Lie Algebras, Algebraic Groups, and Lie Groups

Total Page:16

File Type:pdf, Size:1020Kb

Lie Algebras, Algebraic Groups, and Lie Groups Lie Algebras, Algebraic Groups, and Lie Groups J.S. Milne Version 2.00 May 5, 2013 These notes are an introduction to Lie algebras, algebraic groups, and Lie groups in characteristic zero, emphasizing the relationships between these objects visible in their cat- egories of representations. Eventually these notes will consist of three chapters, each about 100 pages long, and a short appendix. BibTeX information: @misc{milneLAG, author={Milne, James S.}, title={Lie Algebras, Algebraic Groups, and Lie Groups}, year={2013}, note={Available at www.jmilne.org/math/} } v1.00 March 11, 2012; 142 pages. V2.00 May 1, 2013; 186 pages. Please send comments and corrections to me at the address on my website http://www.jmilne.org/math/. The photo is of a grotto on The Peak That Flew Here, Hangzhou, Zhejiang, China. Copyright c 2012, 2013 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permis- sion from the copyright holder. Table of Contents Table of Contents3 Preface........................................ 5 I Lie Algebras 11 1 Definitions and basic properties........................ 11 2 Nilpotent Lie algebras: Engel’s theorem................... 26 3 Solvable Lie algebras: Lie’s theorem..................... 33 4 Semisimple Lie algebras ........................... 40 5 Representations of Lie algebras: Weyl’s theorem .............. 46 6 Reductive Lie algebras; Levi subalgebras; Ado’s theorem.......... 56 7 Root systems and their classification..................... 66 8 Split semisimple Lie algebras......................... 77 9 Representations of split semisimple Lie algebras . 100 10 Real Lie algebras...............................102 11 Classical Lie algebras.............................103 II Algebraic Groups 105 1 Algebraic groups ...............................106 2 Representations of algebraic groups; tensor categories . 110 3 The Lie algebra of an algebraic group ....................118 4 Semisimple algebraic groups.........................134 5 Reductive groups...............................146 6 Algebraic groups with unipotent centre....................151 7 Real algebraic groups.............................155 8 Classical algebraic groups ..........................155 III Lie groups 157 1 Lie groups...................................157 2 Lie groups and algebraic groups .......................158 3 Compact topological groups .........................161 A Arithmetic Subgroups 163 1 Commensurable groups............................164 2 Definitions and examples...........................164 3 Questions...................................165 4 Independence of and L............................165 5 Behaviour with respect to homomorphisms . 166 6 Adelic` description of congruence subgroups . 167 3 7 Applications to manifolds...........................168 8 Torsion-free arithmetic groups ........................169 9 A fundamental domain for SL2 . 169 10 Application to quadratic forms........................170 11 “Large” discrete subgroups..........................171 12 Reduction theory ...............................172 13 Presentations .................................175 14 The congruence subgroup problem......................175 15 The theorem of Margulis...........................176 16 Shimura varieties...............................178 Bibliography 181 Index 185 4 Preface [Lie] did not follow the accepted paths. I would compare him rather to a pathfinder in a primal forest who always knows how to find the way, whereas others thrash around in the thicket. moreover, his pathway always leads past the best vistas, over unknown mountains and valleys. Friedrich Engel. Lie algebras are an essential tool in studying both algebraic groups and Lie groups. Chapter I develops the basic theory of Lie algebras, including the fundamental theorems of Engel, Lie, Cartan, Weyl, Ado, and Poincare-Birkhoff-Witt.´ The classification of semisim- ple Lie algebras in terms of the Dynkin diagrams is explained, and the structure of semisim- ple Lie algebras and their representations described. In Chapter II we apply the theory of Lie algebras to the study of algebraic groups in characteristic zero. As Cartier (1956) noted, the relation between Lie algebras and algebraic groups in characteristic zero is best understood through their categories of representations. For example, when g is a semisimple Lie algebra, the representations of g form a tan- nakian category Rep.g/ whose associated affine group G is the simply connected semisim- ple algebraic group G with Lie algebra g. In other words, Rep.G/ Rep.g/ (1) D with G a simply connected semisimple algebraic group having Lie algebra g. It is possible to compute the centre of G from Rep.g/, and to identify the subcategory of Rep.g/ corre- sponding to each quotient of G by a finite subgroup. This makes it possible to read off the entire theory of semisimple