Lie Groups, Lie Algebras, and Their Representations

Total Page:16

File Type:pdf, Size:1020Kb

Lie Groups, Lie Algebras, and Their Representations Lie groups, Lie algebras, and their representations Gwyn Bellamy [email protected] www.maths.gla.ac.uk/∼gbellamy September 16, 2016 Abstract These are the lecture notes for the 5M reading course "Lie groups, Lie algebras, and their representations" at the University of Glasgow, autumn 2015. Contents 1 Introduction i 2 Manifolds - a refresher 2 3 Lie groups and Lie algebras 11 4 The exponential map 20 5 The classical Lie groups and their Lie algebras 30 6 Representation theory 35 7 The structure of Lie algebras 40 8 Complete reducibility 48 9 Cartan subalgebras and Dynkin diagrams 54 10 The classification of simple, complex Lie algebras 65 11 Weyl's character formula 69 12 Appendix: Quotient vector spaces 76 1 Introduction Lie groups and Lie algebras, together called Lie theory, originated in the study of natural symme- tries of solutions of differential equations. However, unlike say the finite collection of symmetries of the hexagon, these symmetries occurred in continuous families, just as the rotational symmetries of the plane form a continuous family isomorphic to the unit circle. The theory as we know it today began with the ground breaking work of the Norwegian mathematician Sophus Lie, who introduced the notion of continuous transformation groups and showed the crucial role that Lie algebras play in their classification and representation theory. Lie's ideas played a central role in Felix Klein's grand "Erlangen program" to classify all possible geometries using group theory. Today Lie theory plays an important role in almost every branch of pure and applied mathematics, is used to describe much of modern physics, in particular classical and quantum mechanics, and is an active area of research. You might be familiar with the idea that abstract group theory really began with Galois' work on algebraic solutions of polynomial equations; in particular, the generic quintic. But, in a sense, the idea of groups of transformations had been around for a long time already. As mentioned above, it was already present in the study of solutions of differential equations coming from physics (for instance in Newton's work). The key point is that these spaces of solutions are often stable under the action of a large group of symmetries, or transformations. This means that applying a given transformation to one solution of the differential equation gives us another solution. Hence one can quickly and easily generate new solutions from old one, "buy one, get one free". As a toy example, consider a "black hole" centred at (0; 0) in R2. Then, any particle on R2 r f(0; 0)g, whose position at time t is given by (x(t); y(t)), will be attracted to the origin, the strength of the attraction increasing as it nears (0; 0). This attraction can be encoded by the system of differential equations dx −x dy −y = ; = : (1) dt (x2 + y2)3=2 dt (x2 + y2)3=2 In polar coordinates (r(t); θ(t)), this becomes dr −1 = : (2) dt r2 i 1 2 The circle S = f0 ≤ # < 2πg (this is a group, #1 ?#2 = (#1 +#2) mod 2π) acts on R by rotations: ! ! ! cos # − sin # x x cos # − y sin # # · (x; y) = = : sin # cos # y x sin # + y cos # Then it is clear from (2) that if (x(t); y(t)) is a solution to (1), then so too is # · (x(t); y(t)) = (x(t) cos # − y(t) sin #; x(t) sin # + y(t) cos #): Thus, the group S1 acts on the space of solutions to this system of differential equations. The content of these lecture notes is based to a large extent on the material in the books [5] and [8]. Other sources that treat the material in these notes are [1], [2], [4], [9] and [7]. 1 2 Manifolds - a refresher In this course we will consider smooth real manifolds and complex analytic manifolds. 