions 39 §4.2. Operations on representations 41 §4.3. Irreducible representations 42 §4.4. Intertwining operators and Schur lemma 43 §4.5. Complete reducibility of unitary representations. Representations of finite groups 45 §4.6. Haar measure on compact Lie groups 46 3 4 Contents §4.7. Orthogonality of characters and Peter-Weyl theorem 48 §4.8. Universal enveloping algebra 51 §4.9. Poincare-Birkhoff-Witt theorem 53 Exercises 55 Chapter 5. Representations of sl(2, C) and Spherical Laplace Operator 59 §5.1. Representations of sl(2, C) 59 §5.2. Spherical Laplace operator and hydrogen atom 62 Exercises 65 Chapter 6. Structure Theory of Lie Algebras 67 §6.1. Ideals and commutant 67 §6.2. Solvable and nilpotent Lie algebras 68 §6.3. Lie and Engel theorems 70 §6.4. The radical. Semisimple and reductive algebras 71 §6.5. Invariant bilinear forms and semisimplicity of classical Lie algebras 74 §6.6. Killing form and Cartan criterion 75 §6.7. Properties of semisimple Lie algebras 77 §6.8. Relation with compact groups 78 §6.9. Complete reducibility of representations 79 Exercises 82 Chapter 7. Complex Semisimple Lie Algebras 83 §7.1. Semisimple elements and toroidal subalgebras 83 §7.2. Cartan subalgebra 85 §7.3. Root decomposition and root systems 86 Exercises 90 Chapter 8. Root Systems 91 §8.1. Abstract root systems 91 §8.2. Automorphisms and Weyl group 92 §8.3. Pairs of roots and rank two root systems 93 §8.4. Positive roots and simple roots 95 §8.5. Weight and root lattices 97 §8.6. Weyl chambers 98 §8.7. Simple reflections 101 §8.8. Dynkin diagrams and classification of root systems 103 §8.9. Serre relations and classification of semisimple Lie algebras 106 Exercises 108 Chapter 9. Representations of Semisimple Lie Algebras 111 §9.1. Weight decomposition 111 §9.2. Highest-weight representations and Verma modules 112 Contents 5 §9.3. Classification of irreducible finite-dimensional representations 114 §9.4. Bernstein–Gelfand–Gelfand resolution 116 §9.5. Characters and Weyl character formula 117 §9.6. Representations of sl(n, C) 117 §9.7. Proof of Theorem 9.19 117 Exercises 117 Appendix A. Manifolds and immersions 119 Appendix B. Jordan Decomposition 121 Exercises 122 Appendix C. Root Systems and Simple Lie Algebras 123 §C.1. An = sl(n + 1, C) 124 §C.2. Bn = so(2n + 1, C) 125 §C.3. Cn = sp(n, C) 127 §C.4. Dn = so(2n, C) 128 List of Notation 131 Linear algebra 131 Differential geometry 131 Lie groups and Lie algebras 131 Representations 131 Semisimple Lie algebras and root systems 131 Index 133 Bibliography 135 Chapter 1 Introduction What are Lie groups and why do we want to study them? To illustrate this, let us start by considering this baby example. Example 1.1. Suppose you have n numbers a1, . , an arranged on a circle. You have a transfor- an+a2 a1+a3 mation A which replaces a1 with 2 , a2 with 2 , and so on. If you do this sufficiently many times, will the numbers be roughly equal? To answer this we need to look at the eigenvalues of A. However, explicitly computing the characteristic polynomial and finding the roots is a rather difficult problem. But we can note that the problem has rotational symmetry: if we denote by B the operator of rotating the circle by 2π/n, −1 i.e. sending (a1, . , an) to (a2, a3, . , an, a1), then BAB = A. Since the operator B generates the group of cyclic permutation Zn, we will refer to this as the Zn symmetry. So we might try to make use of this symmetry to find eigenvectors and eigenvalues of A. Naive idea would be to just consider B-invariant eigenvectors. It is easy to see that there is only one such vector, and while it is indeed an eigenvector for A, this is not enough to diagonalize A. Instead, we can use the following well-known result from linear algebra: if linear operators A, B in a vector space V commute, and V is an eigenspace for B, then AV ⊂ V . Thus, if the operator L λ λ λ B is diagonalizable so that V = Vλ, then A preserves