algebraic groups and their representations from the (apparently simpler) theory of semisimple Lie algebras. For a general Lie algebra g, we consider the category Repnil.g/ of representations of g such that the elements in the largest nilpotent ideal of g act as nilpotent endomorphisms. Ado’s theorem assures us that g has a faithful such representation, and from this we are able to deduce a correspondence between algebraic Lie algebras and algebraic groups with unipotent centre. Let G be a reductive algebraic group with a split maximal torus T . The action of T on the Lie algebra g of G induces a decomposition M g h g˛; h Lie.T /, D ˚ ˛ R D 2 of g into eigenspaces g˛ indexed by certain characters ˛ of T , called the roots. A root ˛ determines a copy s˛ of sl2 in g. From the composite of the exact tensor functors (1) Rep.G/ Rep.g/ Rep.s˛/ Rep.S˛/, ! ! D we obtain a homomorphism from a copy S˛ of SL2 into G. Regard ˛ as a root of S˛; then its coroot ˛_ can be regarded as an element of X .T /. The system .X .T /;R;˛ ˛_/ 7! is a root datum. From this, and the Borel fixed point theorem, the entire theory of split reductive groups over fields of characteristic zero follows easily. 5 Although there are many books on algebraic groups, and even more on Lie groups, there are few that treat both. In fact it is not easy to discover in the expository literature what the precise relation between the two is. In Chapter III we show that all connected complex semisimple Lie groups are algebraic groups, and that all connected real semisimple Lie groups arise as covering groups of algebraic groups. Thus readers who understand the theory of algebraic groups and their representations will find that they also understand much of the theory of Lie groups. Again, the key tool is tannakian duality. Realizing a Lie group as an algebraic group is the first step towards understanding the discrete subgroups of the Lie group. We discuss the discrete groups that arise in this way in an appendix. At present, only the split case is covered in Chapter I, only the semisimple case is covered in detail in Chapter II, and only a partial summary of Chapter III is available. Notations; terminology We use the standard (Bourbaki) notations: N 0;1;2;::: ; Z ring of integers; Q D f g D D field of rational numbers; R field of real numbers; C field of complex numbers; Fp D D D Z=pZ field with p elements, p a prime number. For integers m and n, m n means that D j m divides n, i.e., n mZ. Throughout the notes, p is a prime number, i.e., p 2;3;5;:::. 2 D Throughout k is the ground field, usually of characteristic zero, and R always denotes a commutative k-algebra. A k-algebra A is a k-module equipped with a k-bilinear (mul- tiplication) map A A k. Associative k-algebras are required to have an element 1, ! and c1 c k is contained in the centre of the algebra. Unadorned tensor products are f j 2 g over k. Notations from commutative algebra are as in my primer. When k is a field, ksep denotes a separable algebraic closure of k and kal an algebraic closure of k. The dual Homk-linear.V;k/ of a k-module V is denoted by V _. The transpose of a matrix M is de- noted by M t . We define the eigenvalues of an endomorphism of a vector space to be the roots of its characteristic polynomial. We use the terms “morphism of functors” and “natural transformation of functors” in- terchangeably. When F and F 0 are functors from a category, we say that “a homomorphism F .a/ F .a/ is natural in a” when we have a family of such maps, indexed by the objects ! 0 a of the category, forming a natural transformation F F . For a natural transformation ! 0 ˛ F F , we often write ˛R for the morphism ˛.R/ F .R/ F .R/. When its action on W ! 0 W ! 0 morphisms is obvious, we usually describe a functor F by giving its action R F .R/ on objects. Categories are required to be locally small (i.e., the morphisms between any two objects form a set), except for the category A of functors A Set. A diagram A B C _ ! ! ⇒ is said to be exact if the first arrow is the equalizer of the pair of arrows; in particular, this means that A B is a monomorphism. ! The symbol denotes a surjective map, and , an injective map. ! We use the following conventions: X YX is a subset of Y (not necessarily proper); X def YX is defined to be Y , or equals Y by definition; D X YX is isomorphic to Y ; X YX and Y are canonically isomorphic (or there is a given or unique isomorphism); ' Passages designed to prevent the reader from falling into a possibly fatal error are sig- nalled by putting the symbol A in the margin. ASIDES may be skipped; NOTES are often reminders to the author. 6 Prerequisites The only prerequisite for Chapter I (Lie algebras) is the algebra normally taught in first- year graduate courses and in some advanced undergraduate courses. Chapter II (algebraic groups) makes use of some algebraic geometry from the first 11 chapters of my notes AG, and Chapter III (Lie groups) assumes some familiarity with manifolds.