2.1 Topological terminology Every manifold is in particular a topological space, therefore we will occasionally need some basic topological terms. We begin by recalling that a topological space is a pair (X; T ) where X is a set and T is a collection of subsets of X, the open subsets of X. The collection of open subsets T must include X and the emptyset ;, be closed under arbitrary unions and finite intersections. Recall that a topological space M is disconnected if there exist two non-empty open and closed subsets U; V ⊂ M such that U \ V = ;; otherwise M is connected. It is path connected if, for any two points x; y 2 X, there is a path from x to y (every path connected space is connected, but the converse is not true). We say that X is simply connected if it is path connected and the fundamental group π1(X) of X is trivial i.e. every closed loop in X is homotopic to the trivial loop. The space X is compact if every open covering admits a finite subcover. The space X is said to be Hausdorff if for each pair of distinct points x; y 2 X there exists open sets x 2 U, y 2 V with U \ V = ;. n ◦ n For each ` 2 R+ and x 2 R , we denote by B`(x), resp. B`(x) , the set of all points y 2 R such that jjx − yjj ≤ `, resp. jjx − yjj < `. We will always consider Rn as a topological space, equipped with the Euclidean topology i.e. a base for this topology is given by the open balls ◦ B`(x) . Recall that the Heine-Borel Theorem states: Theorem 2.1. Let M be a subset of Rn. Then, M is compact if and only if it is closed and contained inside a closed ball B`(0) for some ` 0. n Remark 2.2. If M is some compact subspace of R and fXigi2N a Cauchy sequence in M, then the limit of this sequence exists in M. This fact is a useful way of showing that certain subspaces of Rn are not compact. 2.2 Manifolds Recall that a real n-dimensional manifold is a Hausdorff topological space M with an atlas A(M) = fφi : Ui ! Vi j i 2 Ig, where fUi j i 2 Ig is an open cover of M, each chart φi : Ui ! Vi is a n homeomorphism onto Vi, an open subset of R , and the composite maps −1 φi ◦ φj : Vi;j ! Vj;i 2 n n are smooth morphisms, where Vi;j = φj(Ui \ Uj) ⊂ R and Vj;i = φi(Ui \ Uj) ⊂ R . 1 2 2 2 Example 2.3. The circle S = f(x1; x2) j x1 +x2 = 1g ⊂ R is a manifold. We can use stereographic projection to construct charts on S1. Let N = (0; 1) and S = (0; −1) be the north and south poles respectively. N P = (x1; x2) Q = (z; 0) S 1 A line through N and P meets the x1-axis in a unique point. This defines a map S r fNg ! R. To get an explicit formula for this, the line through N and P is described by ft(x1; x2) + (1 − x1 1 t)(0; 1) j t 2 g. This implies that z = . Therefore we define U1 = S fNg, V1 = and R 1−x2 r R x1 φ1 : U1 ! V1; φ1(x1; x2) = : 1 − x2 Similarly, if we perform stereographic projection from the south pole, then we get a chart x1 φ2 : U2 ! V2; φ2(x1; x2) = ; x2 + 1 1 where U2 = S r fSg and V2 = R. −1 For this to define a manifold, we need to check that the transition map φ2 ◦φ1 is smooth. Since 1 −1 U1 \ U1 = S r fN; Sg, φ1(U1 \ U2) = φ2(U1 \ U2) = R r f0g. Hence φ2 ◦ φ1 : R r f0g ! R r f0g. −1 1 A direct calculation shows that φ2 ◦ φ1 (z) = z . This is clearly smooth. −1 A continuous function f : M ! R is said to be smooth if f ◦ φi : Vi ! R is a smooth, i.e. infinitely differentiable, function for all charts φi. The space of all smooth functions on M is denoted C1(M). Example 2.4. The real projective space RPn of all lines through 0 in Rn+1 is a manifold. The n n+1 set of points in RP are written [x0 : x1 : ··· : xn], where (x0; x1; : : : ; xn) 2 R r f0g and × [x0 : x1 : ··· : xn] represents the line through 0 and (x0; x1; : : : ; xn). Thus, for each λ 2 R , [x0 : x1 : ··· : xn] = [λx0 : λx1 : ··· : λxn]: 3 n n ∼ n The n + 1 open sets Ui = f[x0 : x1 : ··· : xn] 2 RP j xi 6= 0g cover RP . The maps φi : Ui −! R , x0 xn n [x0 : x1 : ··· : xn] 7! ( ;:::; xi;:::; ) define an atlas on . Thus, it is a manifold. xi b xi RP Exercise 2.5. Check that the maps φi are well-defined i.e. only depends on the line through n −1 (x0; x1; : : : ; xn). Prove that RP is a manifold by explicitly describing the maps φj ◦ φi : φi(Ui \ n n Uj) ⊂ R ! φj(Ui \ Uj) ⊂ R and checking that they are indeed smooth map. The following theorem is extremely useful for producing explicit examples of manifolds. n m Theorem 2.6. Let m < n and f : R ! R , f = (f1(x1; : : : ; xn); : : : ; fm(x1; : : : ; xn)), a smooth map. Assume that u is in the image of f. Then f −1(u) is a smooth submanifold of Rn, of dimension n − m if and only if the differential @f i=1;:::;m d f = i : n ! m v @x R R j j=1;:::;njx=v is a surjective linear map for all v 2 f −1(u).
