Chapter 7 Historical Biogeography of Trigonostemon and Dimorphocalyx (Euphorbiaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 7 Historical Biogeography of Trigonostemon and Dimorphocalyx (Euphorbiaceae) Cover Page The handle http://hdl.handle.net/1887/78385 holds various files of this Leiden University dissertation. Author: Yu, R. Title: A monograph of the plant genus Trigonostemon Blume Issue Date: 2019-09-18 Chapter 7 Historical biogeography of Trigonostemon and Dimorphocalyx (Euphorbiaceae) R.-Y. Yu1, P.C. van Welzen1,2 1 Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; corresponding author e-mail: [email protected]. 2 Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands. Accepted for publication in Botanical Journal of the Linnean Society. Abstract Trigonostemon and Dimorphocalyx are two morphologically similar genera in tropical Asia. We estimated their divergence times through a Bayesian clock analysis and reconstructed the historical biogeography using a likelihood analysis under the Dispersal-Extinction- Cladogenesis (DEC) model and a Statistical Dispersal-Vicariance analysis (S-DIVA). We have found that the two genera differ in their historical biogeography: Trigonostemon originated on SE Asian mainland, but one section dispersed to the Malay Peninsula and Borneo, where rapid speciation events occurred during the Pleistocene, whereas Dimorphocalyx originated and extended to its current distribution from Borneo. The dispersal routes of both genera are well supported by the tectonic history and are comparable to the conclusions in previous case studies. Long-distance dispersals across Wallace’s line are of particular interest in biogeography. Our data support the hypothesis that the Philippines is the most often used stepping stone to cross Wallace’s line. Furthermore, we consider that the frequent change of sea levels during the Pleistocene propelled the diversification of sect. Trigonostemon in Borneo and the Malay Peninsula. Additional key words dated phylogeny Dispersal-Extinction-Cladogenesis Pleistocene Quaternary speciation Statistical Dispersal-Vicariance analysis Tritaxis Wallace’s line 222 A monograph of the plant genus Trigonostemon Blume ― Chapter 7 INTRODUCTION Southeast Asia ranges from the Alpine-Himalayan mountain belt south-eastwards to a massive collection of islands across the equator between 95°E and 140°E (Hall 2009), which is commonly known as the Malay Archipelago (Wallace 1869) or Malesia (Zollinger 1857, van Steenis 1948b, 1950, Raes & van Welzen 2009). The SE Asian mainland (Sundaland continental core) and W Malesia (Sunda Shelf) were already attached in the Mesozoic, while the much younger E Malesia was formed by continental fragments that mainly rifted from the Australian part of the splitting Gondwana since the Eocene (Hall 2009). Malesia represents a rich biodiversity. This area harbours a total of approximately 42,000 plant species (Roos 1993), 70% of which is endemic (van Welzen 2005). Plant dispersals in this area have facilitated the floristic exchange between the continents of Asia and Australia (e.g., Sirichamorn et al. 2014, Crayn et al. 2015, Buerki et al. 2016, Hauenschild et al. 2018). The Malesian islands form a more or less linear pathway of stepping stones for plant dispersals (van Welzen et al. 2005). However, significant water barriers (e.g., Makassar Strait and Banda Sea) exist in Wallacea, the central part of Malesia (most of Java, Lesser Sunda Islands, Sulawesi, Philippines, Moluccas; van Welzen et al. 2011), and the stepping stones (e.g., Moluccas) only emerged above sea level since 10 Ma (Hall 2009). At present, the climate in Malesia is everwet in the west (Sunda Shelf: Malay Peninsula, Sumatra, Borneo, SW Java) and the east (Sahul Shelf: New Guinea); while in most parts of Wallacea, there is a yearly dry monsoon. Because climate (especially the yearly precipitation and temperature) is a very important regulator of species occurrences (Boucher-Lalonde et al. 2012, Araújo et al. 