Recommended publications
  • Arxiv:2002.00678V2 [Math.RA] 24 May 2020 ..Asn ..Oru 1] Ieroperator Linear a [14]
    LOCAL AND 2-LOCAL DERIVATIONS OF LOCALLY FINITE SIMPLE LIE ALGEBRAS SHAVKAT AYUPOV1,3, KARIMBERGEN KUDAYBERGENOV2, BAKHTIYOR YUSUPOV3 Abstract. In the present paper we study local and 2-local derivations of locally finite split simple Lie algebras. Namely, we show that every local and 2-local derivation on such Lie algebra is a derivation. Keywords: Lie algebras, locally finite simple Lie algebras, derivation, local derivation, 2-local derivation. AMS Subject Classification: 17B65, 17B20, 16W25. 1. Introduction The notion of local derivation were first introduced in 1990 by R.V.Kadison [13] and D.R.Larson, A.R.Sourour [14]. A linear operator ∆ on an algebra A is called a local derivation if given any x ∈ A there exists a derivation Dx(depending on x) such that ∆(x)= Dx(x). The main problems concerning this notion are to find conditions under which local derivations become derivations and to present examples of algebras with local derivations that are not derivations. R.V.Kadison proved that each continuous local derivation of a von Neumann algebra M into a dual Banach M-bimodule is a derivation. Investigation of local and 2-local derivations on finite dimensional Lie algebras were initiated in papers [2, 3]. In [2] the first two authors have proved that every local derivation on semi-simple Lie algebras is a derivation and gave examples of nilpotent finite-dimensional Lie algebras with local derivations which are not derivations. In [5] local derivations of solvable Lie algebras are investigated and it is shown that any local derivation of solvable Lie algebra with model nilradical is a derivation.
    [Show full text]
  • Arxiv:2003.06292V1 [Math.GR] 12 Mar 2020 Eggnrtr N Ignlmti.Tedaoa Arxi Matrix Diagonal the Matrix
    ALGORITHMS IN LINEAR ALGEBRAIC GROUPS SUSHIL BHUNIA, AYAN MAHALANOBIS, PRALHAD SHINDE, AND ANUPAM SINGH ABSTRACT. This paper presents some algorithms in linear algebraic groups. These algorithms solve the word problem and compute the spinor norm for orthogonal groups. This gives us an algorithmic definition of the spinor norm. We compute the double coset decompositionwith respect to a Siegel maximal parabolic subgroup, which is important in computing infinite-dimensional representations for some algebraic groups. 1. INTRODUCTION Spinor norm was first defined by Dieudonné and Kneser using Clifford algebras. Wall [21] defined the spinor norm using bilinear forms. These days, to compute the spinor norm, one uses the definition of Wall. In this paper, we develop a new definition of the spinor norm for split and twisted orthogonal groups. Our definition of the spinornorm is rich in the sense, that itis algorithmic in nature. Now one can compute spinor norm using a Gaussian elimination algorithm that we develop in this paper. This paper can be seen as an extension of our earlier work in the book chapter [3], where we described Gaussian elimination algorithms for orthogonal and symplectic groups in the context of public key cryptography. In computational group theory, one always looks for algorithms to solve the word problem. For a group G defined by a set of generators hXi = G, the problem is to write g ∈ G as a word in X: we say that this is the word problem for G (for details, see [18, Section 1.4]). Brooksbank [4] and Costi [10] developed algorithms similar to ours for classical groups over finite fields.