Recommended publications
  • Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
    Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory.
    [Show full text]
  • Weak Representation Theory in the Calculus of Relations Jeremy F
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2006 Weak representation theory in the calculus of relations Jeremy F. Alm Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Mathematics Commons Recommended Citation Alm, Jeremy F., "Weak representation theory in the calculus of relations " (2006). Retrospective Theses and Dissertations. 1795. https://lib.dr.iastate.edu/rtd/1795 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Weak representation theory in the calculus of relations by Jeremy F. Aim A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Roger Maddux, Major Professor Maria Axenovich Paul Sacks Jonathan Smith William Robinson Iowa State University Ames, Iowa 2006 Copyright © Jeremy F. Aim, 2006. All rights reserved. UMI Number: 3217250 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Geometric Representation Theory, Fall 2005
    GEOMETRIC REPRESENTATION THEORY, FALL 2005 Some references 1) J. -P. Serre, Complex semi-simple Lie algebras. 2) T. Springer, Linear algebraic groups. 3) A course on D-modules by J. Bernstein, availiable at www.math.uchicago.edu/∼arinkin/langlands. 4) J. Dixmier, Enveloping algebras. 1. Basics of the category O 1.1. Refresher on semi-simple Lie algebras. In this course we will work with an alge- braically closed ground field of characteristic 0, which may as well be assumed equal to C Let g be a semi-simple Lie algebra. We will fix a Borel subalgebra b ⊂ g (also sometimes denoted b+) and an opposite Borel subalgebra b−. The intersection b+ ∩ b− is a Cartan subalgebra, denoted h. We will denote by n, and n− the unipotent radicals of b and b−, respectively. We have n = [b, b], and h ' b/n. (I.e., h is better to think of as a quotient of b, rather than a subalgebra.) The eigenvalues of h acting on n are by definition the positive roots of g; this set will be denoted by ∆+. We will denote by Q+ the sub-semigroup of h∗ equal to the positive span of ∆+ (i.e., Q+ is the set of eigenvalues of h under the adjoint action on U(n)). For λ, µ ∈ h∗ we shall say that λ ≥ µ if λ − µ ∈ Q+. We denote by P + the sub-semigroup of dominant integral weights, i.e., those λ that satisfy hλ, αˇi ∈ Z+ for all α ∈ ∆+. + For α ∈ ∆ , we will denote by nα the corresponding eigen-space.
    [Show full text]
  • An Overview of Topological Groups: Yesterday, Today, Tomorrow
    axioms Editorial An Overview of Topological Groups: Yesterday, Today, Tomorrow Sidney A. Morris 1,2 1 Faculty of Science and Technology, Federation University Australia, Victoria 3353, Australia; [email protected]; Tel.: +61-41-7771178 2 Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria 3086, Australia Academic Editor: Humberto Bustince Received: 18 April 2016; Accepted: 20 April 2016; Published: 5 May 2016 It was in 1969 that I began my graduate studies on topological group theory and I often dived into one of the following five books. My favourite book “Abstract Harmonic Analysis” [1] by Ed Hewitt and Ken Ross contains both a proof of the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups and the structure theory of locally compact abelian groups. Walter Rudin’s book “Fourier Analysis on Groups” [2] includes an elegant proof of the Pontryagin-van Kampen Duality Theorem. Much gentler than these is “Introduction to Topological Groups” [3] by Taqdir Husain which has an introduction to topological group theory, Haar measure, the Peter-Weyl Theorem and Duality Theory. Of course the book “Topological Groups” [4] by Lev Semyonovich Pontryagin himself was a tour de force for its time. P. S. Aleksandrov, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko described this book in glowing terms: “This book belongs to that rare category of mathematical works that can truly be called classical - books which retain their significance for decades and exert a formative influence on the scientific outlook of whole generations of mathematicians”. The final book I mention from my graduate studies days is “Topological Transformation Groups” [5] by Deane Montgomery and Leo Zippin which contains a solution of Hilbert’s fifth problem as well as a structure theory for locally compact non-abelian groups.