2013), it may have overruled the historical dispersal pathways. Relatively few studies attempted to reveal the exact migration route for plants across Wallace’s line. The most often used route between east and west is via the Philippines (Nauheimer et al. 2012, Denduangboripant et al. 2001; or vice versa, e.g., Thomas et al. 2012, Jønsson et al. 2010 [bird]), but other routes are also found (e.g., via Borneo and Sulawesi, Grudinski et al. 2014, Thomas et al. 2012, Evans et al. 2003 [frog]; or between Java and the Lesser Sunda Islands (e.g., proposed route by Su & Saunders 2009, present in Figure 7; Chantarasuwan et al. 2016). General migration patterns can only be discovered when a sufficient number of case studies are performed. In this paper, we add an example of the historical biogeography of Trigonostemon Blume and Dimorphocalyx Thwaites, by investigating their geographical origin and dispersal routes, particularly those across Wallace’s line, and comparing these to the previous studies. Trigonostemon and Dimorphocalyx are two closely related genera in the Euphorbiaceae, comprising about 60 (Yu & van Welzen 2018) and 13 species (van Welzen & van Oostrum 2015), respectively. They are both classified in tribe Codiaeae (Pax) Hutch. of the subfamily Crontonoideae (Webster 2014) and are morphologically similar in the connate stamens and the presence of petals in both staminate and pistillate flowers. Both genera have more or less the same SE Asian distribution, ranging from India to S China, throughout continental SE Asia and Malesia to NE Australia, and for Trigonostemon, even to the W Pacific (Govaerts et al. 2000, van Welzen & van Oostrum 2015, Yu & van Welzen 2018). The main differences between the two genera lie in the sexual system and the number and arrangement of the stamens: Trigonostemon species are monoecious shrubs or trees with only one whorl of 3 or 5 connate stamens, whereas most Dimorphocalyx species are dioecious trees and often have 10–15 stamens arranged in two or three whorls, of which only the inner whorls are partly connate. Dimorphocalyx (including Tritaxis Baill., the two genera will be merged as one under the name Tritaxis, see Yu et al. 2019b) was once treated as a Historical biogeography of Trigonostemon and Dimorphocalyx (Euphorbiaceae) 223 section of Trigonostemon sensu lato (Müller Argoviensis 1865, 1866, Beddome 1873), but our recent molecular phylogenetic study (Yu et al. 2019b) demonstrated that Trigonostemon and Dimorphocalyx were two separate monophyletic groups within the C2 clade of the Crotonoideae in the backbone phylogeny of the Euphorbiaceae (Wurdack et al. 2005). Therefore, they are treated as separate genera as in their original generic circumscriptions (Blume 1825; Thwaites 1861). West Malesia is the distribution centre for Trigonostemon. Within the genus, sect. Trigonostemon contains most species (about 50% species of the genus), and these species are likely the result of a series of recent speciation events (which is reflected in the short branches in the phylogram; Yu et al. 2019b). Particular factors in the tectonic and climatological history of this region may have promoted these events. Therefore, another aim of this paper is to provide an explanation for the rapid diversification in sect.Trigonostemon from a historical biogeographic angle. MATERIAL AND METHODS Divergence time estimation The same specimens and molecular markers as in Yu et al. (2019b) were used to estimate the divergence times of Trigonostemon and Dimorphocalyx. A total of 41 species (out of about 60) and 6 varieties of Trigonostemon and 11 species (out of about 13) of Dimorphocalyx were included. The sampling covers the whole distribution of the two genera, except Trigonostemon sect. Pycnanthera Benth. (T. diplopetalus Thwaites and T. nemoralis Thwaites from S India and Sri Lanka) is missing. The molecular dating analysis was performed on matrix 1 of Yu et al. (2019b) using Bayesian Inference via BEAST v.1.10.1 (Suchard et al. 2018). Five