    [Show full text]
  • Finite Resolutions of Modules for Reductive Algebraic Groups
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA I@473488 (1986) Finite Resolutions of Modules for Reductive Algebraic Groups S. DONKIN School of Mathematical Sciences, Queen Mary College, Mile End Road, London El 4NS, England Communicafed by D. A. Buchsbaum Received January 22, 1985 INTRODUCTION A popular theme in recent work of Akin and Buchsbaum is the construc- tion of a finite left resolution of a suitable G&-module M by modules which are required to be direct sums of tensor products of exterior powers of the natural representation. In particular, in [Z, 31, for partitions 1 and p, resolutions are constructed for the modules L,(F) and L,,,(F) (the Schur functor corresponding to 1 and the skew Schur functor corresponding to (A, p), evaluated at F), where F is a free module over a field or the integers. The purpose of this paper is to characterise the GL,-modules which admit such a resolution as those modules which have a filtration in which each successivequotient has the form L,(F) for some partition p. By contrast with [2,3] we do not produce resolutions explicitly. Our methods are independent of those of Akin and Buchsbaum (we give a new proof of their result on the existence of a resolution for L,(F)) and are algebraic group theoretic in nature. We have therefore cast our main result (the theorem of Section 1) as a statement about resolutions for reductive algebraic groups over an algebraically closed field.
    [Show full text]
  • Arxiv:Math/0511624V1
    Automorphism groups of polycyclic-by-finite groups and arithmetic groups Oliver Baues ∗ Fritz Grunewald † Mathematisches Institut II Mathematisches Institut Universit¨at Karlsruhe Heinrich-Heine-Universit¨at D-76128 Karlsruhe D-40225 D¨usseldorf May 18, 2005 Abstract We show that the outer automorphism group of a polycyclic-by-finite group is an arithmetic group. This result follows from a detailed structural analysis of the automorphism groups of such groups. We use an extended version of the theory of the algebraic hull functor initiated by Mostow. We thus make applicable refined methods from the theory of algebraic and arithmetic groups. We also construct examples of polycyclic-by-finite groups which have an automorphism group which does not contain an arithmetic group of finite index. Finally we discuss applications of our results to the groups of homotopy self-equivalences of K(Γ, 1)-spaces and obtain an extension of arithmeticity results of Sullivan in rational homo- topy theory. 2000 Mathematics Subject Classification: Primary 20F28, 20G30; Secondary 11F06, 14L27, 20F16, 20F34, 22E40, 55P10 arXiv:math/0511624v1 [math.GR] 25 Nov 2005 ∗e-mail: [email protected] †e-mail: [email protected] 1 Contents 1 Introduction 4 1.1 Themainresults ........................... 4 1.2 Outlineoftheproofsandmoreresults . 6 1.3 Cohomologicalrepresentations . 8 1.4 Applications to the groups of homotopy self-equivalences of spaces 9 2 Prerequisites on linear algebraic groups and arithmetic groups 12 2.1 Thegeneraltheory .......................... 12 2.2 Algebraicgroupsofautomorphisms. 15 3 The group of automorphisms of a solvable-by-finite linear algebraic group 17 3.1 The algebraic structure of Auta(H)................