    [Show full text]
  • Computational Topics in Lie Theory and Representation Theory
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2014 Computational Topics in Lie Theory and Representation Theory Thomas J. Apedaile Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Applied Statistics Commons Recommended Citation Apedaile, Thomas J., "Computational Topics in Lie Theory and Representation Theory" (2014). All Graduate Theses and Dissertations. 2156. https://digitalcommons.usu.edu/etd/2156 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. COMPUTATIONAL TOPICS IN LIE THEORY AND REPRESENTATION THEORY by Thomas J. Apedaile A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Mathematics Approved: Ian Anderson Nathan Geer Major Professor Committee Member Zhaohu Nie Mark R McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2014 ii Copyright c Thomas J. Apedaile 2014 All Rights Reserved iii ABSTRACT Computational Topics in Lie Theory and Representation Theory by Thomas J. Apedaile, Master of Science Utah State University, 2014 Major Professor: Dr. Ian Anderson Department: Mathematics and Statistics The computer algebra system Maple contains a basic set of commands for work- ing with Lie algebras. The purpose of this thesis was to extend the functionality of these Maple packages in a number of important areas. First, programs for defining multiplication in several types of Cayley algebras, Jordan algebras and Clifford algebras were created to allow users to perform a variety of calculations.
    [Show full text]
  • Modules and Lie Semialgebras Over Semirings with a Negation Map 3
    MODULES AND LIE SEMIALGEBRAS OVER SEMIRINGS WITH A NEGATION MAP GUY BLACHAR Abstract. In this article, we present the basic definitions of modules and Lie semialgebras over semirings with a negation map. Our main example of a semiring with a negation map is ELT algebras, and some of the results in this article are formulated and proved only in the ELT theory. When dealing with modules, we focus on linearly independent sets and spanning sets. We define a notion of lifting a module with a negation map, similarly to the tropicalization process, and use it to prove several theorems about semirings with a negation map which possess a lift. In the context of Lie semialgebras over semirings with a negation map, we first give basic definitions, and provide parallel constructions to the classical Lie algebras. We prove an ELT version of Cartan’s criterion for semisimplicity, and provide a counterexample for the naive version of the PBW Theorem. Contents Page 0. Introduction 2 0.1. Semirings with a Negation Map 2 0.2. Modules Over Semirings with a Negation Map 3 0.3. Supertropical Algebras 4 0.4. Exploded Layered Tropical Algebras 4 1. Modules over Semirings with a Negation Map 5 1.1. The Surpassing Relation for Modules 6 1.2. Basic Definitions for Modules 7 1.3. -morphisms 9 1.4. Lifting a Module Over a Semiring with a Negation Map 10 1.5. Linearly Independent Sets 13 1.6. d-bases and s-bases 14 1.7. Free Modules over Semirings with a Negation Map 18 2.
    [Show full text]
  • Lie Algebras and Representation Theory Andreasˇcap
    Lie Algebras and Representation Theory Fall Term 2016/17 Andreas Capˇ Institut fur¨ Mathematik, Universitat¨ Wien, Nordbergstr. 15, 1090 Wien E-mail address: [email protected] Contents Preface v Chapter 1. Background 1 Group actions and group representations 1 Passing to the Lie algebra 5 A primer on the Lie group { Lie algebra correspondence 8 Chapter 2. General theory of Lie algebras 13 Basic classes of Lie algebras 13 Representations and the Killing Form 21 Some basic results on semisimple Lie algebras 29 Chapter 3. Structure theory of complex semisimple Lie algebras 35 Cartan subalgebras 35 The root system of a complex semisimple Lie algebra 40 The classification of root systems and complex simple Lie algebras 54 Chapter 4. Representation theory of complex semisimple Lie algebras 59 The theorem of the highest weight 59 Some multilinear algebra 63 Existence of irreducible representations 67 The universal enveloping algebra and Verma modules 72 Chapter 5. Tools for dealing with finite dimensional representations 79 Decomposing representations 79 Formulae for multiplicities, characters, and dimensions 83 Young symmetrizers and Weyl's construction 88 Bibliography 93 Index 95 iii Preface The aim of this course is to develop the basic general theory of Lie algebras to give a first insight into the basics of the structure theory and representation theory of semisimple Lie algebras. A problem one meets right in the beginning of such a course is to motivate the notion of a Lie algebra and to indicate the importance of representation theory. The simplest possible approach would be to require that students have the necessary background from differential geometry, present the correspondence between Lie groups and Lie algebras, and then move to the study of Lie algebras, which are easier to understand than the Lie groups themselves.