this decomposition and thus the problem reduces to diagonalizing A on each of Vλ separately, which is a much easier problem. In this case, since Bn = id, its eigenvalues must be n-th roots of unity. Denoting by ε = e2πi/n the primitive n-th root of unity, it is easy to check that indeed, each n-th root of unity λ = εk, k = k 2k (n−1)k 0 . , n − 1, is an eigenvalue of B, with eigenvector vk = (1, ² , ² , . , ² ). Thus, in this case each eigenspace for B is one-dimensional, so each vk must also be an eigenvector for A. Indeed, one εk+ε−k immediately sees that Avk = 2 vk. This is the baby version of a real life problem. Consider S2 ⊂ R3. Define the Laplace operator ∞ 2 ∞ 2 ˜ ˜ 3 ∆sph : C (S ) → C (S ) by ∆sphf = (∆f)|S2 , where f is the result of extending f to R − {0} 3 (constant along each ray), and ∆ is the usual Laplace operator in R . It is easy to see that ∆sph is a second order differential operator on the sphere; one can write explicit formulas for it in the spherical coordinates, but they are not particularly nice. For many applications, it is important to know the eigenvalues and eigenfunctions of ∆sph. In particular, this problem arises in qunatum mechanics: the eigenvalues are related to the energy levels of a hydrogen atom in quantum mechanical description. Unfortunately, trying to find the eigenfunctions by brute force gives a second-order differential equation which is very difficult to solve. 7 8 1. Introduction But much as in the baby example, it is easy to notice that this problem also has some symmetry — namely, the group SO(3, R) acting on the sphere by rotations. However, trying to repeat the approach used in the baby example (which had Zn-symmetry) immediately runs into the following two problems: • SO(3, R) is not a finitely generated group, so we can not use just one (or finitely many) operators Bi and consider their common eigenspaces. • SO(3, R) is not commutative, so different operators from SO(3, R) can not be diagonalized simultaneously. The goal of the theory of Lie groups is to give tools to deal with these (and similar) problems. In short, the answer to the first problem is that SO(3, R) is in a certain sense finitely generated — namely, it is generated by three generators, “infinitesimal rotations” around x, y, z axes (see details in Example 3.10). The answer to the second problem is that instead of decomposing the C∞(S2) into a direct sum of common eigenspaces for operators B ∈ SO(3, R), we need to decompose it into “irreducible representations” of SO(3, R). In order to do this, we need to develop the theory of representations of SO(3, R). We will do this and complete the analysis of this example in Chapter 5. Chapter 2 Lie Groups: Basic Definitions 2.1. Lie groups, subgroups, and cosets Definition 2.1. A Lie group is a set G with two structures: G is a group and G is a (smooth, real) manifold. These structures agree in the following sense: multiplication and inversion are smooth maps. A morphism of Lie groups is a smooth map which also preserves the group operation: f(gh) = f(g)f(h), f(1) = 1. In a similar way, one defines complex Lie groups. However, unless specified otherwise, “Lie group” means a real Lie group. Remark 2.2. The word “smooth” in the definition above can be understood in different ways: C1,C∞, analytic. It turns out that all of them are equivalent: every C0 Lie group has a unique analytic structure. This is a highly non-trivial result (it was one of Hilbert’s 20 problems), and we are not going to prove it (proof of a weaker result, that C2 implies analyticity, is much easier and can be found in [10, Section 1.6]). In this book, “smooth” will be always understood as C∞. Example 2.3. The following are examples of Lie groups (1) Rn, with the group operation given by addition (2) R∗, × R+, × (3) S1 = {z ∈ C : |z| = 1}, × 2 (4) GL(n, R) ⊂ Rn . Many of the groups we will consider will be subgroups of GL(n, R) or GL(n, C).