molecular markers were used: the nuclear ITS and the chloroplast trnK intron, trnT-L, trnL-F and rbcL. In the data matrix, sequences of all these five markers obtained forTrigonostemon and Dimorphocalyx are aligned with the dataset of the Euphorbiaceae (based on trnL-F and rbcL) of Wurdack et al. (2005). The substitution model of the nuclear and chloroplast markers was selected based on the lowest Akaike Information Criterion scores detected by Modeltest-NG v.0.1.5, which showed the same model for the nuclear and chloroplast markers. The input file was created by BEAUti v.1.10.1 (part of the BEAST package) with the following settings: the dataset contained five partitions (each partition for a single molecular marker); the substitution rates were calculated under the General Time Reversal (GTR) model with a discrete Gamma distribution (+Γ, 4 categories) of evolutionary rates among the sites and a certain number of invariable sites (+I); the divergence times were estimated using the uncorrelated relaxed clock model (Drummond et al. 2006) with a lognormal distribution of rates; the Yule process was selected as tree prior (Yule 1925; Gernhard 2008), and a random starting tree was used; a total of 1.25×108 generations of Markov Monte Carlo chains were performed and trees were sampled every 1×104 generations. The results were examined for Effective Sampling Size (ESS > 200) using Tracer v.1.7.1 (Rambaut et al. 2018). The first 20% of the sampled trees was discarded as burn-in, and the Maximum Clade Credibility (MCC) tree was found using TreeAnnotator v.1.7.5 (part of the BEAST package). Three calibration points were used to estimate the divergence times. As no distribution type of the fossil ages was known, the calibration priors were coded as uniform distributions (Ho 2007) 224 A monograph of the plant genus Trigonostemon Blume ― Chapter 7 with an upper and lower boundary (presented between brackets). Because no fossil records directly identified asTrigonostemon or Dimorphocalyx could be found, we used two secondary calibrations and a fossil record of Hippomaneoidea warmanensis Crepet & Daghlian instead: 1. The crown node of Euphorbiaceae s.s. (Figure 41; the node joining Acalyphoideae s.s. and Euphorbioideae) was assigned a mean age of 89.9 Ma (97.4–81.2 Ma).
Recommended publications
  • Soft Copy [Ph.D. Thesis]
    Chapter I Introduction “The universe is the creation of the supreme power ment for the benefit to all his creations. Individual species must therefore learn to enjoy benefits by forming a part of the system in close relation with other species. Let not anyone species encroach upon the others right”. Isho-Upanishad Darjeeling Himalaya is a part of Singalila range of Eastern Himalaya and a part of Himalayan Hotspot (Moktan & Das, 2011), and globally known as one of the mega biodiversity hotspot zones (Rai & Bhujel, 2011) and is known to provide shelter to a large number of endemic, rare and interesting plant species (Gajurel et al . 2006). Takhtajan (1969) based on the analysis of distribution of primitive angiosperms treated the Eastern Himalaya-Fiji region as the ‘cradle of flowering plants’, where angiosperm have diversified. Therefore, Eastern Himalayan flora has great phytogeographic significance. Eastern Himalaya directly confronts the moisture, monsoon winds, blowing in land across the Bay of Bengal, that leads to a high degree of precipitation which has no equal in the planets. Maximum humidity favours the migration of plant species widely from different bordering countries. The Eastern Himalayas is characterized by affluence in the flora and has attracted the plant lovers round the world (Das, 2011) and rich repository of plant wealth in varied ecological systems. Floristically, the Eastern Himalaya is one of the richest regions in the world that is literally considered as a botanist’s paradise and has thus, attracted a large number of plant hunters and botanists at least during the last three centuries (Don, 1821; Das, 1995, 2004).