    [Show full text]
  • Note on the Decomposition of Semisimple Lie Algebras
    Note on the Decomposition of Semisimple Lie Algebras Thomas B. Mieling (Dated: January 5, 2018) Presupposing two criteria by Cartan, it is shown that every semisimple Lie algebra of finite dimension over C is a direct sum of simple Lie algebras. Definition 1 (Simple Lie Algebra). A Lie algebra g is Proposition 2. Let g be a finite dimensional semisimple called simple if g is not abelian and if g itself and f0g are Lie algebra over C and a ⊆ g an ideal. Then g = a ⊕ a? the only ideals in g. where the orthogonal complement is defined with respect to the Killing form K. Furthermore, the restriction of Definition 2 (Semisimple Lie Algebra). A Lie algebra g the Killing form to either a or a? is non-degenerate. is called semisimple if the only abelian ideal in g is f0g. Proof. a? is an ideal since for x 2 a?; y 2 a and z 2 g Definition 3 (Derived Series). Let g be a Lie Algebra. it holds that K([x; z; ]; y) = K(x; [z; y]) = 0 since a is an The derived series is the sequence of subalgebras defined ideal. Thus [a; g] ⊆ a. recursively by D0g := g and Dn+1g := [Dng;Dng]. Since both a and a? are ideals, so is their intersection Definition 4 (Solvable Lie Algebra). A Lie algebra g i = a \ a?. We show that i = f0g. Let x; yi. Then is called solvable if its derived series terminates in the clearly K(x; y) = 0 for x 2 i and y = D1i, so i is solv- trivial subalgebra, i.e.
    [Show full text]
  • Matrix Lie Groups
    Maths Seminar 2007 MATRIX LIE GROUPS Claudiu C Remsing Dept of Mathematics (Pure and Applied) Rhodes University Grahamstown 6140 26 September 2007 RhodesUniv CCR 0 Maths Seminar 2007 TALK OUTLINE 1. What is a matrix Lie group ? 2. Matrices revisited. 3. Examples of matrix Lie groups. 4. Matrix Lie algebras. 5. A glimpse at elementary Lie theory. 6. Life beyond elementary Lie theory. RhodesUniv CCR 1 Maths Seminar 2007 1. What is a matrix Lie group ? Matrix Lie groups are groups of invertible • matrices that have desirable geometric features. So matrix Lie groups are simultaneously algebraic and geometric objects. Matrix Lie groups naturally arise in • – geometry (classical, algebraic, differential) – complex analyis – differential equations – Fourier analysis – algebra (group theory, ring theory) – number theory – combinatorics. RhodesUniv CCR 2 Maths Seminar 2007 Matrix Lie groups are encountered in many • applications in – physics (geometric mechanics, quantum con- trol) – engineering (motion control, robotics) – computational chemistry (molecular mo- tion) – computer science (computer animation, computer vision, quantum computation). “It turns out that matrix [Lie] groups • pop up in virtually any investigation of objects with symmetries, such as molecules in chemistry, particles in physics, and projective spaces in geometry”. (K. Tapp, 2005) RhodesUniv CCR 3 Maths Seminar 2007 EXAMPLE 1 : The Euclidean group E (2). • E (2) = F : R2 R2 F is an isometry . → | n o The vector space R2 is equipped with the standard Euclidean structure (the “dot product”) x y = x y + x y (x, y R2), • 1 1 2 2 ∈ hence with the Euclidean distance d (x, y) = (y x) (y x) (x, y R2).