Recommended publications
  • An Introduction to Quantum Field Theory
    AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ...........................
    [Show full text]
  • Affine Springer Fibers and Affine Deligne-Lusztig Varieties
    Affine Springer Fibers and Affine Deligne-Lusztig Varieties Ulrich G¨ortz Abstract. We give a survey on the notion of affine Grassmannian, on affine Springer fibers and the purity conjecture of Goresky, Kottwitz, and MacPher- son, and on affine Deligne-Lusztig varieties and results about their dimensions in the hyperspecial and Iwahori cases. Mathematics Subject Classification (2000). 22E67; 20G25; 14G35. Keywords. Affine Grassmannian; affine Springer fibers; affine Deligne-Lusztig varieties. 1. Introduction These notes are based on the lectures I gave at the Workshop on Affine Flag Man- ifolds and Principal Bundles which took place in Berlin in September 2008. There are three chapters, corresponding to the main topics of the course. The first one is the construction of the affine Grassmannian and the affine flag variety, which are the ambient spaces of the varieties considered afterwards. In the following chapter we look at affine Springer fibers. They were first investigated in 1988 by Kazhdan and Lusztig [41], and played a prominent role in the recent work about the “fun- damental lemma”, culminating in the proof of the latter by Ngˆo. See Section 3.8. Finally, we study affine Deligne-Lusztig varieties, a “σ-linear variant” of affine Springer fibers over fields of positive characteristic, σ denoting the Frobenius au- tomorphism. The term “affine Deligne-Lusztig variety” was coined by Rapoport who first considered the variety structure on these sets. The sets themselves appear implicitly already much earlier in the study of twisted orbital integrals. We remark that the term “affine” in both cases is not related to the varieties in question being affine, but rather refers to the fact that these are notions defined in the context of an affine root system.
    [Show full text]
  • Exercises and Solutions in Groups Rings and Fields
    EXERCISES AND SOLUTIONS IN GROUPS RINGS AND FIELDS Mahmut Kuzucuo˘glu Middle East Technical University [email protected] Ankara, TURKEY April 18, 2012 ii iii TABLE OF CONTENTS CHAPTERS 0. PREFACE . v 1. SETS, INTEGERS, FUNCTIONS . 1 2. GROUPS . 4 3. RINGS . .55 4. FIELDS . 77 5. INDEX . 100 iv v Preface These notes are prepared in 1991 when we gave the abstract al- gebra course. Our intention was to help the students by giving them some exercises and get them familiar with some solutions. Some of the solutions here are very short and in the form of a hint. I would like to thank B¨ulent B¨uy¨ukbozkırlı for his help during the preparation of these notes. I would like to thank also Prof. Ismail_ S¸. G¨ulo˘glufor checking some of the solutions. Of course the remaining errors belongs to me. If you find any errors, I should be grateful to hear from you. Finally I would like to thank Aynur Bora and G¨uldaneG¨um¨u¸sfor their typing the manuscript in LATEX. Mahmut Kuzucuo˘glu I would like to thank our graduate students Tu˘gbaAslan, B¨u¸sra C¸ınar, Fuat Erdem and Irfan_ Kadık¨oyl¨ufor reading the old version and pointing out some misprints. With their encouragement I have made the changes in the shape, namely I put the answers right after the questions. 20, December 2011 vi M. Kuzucuo˘glu 1. SETS, INTEGERS, FUNCTIONS 1.1. If A is a finite set having n elements, prove that A has exactly 2n distinct subsets.