    [Show full text]
  • Survey of Euphorbiaceae Family in Kopergaon Tehsil Of
    International Journal of Humanities and Social Sciences (IJHSS) ISSN (P): 2319–393X; ISSN (E): 2319–3948 Vol. 9, Issue 3, Apr–May 2020; 47–58 © IASET SURVEY OF EUPHORBIACEAE FAMILY IN KOPERGAONTEHSIL OF MAHARASHTRA Rahul Chine 1 & MukulBarwant 2 1Research Scholar, Department of Botany, Shri Sadguru Gangagir Maharaj Science College, Maharashtra, India 2Research Scholar, Department of Botany, Sanjivani Arts Commerce and Science College, Maharashtra, India ABSTRACT The survey of Family Euphorbiaceae from Kopargoantehshil is done. In this we first collection of different member of Family Euphorbiaceae from different region of Kopargoantehasil. An extensive and intensive survey at plants was carried out from village Pathare, Derde, Pohegoan, Kopergaon, Padhegaon, Apegoan during the were collected in flowering and fruiting period throughout the year done. During survey we determine 16 member of Euphorbiceae from Kopargoantehshil Then we decide characterization on the basis of habit, flowering character, leaf and fruit character with help of that character and using different literature we identified each and every member of Euphorbiaceae Species were identified with relevant information and documented in this paper with regard to their Botanical Name, family, Habitat, flowering Fruiting session and their medicinal value of some member of Euphorbiaceae that used in medicine respiratory disorder such as cough, asthama, bronchitis etc and some are toxic in nature due to their toxic latex that is showing itching reaction. KEYWORDS : Family Euphorbiaceae, Respiratory Ailment, Identification, Chracterization and Documentation Article History Received: 09 Apr 2020 | Revised: 10 Apr 2020 | Accepted: 18 Apr 2020 INTRODUCTION The Euphorbiaceae, the spurge family, is one of the complex large family of flowering plants of angiosperm with 334 genera and 8000 species in the worlds (Wurdack 2004).
    [Show full text]
  • Origin of the Cyathium-Bearing Euphorbieae (Euphorbiaceae): Phylogenetic Study Based on Morphological Characters
    ParkBot. Bull.and Backlund Acad. Sin. — (2002) Origin 43: of 57-62 the cyathium-bearing Euphorbieae 57 Origin of the cyathium-bearing Euphorbieae (Euphorbiaceae): phylogenetic study based on morphological characters Ki-Ryong Park1,* and Anders Backlund2 1Department of Biology, Kyung-Nam University, Masan 631-701, Korea 2Division of Pharmacognosy, Department of Pharmacy, Uppsala University, BMC-Biomedical center, S-751 23 Uppsala, Sweden (Received October 6, 2000; Accepted August 24, 2001) Abstract. A cladistic analysis of the subfamily Euphorbioideae was undertaken to elucidate the origin of the cyathium- bearing Euphorbieae and to provide hypotheses about evolutionary relationships within the subfamily. Twenty-one species representing most of the genera within the study group and three outgroup taxa from the subfamilies Acalyphoideae and Crotonoideae were selected for parsimony analysis. An unweighted parsimony analysis of 24 morphological characters resulted in five equally parsimonious trees with consistency indices of 0.67 and tree lengths of 39 steps. The strict consensus tree supported monophyly of the cyathium-bearing Euphorbieae. The sister group relationships of cyathium bearing Euphorbieae with Maprounea (subtribe Hippomaninae) were supported weakly, and the origin of cyathium is possibly in Hippomaneae, or in the common ancestor of Euphorbieae and remaining taxa of Euphorbioideae plus Acalyphoideae. Within the tribe Euphorbieae, both subtribes Euphorbiinae and Neoguilauminiinae are monophyletic, but the African endemic subtribe Anthosteminae is unresolved. The resulting trees support the monophyly of the tribe Stomatocalyceae while the tribe Hippomaneae does not consistently form a clade. Keywords: Cyathium; Euphorbieae; Phylogeny. Introduction to the position of a female flower. Accordingly, the Eu- phorbia-like cyathium results from the alteration of floral In a recent classification of subfamily Euphorbioideae axis and the condensation of the axis of male flower in Boiss., Webster (1975, 1994b) recognized six tribes: Hippomaneae.