    [Show full text]
  • LECTURE 12: LIE GROUPS and THEIR LIE ALGEBRAS 1. Lie
    LECTURE 12: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups Definition 1.1. A Lie group G is a smooth manifold equipped with a group structure so that the group multiplication µ : G × G ! G; (g1; g2) 7! g1 · g2 is a smooth map. Example. Here are some basic examples: • Rn, considered as a group under addition. • R∗ = R − f0g, considered as a group under multiplication. • S1, Considered as a group under multiplication. • Linear Lie groups GL(n; R), SL(n; R), O(n) etc. • If M and N are Lie groups, so is their product M × N. Remarks. (1) (Hilbert's 5th problem, [Gleason and Montgomery-Zippin, 1950's]) Any topological group whose underlying space is a topological manifold is a Lie group. (2) Not every smooth manifold admits a Lie group structure. For example, the only spheres that admit a Lie group structure are S0, S1 and S3; among all the compact 2 dimensional surfaces the only one that admits a Lie group structure is T 2 = S1 × S1. (3) Here are two simple topological constraints for a manifold to be a Lie group: • If G is a Lie group, then TG is a trivial bundle. n { Proof: We identify TeG = R . The vector bundle isomorphism is given by φ : G × TeG ! T G; φ(x; ξ) = (x; dLx(ξ)) • If G is a Lie group, then π1(G) is an abelian group. { Proof: Suppose α1, α2 2 π1(G). Define α : [0; 1] × [0; 1] ! G by α(t1; t2) = α1(t1) · α2(t2). Then along the bottom edge followed by the right edge we have the composition α1 ◦ α2, where ◦ is the product of loops in the fundamental group, while along the left edge followed by the top edge we get α2 ◦ α1.
    [Show full text]
  • Lie Group and Geometry on the Lie Group SL2(R)
    INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Lie group and Geometry on the Lie Group SL2(R) PROJECT REPORT – SEMESTER IV MOUSUMI MALICK 2-YEARS MSc(2011-2012) Guided by –Prof.DEBAPRIYA BISWAS Lie group and Geometry on the Lie Group SL2(R) CERTIFICATE This is to certify that the project entitled “Lie group and Geometry on the Lie group SL2(R)” being submitted by Mousumi Malick Roll no.-10MA40017, Department of Mathematics is a survey of some beautiful results in Lie groups and its geometry and this has been carried out under my supervision. Dr. Debapriya Biswas Department of Mathematics Date- Indian Institute of Technology Khargpur 1 Lie group and Geometry on the Lie Group SL2(R) ACKNOWLEDGEMENT I wish to express my gratitude to Dr. Debapriya Biswas for her help and guidance in preparing this project. Thanks are also due to the other professor of this department for their constant encouragement. Date- place-IIT Kharagpur Mousumi Malick 2 Lie group and Geometry on the Lie Group SL2(R) CONTENTS 1.Introduction ................................................................................................... 4 2.Definition of general linear group: ............................................................... 5 3.Definition of a general Lie group:................................................................... 5 4.Definition of group action: ............................................................................. 5 5. Definition of orbit under a group action: ...................................................... 5 6.1.The general linear
    [Show full text]
  • CLIFFORD ALGEBRAS Property, Then There Is a Unique Isomorphism (V ) (V ) Intertwining the Two Inclusions of V
    CHAPTER 2 Clifford algebras 1. Exterior algebras 1.1. Definition. For any vector space V over a field K, let T (V ) = k k k Z T (V ) be the tensor algebra, with T (V ) = V V the k-fold tensor∈ product. The quotient of T (V ) by the two-sided⊗···⊗ ideal (V ) generated byL all v w + w v is the exterior algebra, denoted (V ).I The product in (V ) is usually⊗ denoted⊗ α α , although we will frequently∧ omit the wedge ∧ 1 ∧ 2 sign and just write α1α2. Since (V ) is a graded ideal, the exterior algebra inherits a grading I (V )= k(V ) ∧ ∧ k Z M∈ where k(V ) is the image of T k(V ) under the quotient map. Clearly, 0(V )∧ = K and 1(V ) = V so that we can think of V as a subspace of ∧(V ). We may thus∧ think of (V ) as the associative algebra linearly gener- ated∧ by V , subject to the relations∧ vw + wv = 0. We will write φ = k if φ k(V ). The exterior algebra is commutative | | ∈∧ (in the graded sense). That is, for φ k1 (V ) and φ k2 (V ), 1 ∈∧ 2 ∈∧ [φ , φ ] := φ φ + ( 1)k1k2 φ φ = 0. 1 2 1 2 − 2 1 k If V has finite dimension, with basis e1,...,en, the space (V ) has basis ∧ e = e e I i1 · · · ik for all ordered subsets I = i1,...,ik of 1,...,n . (If k = 0, we put { } k { n } e = 1.) In particular, we see that dim (V )= k , and ∅ ∧ n n dim (V )= = 2n.
    [Show full text]