    [Show full text]
  • Dynamics for Discrete Subgroups of Sl 2(C)
    DYNAMICS FOR DISCRETE SUBGROUPS OF SL2(C) HEE OH Dedicated to Gregory Margulis with affection and admiration Abstract. Margulis wrote in the preface of his book Discrete subgroups of semisimple Lie groups [30]: \A number of important topics have been omitted. The most significant of these is the theory of Kleinian groups and Thurston's theory of 3-dimensional manifolds: these two theories can be united under the common title Theory of discrete subgroups of SL2(C)". In this article, we will discuss a few recent advances regarding this missing topic from his book, which were influenced by his earlier works. Contents 1. Introduction 1 2. Kleinian groups 2 3. Mixing and classification of N-orbit closures 10 4. Almost all results on orbit closures 13 5. Unipotent blowup and renormalizations 18 6. Interior frames and boundary frames 25 7. Rigid acylindrical groups and circular slices of Λ 27 8. Geometrically finite acylindrical hyperbolic 3-manifolds 32 9. Unipotent flows in higher dimensional hyperbolic manifolds 35 References 44 1. Introduction A discrete subgroup of PSL2(C) is called a Kleinian group. In this article, we discuss dynamics of unipotent flows on the homogeneous space Γn PSL2(C) for a Kleinian group Γ which is not necessarily a lattice of PSL2(C). Unlike the lattice case, the geometry and topology of the associated hyperbolic 3-manifold M = ΓnH3 influence both topological and measure theoretic rigidity properties of unipotent flows. Around 1984-6, Margulis settled the Oppenheim conjecture by proving that every bounded SO(2; 1)-orbit in the space SL3(Z)n SL3(R) is compact ([28], [27]).
    [Show full text]
  • Symplectic Group Actions and Covering Spaces
    Symplectic group actions and covering spaces Montaldi, James and Ortega, Juan-Pablo 2009 MIMS EPrint: 2007.84 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 Symplectic Group Actions and Covering Spaces James Montaldi & Juan-Pablo Ortega January 2009 Abstract For symplectic group actions which are not Hamiltonian there are two ways to define reduction. Firstly using the cylinder-valued momentum map and secondly lifting the action to any Hamiltonian cover (such as the universal cover), and then performing symplectic reduction in the usual way. We show that provided the action is free and proper, and the Hamiltonian holonomy associated to the action is closed, the natural projection from the latter to the former is a symplectic cover. At the same time we give a classification of all Hamiltonian covers of a given symplectic group action. The main properties of the lifting of a group action to a cover are studied. Keywords: lifted group action, symplectic reduction, universal cover, Hamiltonian holonomy, momentum map MSC2000: 53D20, 37J15. Introduction There are many instances of symplectic group actions which are not Hamiltonian—ie, for which there is no momentum map. These can occur both in applications [13] as well as in fundamental studies of symplectic geometry [1, 2, 5]. In such cases it is possible to define a “cylinder valued momentum map” [3], and then perform symplectic reduction with respect to this map [16, 17].
    [Show full text]
  • The Quaternionic Commutator Bracket and Its Implications
    S S symmetry Article The Quaternionic Commutator Bracket and Its Implications Arbab I. Arbab 1,† and Mudhahir Al Ajmi 2,* 1 Department of Physics, Faculty of Science, University of Khartoum, P.O. Box 321, Khartoum 11115, Sudan; [email protected] 2 Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, P.C. 123, Muscat 999046, Sultanate of Oman * Correspondence: [email protected] † Current address: Department of Physics, College of Science, Qassim University, Qassim 51452, Saudi Arabia. Received: 11 August 2018; Accepted: 9 October 2018; Published: 16 October 2018 Abstract: A quaternionic commutator bracket for position and momentum shows that the i ~ quaternionic wave function, viz. ye = ( c y0 , y), represents a state of a particle with orbital angular momentum, L = 3 h¯ , resulting from the internal structure of the particle. This angular momentum can be attributed to spin of the particle. The vector y~ , points in an opposite direction of~L. When a charged particle is placed in an electromagnetic field, the interaction energy reveals that the magnetic moments interact with the electric and magnetic fields giving rise to terms similar to Aharonov–Bohm and Aharonov–Casher effects. Keywords: commutator bracket; quaternions; magnetic moments; angular momentum; quantum mechanics 1. Introduction In quantum mechanics, particles are described by relativistic or non-relativistic wave equations. Each equation associates a spin state of the particle to its wave equation. For instance, the Schrödinger equation applies to the spinless particles in the non-relativistic domain, while the appropriate relativistic equation for spin-0 particles is the Klein–Gordon equation.