    [Show full text]
  • Cara Membaca Informasi Daftar Jenis Tumbuhan
    Dilarang mereproduksi atau memperbanyak seluruh atau sebagian dari buku ini dalam bentuk atau cara apa pun tanpa izin tertulis dari penerbit. © Hak cipta dilindungi oleh Undang-Undang No. 28 Tahun 2014 All Rights Reserved Rugayah Siti Sunarti Diah Sulistiarini Arief Hidayat Mulyati Rahayu LIPI Press © 2015 Lembaga Ilmu Pengetahuan Indonesia (LIPI) Pusat Penelitian Biologi Katalog dalam Terbitan (KDT) Daftar Jenis Tumbuhan di Pulau Wawonii, Sulawesi Tenggara/ Rugayah, Siti Sunarti, Diah Sulistiarini, Arief Hidayat, dan Mulyati Rahayu– Jakarta: LIPI Press, 2015. xvii + 363; 14,8 x 21 cm ISBN 978-979-799-845-5 1. Daftar Jenis 2. Tumbuhan 3. Pulau Wawonii 158 Copy editor : Kamariah Tambunan Proofreader : Fadly S. dan Risma Wahyu H. Penata isi : Astuti K. dan Ariadni Desainer Sampul : Dhevi E.I.R. Mahelingga Cetakan Pertama : Desember 2015 Diterbitkan oleh: LIPI Press, anggota Ikapi Jln. Gondangdia Lama 39, Menteng, Jakarta 10350 Telp. (021) 314 0228, 314 6942. Faks. (021) 314 4591 E-mail: [email protected] Website: penerbit.lipi.go.id LIPI Press @lipi_press DAFTAR ISI DAFTAR GAMBAR ............................................................................. vii PENGANTAR PENERBIT .................................................................. xi KATA PENGANTAR ............................................................................ xiii PRAKATA ............................................................................................. xv PENDAHULUAN ...............................................................................
    [Show full text]
  • Discovering Karima (Euphorbiaceae), a New Crotonoid Genus from West Tropical Africa Long Hidden Within Croton
    RESEARCH ARTICLE Discovering Karima (Euphorbiaceae), a New Crotonoid Genus from West Tropical Africa Long Hidden within Croton Martin Cheek1*, Gill Challen1, Aiah Lebbie2, Hannah Banks1, Patricia Barberá3, Ricarda Riina3* 1 Science Department, Royal Botanic Gardens, Kew, Surrey, United Kingdom, 2 National Herbarium of Sierra Leone, Dept. of Biological Sciences, Njala University, PMB, Freetown, Sierra Leone, 3 Department of Biodiversity and Conservation, Real Jardín Botánico, RJB-CSIC, Plaza de Murillo, Madrid, Spain * [email protected] (MC); [email protected] (RR) Abstract Croton scarciesii (Euphorbiaceae-Crotonoideae), a rheophytic shrub from West Africa, is OPEN ACCESS shown to have been misplaced in Croton for 120 years, having none of the diagnostic char- Citation: Cheek M, Challen G, Lebbie A, Banks H, acters of that genus, but rather a set of characters present in no known genus of the family. Barberá P, Riina R (2016) Discovering Karima Pollen analysis shows that the new genus Karima belongs to the inaperturate crotonoid (Euphorbiaceae), a New Crotonoid Genus from West Tropical Africa Long Hidden within Croton. PLoS group. Analysis of a concatenated molecular dataset combining trnL-F and rbcL sequences ONE 11(4): e0152110. doi:10.1371/journal. positioned Karima as sister to Neoholstia from south eastern tropical Africa in a well-sup- pone.0152110 ported clade comprised of genera of subtribes Grosserineae and Neoboutonieae of the ina- Editor: Nico Cellinese, University of Florida, UNITED perturate crotonoid genera. Several morphological characters support the relationship of STATES Karima with Neoholstia, yet separation is merited by numerous characters usually associ- Received: January 5, 2016 ated with generic rank in Euphorbiaceae.