    [Show full text]
  • Algebras in Which Every Subalgebra Is Noetherian
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 142, Number 9, September 2014, Pages 2983–2990 S 0002-9939(2014)12052-1 Article electronically published on May 21, 2014 ALGEBRAS IN WHICH EVERY SUBALGEBRA IS NOETHERIAN D. ROGALSKI, S. J. SIERRA, AND J. T. STAFFORD (Communicated by Birge Huisgen-Zimmermann) Abstract. We show that the twisted homogeneous coordinate rings of elliptic curves by infinite order automorphisms have the curious property that every subalgebra is both finitely generated and noetherian. As a consequence, we show that a localisation of a generic Skylanin algebra has the same property. 1. Introduction Throughout this paper k will denote an algebraically closed field and all algebras will be k-algebras. It is not hard to show that if C is a commutative k-algebra with the property that every subalgebra is finitely generated (or noetherian), then C must be of Krull dimension at most one. (See Section 3 for one possible proof.) The aim of this paper is to show that this property holds more generally in the noncommutative universe. Before stating the result we need some notation. Let X be a projective variety ∗ with invertible sheaf M and automorphism σ and write Mn = M⊗σ (M) ···⊗ n−1 ∗ (σ ) (M). Then the twisted homogeneous coordinate ring of X with respect to k M 0 M this data is the -algebra B = B(X, ,σ)= n≥0 H (X, n), under a natu- ral multiplication. This algebra is fundamental to the theory of noncommutative algebraic geometry; see for example [ATV1, St, SV]. In particular, if S is the 3- dimensional Sklyanin algebra, as defined for example in [SV, Example 8.3], then B(E,L,σ)=S/gS for a central element g ∈ S and some invertible sheaf L over an elliptic curve E.WenotethatS is a graded ring that can be regarded as the “co- P2 P2 ordinate ring of a noncommutative ” or as the “coordinate ring of nc”.
    [Show full text]
  • Lie Group Homomorphism Φ: → Corresponds to a Linear Map Φ: →
    More on Lie algebras Wednesday, February 14, 2018 8:27 AM Simple Lie algebra: dim 2 and the only ideals are 0 and itself. Have classification by Dynkin diagram. For instance, , is simple: take the basis 01 00 10 , , . 00 10 01 , 2,, 2,, . Suppose is in the ideal. , 2. , , 2. If 0, then X is in the ideal. Then ,,, 2imply that H and Y are also in the ideal which has to be 2, . The case 0: do the same argument for , , , then the ideal is 2, unless 0. The case 0: , 2,, 2implies the ideal is 2, unless 0. The ideal is {0} if 0. Commutator ideal: , Span,: , ∈. An ideal is in particular a Lie subalgebra. Keep on taking commutator ideals, get , , ⊂, … called derived series. Solvable: 0 for some j. If is simple, for all j. Levi decomposition: any Lie algebra is the semi‐direct product of a solvable ideal and a semisimple subalgebra. Similar concept: , , , , …, ⊂. Sequence of ideals called lower central series. Nilpotent: 0 for some j. ⊂ . Hence nilpotent implies solvable. For instance, the Lie algebra of nilpotent upper triangular matrices is nilpotent and hence solvable. Can take the basis ,, . Then ,,, 0if and , if . is spanned by , for and hence 0. The Lie algebra of upper triangular matrices is solvable but not nilpotent. Can take the basis ,,,, ,,…,,. Similar as above and ,,,0. . So 0. But for all 1. Recall that any Lie group homomorphism Φ: → corresponds to a linear map ϕ: → . In the proof that a continuous homomorphism is smooth. Lie group Page 1 Since Φ ΦΦΦ , ∘ Ad AdΦ ∘.
    [Show full text]
  • Some Finiteness Results for Groups of Automorphisms of Manifolds 3
    SOME FINITENESS RESULTS FOR GROUPS OF AUTOMORPHISMS OF MANIFOLDS ALEXANDER KUPERS Abstract. We prove that in dimension =6 4, 5, 7 the homology and homotopy groups of the classifying space of the topological group of diffeomorphisms of a disk fixing the boundary are finitely generated in each degree. The proof uses homological stability, embedding calculus and the arithmeticity of mapping class groups. From this we deduce similar results for the homeomorphisms of Rn and various types of automorphisms of 2-connected manifolds. Contents 1. Introduction 1 2. Homologically and homotopically finite type spaces 4 3. Self-embeddings 11 4. The Weiss fiber sequence 19 5. Proofs of main results 29 References 38 1. Introduction Inspired by work of Weiss on Pontryagin classes of topological manifolds [Wei15], we use several recent advances in the study of high-dimensional manifolds to prove a structural result about diffeomorphism groups. We prove the classifying spaces of such groups are often “small” in one of the following two algebro-topological senses: Definition 1.1. Let X be a path-connected space. arXiv:1612.09475v3 [math.AT] 1 Sep 2019 · X is said to be of homologically finite type if for all Z[π1(X)]-modules M that are finitely generated as abelian groups, H∗(X; M) is finitely generated in each degree. · X is said to be of finite type if π1(X) is finite and πi(X) is finitely generated for i ≥ 2. Being of finite type implies being of homologically finite type, see Lemma 2.15. Date: September 4, 2019. Alexander Kupers was partially supported by a William R.