    [Show full text]
  • Computational Topics in Lie Theory and Representation Theory
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2014 Computational Topics in Lie Theory and Representation Theory Thomas J. Apedaile Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Applied Statistics Commons Recommended Citation Apedaile, Thomas J., "Computational Topics in Lie Theory and Representation Theory" (2014). All Graduate Theses and Dissertations. 2156. https://digitalcommons.usu.edu/etd/2156 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. COMPUTATIONAL TOPICS IN LIE THEORY AND REPRESENTATION THEORY by Thomas J. Apedaile A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Mathematics Approved: Ian Anderson Nathan Geer Major Professor Committee Member Zhaohu Nie Mark R McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2014 ii Copyright c Thomas J. Apedaile 2014 All Rights Reserved iii ABSTRACT Computational Topics in Lie Theory and Representation Theory by Thomas J. Apedaile, Master of Science Utah State University, 2014 Major Professor: Dr. Ian Anderson Department: Mathematics and Statistics The computer algebra system Maple contains a basic set of commands for work- ing with Lie algebras. The purpose of this thesis was to extend the functionality of these Maple packages in a number of important areas. First, programs for defining multiplication in several types of Cayley algebras, Jordan algebras and Clifford algebras were created to allow users to perform a variety of calculations.
    [Show full text]
  • [Math.GR] 9 Jul 2003 Buildings and Classical Groups
    Buildings and Classical Groups Linus Kramer∗ Mathematisches Institut, Universit¨at W¨urzburg Am Hubland, D–97074 W¨urzburg, Germany email: [email protected] In these notes we describe the classical groups, that is, the linear groups and the orthogonal, symplectic, and unitary groups, acting on finite dimen- sional vector spaces over skew fields, as well as their pseudo-quadratic gen- eralizations. Each such group corresponds in a natural way to a point-line geometry, and to a spherical building. The geometries in question are pro- jective spaces and polar spaces. We emphasize in particular the rˆole played by root elations and the groups generated by these elations. The root ela- tions reflect — via their commutator relations — algebraic properties of the underlying vector space. We also discuss some related algebraic topics: the classical groups as per- mutation groups and the associated simple groups. I have included some remarks on K-theory, which might be interesting for applications. The first K-group measures the difference between the classical group and its subgroup generated by the root elations. The second K-group is a kind of fundamental group of the group generated by the root elations and is related to central extensions. I also included some material on Moufang sets, since this is an in- arXiv:math/0307117v1 [math.GR] 9 Jul 2003 teresting topic. In this context, the projective line over a skew field is treated in some detail, and possibly with some new results. The theory of unitary groups is developed along the lines of Hahn & O’Meara [15].
    [Show full text]
  • ADELIC VERSION of MARGULIS ARITHMETICITY THEOREM Hee Oh 1. Introduction Let R Denote the Set of All Prime Numbers Including
    ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM Hee Oh Abstract. In this paper, we generalize Margulis’s S-arithmeticity theorem to the case when S can be taken as an infinite set of primes. Let R be the set of all primes including infinite one ∞ and set Q∞ = R. Let S be any subset of R. For each p ∈ S, let Gp be a connected semisimple adjoint Qp-group without any Qp-anisotropic factors and Dp ⊂ Gp(Qp) be a compact open subgroup for almost all finite prime p ∈ S. Let (GS , Dp) denote the restricted topological product of Gp(Qp)’s, p ∈ S with respect to Dp’s. Note that if S is finite, (GS , Dp) = Qp∈S Gp(Qp). We show that if Pp∈S rank Qp (Gp) ≥ 2, any irreducible lattice in (GS , Dp) is a rational lattice. We also present a criterion on the collections Gp and Dp for (GS , Dp) to admit an irreducible lattice. In addition, we describe discrete subgroups of (GA, Dp) generated by lattices in a pair of opposite horospherical subgroups. 1. Introduction Let R denote the set of all prime numbers including the infinite prime ∞ and Rf the set of finite prime numbers, i.e., Rf = R−{∞}. We set Q∞ = R. For each p ∈ R, let Gp be a non-trivial connected semisimple algebraic Qp-group and for each p ∈ Rf , let Dp be a compact open subgroup of Gp(Qp). The adele group of Gp, p ∈ R with respect to Dp, p ∈ Rf is defined to be the restricted topological product of the groups Gp(Qp) with respect to the distinguished subgroups Dp.