    [Show full text]
  • Revision of the Malesian Species of Dimorphocalyx (Euphorbiaceae)
    Blumea 59, 2015: 191–201 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651915X687903 Revision of the Malesian species of Dimorphocalyx (Euphorbiaceae) P.C. van Welzen1,2, A.F. van Oostrum1 Key words Abstract Dimorphocalyx, a small genus ranging from Sri Lanka to Indomalesia to Australia, has eight species in Malesia, of which one is here raised from variety to species level and another, endemic in the N Moluccas, is newly Dimorphocalyx described. Dimorphocalyx murinus and – tentatively – D. loheri are synonymised with D. denticulatus, and D. luzo- Euphorbiaceae niensis is synonymised with D. malayanus. Dimorphocalyx cumingii is regarded as a species of Trigonostemon. The Malesia differences between Dimorphocalyx, Ostodes, Paracroton (formerly Fahrenheitia), and Trigonostemon are discussed. Ostodes Paracroton Published on 31 March 2015 Trigonostemon INTRODUCTION accrescent in fruit. Additionally, Ostodes has two large glands adaxially between petiole and leaf blade, which are absent Dimorphocalyx was established by Thwaites in 1861 based in Dimorphocalyx, and while the petals in Ostodes are larger on his Sri Lankan Trigonostemon glabellus. Di-morpho-calyx than those of Dimorphocalyx and stick together after drying means two forms of the calyx and the name was chosen be- (not loosening anymore after rehydration), while the petals cause the calyx enlarges during fruit set. The genus ranges of Dimorphocalyx are smaller and separate after rehydrating from Sri Lanka via Indomalesia to Australia. Dimorphocalyx dried flowers. It is also difficult to separate Dimorphocalyx from contains c. 13 species of which 8 are found in Malesia (one the genus Trigonostemon Blume. It is unknown why Airy Shaw name, D.
    [Show full text]
  • Downloaded from Brill.Com10/09/2021 12:24:23AM Via Free Access 2 IAWA Journal, Vol
    IAWA Journal, Vol. 26 (1), 2005: 1-68 WOOD ANATOMY OF THE SUBFAMILY EUPHORBIOIDEAE A comparison with subfamilies Crotonoideae and Acalyphoideae and the implications for the circumscription of the Euphorbiaceae Alberta M. W. Mennega Nationaal Herbarium Nederland, Utrecht University branch, Heidelberglaan 2, 3584 es Utrecht, The Netherlands SUMMARY The wood anatomy was studied of 82 species from 34 out of 54 genera in the subfamily Euphorbioideae, covering all five tribes recognized in this subfamily. In general the woods show a great deal of similarity. They are charac­ terized by a relative paucity of vessels, often arranged in short to long, dumbbell-shaped or twin, radial multiples, and by medium-sized to large intervessel pits; fibres often have gelatinous walls; parenchyma apotracheal in short, wavy, narrow bands and diffuse-in-aggregates; mostly uni- or only locally biseriate rays, strongly heterocellular (except Hippomane, Hura and Pachystroma). Cell contents, either silica or crystals, or both together, are nearly always present and often useful in distinguishing between genera. Radiallaticifers were noticed in most genera, though they are scarce and difficult to trace. The laticifers are generally not surrounded by special cells, except in some genera of the subtribe Euphorbiinae where radiallaticifers are comparatively frequent and conspicuous. Three ofthe five tribes show a great deal of conformity in their anatomy. Stomatocalyceae, however, stand apart from the rest by the combination of the scarcity of vessels, and mostly biseriate, vertically fused and very tall rays. Within Euphorbieae the subtribe Euphorbiinae shows a greater vari­ ation than average, notably in vessel pitting, the frequent presence of two­ celled parenchyma strands, and in size and frequency of the laticifers.