    [Show full text]
  • Free Lie Algebras
    Linear algebra: Free Lie algebras The purpose of this sheet is to fill the details in the algebraic part of the proof of the Hilton-Milnor theorem. By the way, the whole proof can be found in Neisendorfer's book "Algebraic Methods in Unstable Homotopy Theory." Conventions: k is a field of characteristic 6= 2, all vector spaces are positively graded vector spaces over k and each graded component is finite dimensional, all associative algebras are connected and augmented. If A is an associative algebra, then I(A) is its augmentation ideal (i.e. the kernel of the augmentation morphism). Problem 1 (Graded Nakayama Lemma). Let A be an associative algebra and let M be a graded A-module such that Mn = 0, for n 0. (a) If I(A) · M = M, then M = 0; (b) If k ⊗AM = 0, then M = 0. Problem 2. Let A be an associative algebra and let V be a vector subspace of I(A). Suppose that the augmentation ideal I(A) is a free A-module generated by V . Prove that A is isomorphic to T (V ). A Problem 3. Let A be an associative algebra such that Tor2 (k; k) = 0. Prove that A is isomorphic to the tensor algebra T (V ), where V := I(A)=I(A)2 { the module of indecomposables. Problem 4. Let L be a Lie algebra such that its universal enveloping associative algebra U(L) is isomorphic to T (V ) for some V . Prove that L is isomorphic to the free Lie algebra L(V ). Hint: use a corollary of the Poincare-Birkhoff-Witt theorem which says that any Lie algebra L canonically injects into U(L).
    [Show full text]
  • LIE GROUPS and ALGEBRAS NOTES Contents 1. Definitions 2
    LIE GROUPS AND ALGEBRAS NOTES STANISLAV ATANASOV Contents 1. Definitions 2 1.1. Root systems, Weyl groups and Weyl chambers3 1.2. Cartan matrices and Dynkin diagrams4 1.3. Weights 5 1.4. Lie group and Lie algebra correspondence5 2. Basic results about Lie algebras7 2.1. General 7 2.2. Root system 7 2.3. Classification of semisimple Lie algebras8 3. Highest weight modules9 3.1. Universal enveloping algebra9 3.2. Weights and maximal vectors9 4. Compact Lie groups 10 4.1. Peter-Weyl theorem 10 4.2. Maximal tori 11 4.3. Symmetric spaces 11 4.4. Compact Lie algebras 12 4.5. Weyl's theorem 12 5. Semisimple Lie groups 13 5.1. Semisimple Lie algebras 13 5.2. Parabolic subalgebras. 14 5.3. Semisimple Lie groups 14 6. Reductive Lie groups 16 6.1. Reductive Lie algebras 16 6.2. Definition of reductive Lie group 16 6.3. Decompositions 18 6.4. The structure of M = ZK (a0) 18 6.5. Parabolic Subgroups 19 7. Functional analysis on Lie groups 21 7.1. Decomposition of the Haar measure 21 7.2. Reductive groups and parabolic subgroups 21 7.3. Weyl integration formula 22 8. Linear algebraic groups and their representation theory 23 8.1. Linear algebraic groups 23 8.2. Reductive and semisimple groups 24 8.3. Parabolic and Borel subgroups 25 8.4. Decompositions 27 Date: October, 2018. These notes compile results from multiple sources, mostly [1,2]. All mistakes are mine. 1 2 STANISLAV ATANASOV 1. Definitions Let g be a Lie algebra over algebraically closed field F of characteristic 0.