    [Show full text]
  • Hartley's Theorem on Representations of the General Linear Groups And
    Turk J Math 31 (2007) , Suppl, 211 – 225. c TUB¨ ITAK˙ Hartley’s Theorem on Representations of the General Linear Groups and Classical Groups A. E. Zalesski To the memory of Brian Hartley Abstract We suggest a new proof of Hartley’s theorem on representations of the general linear groups GLn(K)whereK is a field. Let H be a subgroup of GLn(K)andE the natural GLn(K)-module. Suppose that the restriction E|H of E to H contains aregularKH-module. The theorem asserts that this is then true for an arbitrary GLn(K)-module M provided dim M>1andH is not of exponent 2. Our proof is based on the general facts of representation theory of algebraic groups. In addition, we provide partial generalizations of Hartley’s theorem to other classical groups. Key Words: subgroups of classical groups, representation theory of algebraic groups 1. Introduction In 1986 Brian Hartley [4] obtained the following interesting result: Theorem 1.1 Let K be a field, E the standard GLn(K)-module, and let M be an irre- ducible finite-dimensional GLn(K)-module over K with dim M>1. For a finite subgroup H ⊂ GLn(K) suppose that the restriction of E to H contains a regular submodule, that ∼ is, E = KH ⊕ E1 where E1 is a KH-module. Then M contains a free KH-submodule, unless H is an elementary abelian 2-groups. His proof is based on deep properties of the duality between irreducible representations of the general linear group GLn(K)and the symmetric group Sn.
    [Show full text]
  • Right Ideals of a Ring and Sublanguages of Science
    RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance.
    [Show full text]
  • The Cardinality of the Center of a Pi Ring
    Canad. Math. Bull. Vol. 41 (1), 1998 pp. 81±85 THE CARDINALITY OF THE CENTER OF A PI RING CHARLES LANSKI ABSTRACT. The main result shows that if R is a semiprime ring satisfying a poly- nomial identity, and if Z(R) is the center of R, then card R Ä 2cardZ(R). Examples show that this bound can be achieved, and that the inequality fails to hold for rings which are not semiprime. The purpose of this note is to compare the cardinality of a ring satisfying a polynomial identity (a PI ring) with the cardinality of its center. Before proceeding, we recall the def- inition of a central identity, a notion crucial for us, and a basic result about polynomial f g≥ f g identities. Let C be a commutative ring with 1, F X Cn x1,...,xn the free algebra f g ≥ 2 f gj over C in noncommuting indeterminateso xi ,andsetG f(x1,...,xn) F X some coef®cient of f is a unit in C .IfRis an algebra over C,thenf(x1,...,xn)2Gis a polyno- 2 ≥ mial identity (PI) for RPif for all ri R, f (r1,...,rn) 0. The standard identity of degree sgõ n is Sn(x1,...,xn) ≥ õ(1) xõ(1) ÐÐÐxõ(n) where õ ranges over the symmetric group on n letters. The Amitsur-Levitzki theorem is an important result about Sn and shows that Mk(C) satis®es Sn exactly for n ½ 2k [5; Lemma 2, p. 18 and Theorem, p. 21]. Call f 2 G a central identity for R if f (r1,...,rn) 2Z(R), the center of R,forallri 2R, but f is not a polynomial identity.
    [Show full text]