    [Show full text]
  • Underlying Varieties and Group Structures 3
    UNDERLYING VARIETIES AND GROUP STRUCTURES VLADIMIR L. POPOV Abstract. Starting with exploration of the possibility to present the underlying variety of an affine algebraic group in the form of a product of some algebraic varieties, we then explore the naturally arising problem as to what extent the group variety of an algebraic group determines its group structure. 1. Introduction. This paper arose from a short preprint [16] and is its extensive extension. As starting point of [14] served the question of B. Kunyavsky [10] about the validity of the statement, which is for- mulated below as Corollary of Theorem 1. This statement concerns the possibility to present the underlying variety of a connected reductive algebraic group in the form of a product of some special algebraic va- rieties. Sections 2, 3 make up the content of [16], where the possibility of such presentations is explored. For some of them, in Theorem 1 is proved their existence, and in Theorems 2–5, on the contrary, their non-existence. Theorem 1 shows that there are non-isomorphic reductive groups whose underlying varieties are isomorphic. In Sections 4–10, we explore the problem, naturally arising in connection with this, as to what ex- tent the underlying variety of an algebraic group determines its group structure. In Theorems 6–8, it is shown that some group properties (dimension of unipotent radical, reductivity, solvability, unipotency, arXiv:2105.12861v1 [math.AG] 26 May 2021 toroidality in the sense of Rosenlicht) are equivalent to certain geomet- ric properties of the underlying group variety. Theorem 8 generalizes to solvable groups M.
    [Show full text]
  • On Simply Laced Lie Algebras and Their Minuscule Representations
    ON SIMPLY LACED LIE ALGEBRAS AND THEIR MINUSCULE REPRESENTATIONS JACOB LURIE 1. Introduction The Lie algebra E6 may be defined as the algebra of endomorphisms of a 27-dimensional complex vector space MC which annihilate a particular cubic polynomial. This raises a natural question: what is this polynomial? If we choose a basis for MC consisting of weight vectors fXwg (for some Cartan subalgebra of E6), then any invariant cubic polynomial must be a linear combination of monomials XwXw0 Xw00 where w + w0 + w00 = 0. The problem is then to determine the coefficients of these monomials. Of course, the problem is not yet well-posed, since we still have a great deal of freedom to scale the basis vectors Xw. If we work over the integers instead of the complex numbers, then much of this freedom disappears. The Z-module M then decomposes as a direct sum of 27 weight spaces which are free Z-modules of rank 1. The generators of these weight spaces are well-defined up to a sign. Using a basis for M consisting of such generators, a little bit of thought shows that the invariant cubic polynomial may be written as a sum X w;w0;w00 XwXw0 Xw00 w+w0+w00=0 where w;w0;w00 = ±1. The problem is now reduced to the determination of the signs w;w0;w00 . However, this problem is again ill-posed, since the Xw are only well-defined up to a sign. This problem is resolved by examining more carefully what we mean by working \over Z".
    [Show full text]
  • 1:34 Pm April 11, 2013 Red.Tex
    1:34 p.m. April 11, 2013 Red.tex The structure of reductive groups Bill Casselman University of British Columbia, Vancouver [email protected] An algebraic group defined over F is an algebraic variety G with group operations specified in algebraic terms. For example, the group GLn is the subvariety of (n + 1) × (n + 1) matrices A 0 0 a with determinant det(A) a = 1. The matrix entries are well behaved functions on the group, here for 1 example a = det− (A). The formulas for matrix multiplication are certainly algebraic, and the inverse of a matrix A is its transpose adjoint times the inverse of its determinant, which are both algebraic. Formally, this means that we are given (a) an F •rational multiplication map G × G −→ G; (b) an F •rational inverse map G −→ G; (c) an identity element—i.e. an F •rational point of G. I’ll look only at affine algebraic groups (as opposed, say, to elliptic curves, which are projective varieties). In this case, the variety G is completely characterized by its affine ring AF [G], and the data above are respectively equivalent to the specification of (a’) an F •homomorphism AF [G] −→ AF [G] ⊗F AF [G]; (b’) an F •involution AF [G] −→ AF [G]; (c’) a distinguished homomorphism AF [G] −→ F . The first map expresses a coordinate in the product in terms of the coordinates of its terms. For example, in the case of GLn it takes xik −→ xij ⊗ xjk . j In addition, these data are subject to the group axioms. I’ll not say anything about the general theory of such groups, but I should say that in practice the specification of an algebraic group is often indirect—as a subgroup or quotient, say, of another simpler one.
    [Show full text]