    [Show full text]
  • <I>Trigonostemon</I> (<I>Euphorbiaceae</I>) Outside
    Blumea 65, 2020: 25–52 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE https://doi.org/10.3767/blumea.2020.65.01.04 A taxonomic revision of Trigonostemon (Euphorbiaceae) outside Malesia R.-Y. Yu1, P.C. van Welzen1,2 Key words Abstract The Trigonostemon species outside Malesia are taxonomically revised based on herbarium collections and fresh material. The research history in the concerning regions, i.e., the Indian subcontinent (including S India, Euphorbiaceae Sri Lanka, Bangladesh and Myanmar), China, Thailand, Indochina, NE Australia and New Caledonia, is briefly identification summarised. A total of 32 species are accepted (including one doubtful species) and 17 names are newly treated morphological revision as synonyms. Trigonostemon montanus is newly described for India. Regional identification keys, nomenclature, non-Malesian descriptions, geographic distributions and taxonomic notes are provided. Together with our previous work, the taxonomy genus is now fully revised. A total of 59 species are accepted. A full identification list of all Trigonostemon collec- Trigonostemon tions seen is presented. Published on 2 April 2020 INTRODUCTION Trigonostemon in the elongated anthers with a conical appen- dix. In the following year (Gagnepain 1925a), a new species was Trigonostemon Blume is a plant genus in the Euphorbiaceae. It described for Prosartema and another new genus, Poilaniella is classified in the subfamily Crotonoideae (Wurdack et al. 2005) Gagnep., was proposed. Poilaniella differs from Trigonostemon and includes four sections based on molecular, morphological mainly in the cupular disc, sessile anthers and short cymes with and palynological evidence (Yu et al. 2019). Trigonostemon non-fascicled flowers. These two genera, however, were both species often grow in lowland rainforests along rivers or coast synonymised with Trigonostemon in later treatments (e.g., Airy lines.
    [Show full text]
  • D-299 Webster, Grady L
    UC Davis Special Collections This document represents a preliminary list of the contents of the boxes of this collection. The preliminary list was created for the most part by listing the creators' folder headings. At this time researchers should be aware that we cannot verify exact contents of this collection, but provide this information to assist your research. D-299 Webster, Grady L. Papers. BOX 1 Correspondence Folder 1: Misc. (1954-1955) Folder 2: A (1953-1954) Folder 3: B (1954) Folder 4: C (1954) Folder 5: E, F (1954-1955) Folder 6: H, I, J (1953-1954) Folder 7: K, L (1954) Folder 8: M (1954) Folder 9: N, O (1954) Folder 10: P, Q (1954) Folder 11: R (1954) Folder 12: S (1954) Folder 13: T, U, V (1954) Folder 14: W (1954) Folder 15: Y, Z (1954) Folder 16: Misc. (1949-1954) D-299 Copyright ©2014 Regents of the University of California 1 Folder 17: Misc. (1952) Folder 18: A (1952) Folder 19: B (1952) Folder 20: C (1952) Folder 21: E, F (1952) Folder 22: H, I, J (1952) Folder 23: K, L (1952) Folder 24: M (1952) Folder 25: N, O (1952) Folder 26: P, Q (1952-1953) Folder 27: R (1952) Folder 28: S (1951-1952) Folder 29: T, U, V (1951-1952) Folder 30: W (1952) Folder 31: Misc. (1954-1955) Folder 32: A (1955) Folder 33: B (1955) Folder 34: C (1954-1955) Folder 35: D (1955) Folder 36: E, F (1955) Folder 37: H, I, J (1955-1956) Folder 38: K, L (1955) Folder 39: M (1955) D-299 Copyright ©2014 Regents of the University of California 2 Folder 40: N, O (1955) Folder 41: P, Q (1954-1955) Folder 42: R (1955) Folder 43: S (1955) Folder 44: T, U, V (1955) Folder 45: W (1955) Folder 46: Y, Z (1955?) Folder 47: Misc.
    [Show full text]
  • Journal Arnold Arboretum
    JOURNAL OF THE ARNOLD ARBORETUM HARVARD UNIVERSITY G. SCHUBERT T. G. HARTLEY PUBLISHED BY THE ARNOLD ARBORETUM OF HARVARD UNIVERSITY CAMBRIDGE, MASSACHUSETTS DATES OF ISSUE No. 1 (pp. 1-104) issued January 13, 1967. No. 2 (pp. 105-202) issued April 16, 1967. No. 3 (pp. 203-361) issued July 18, 1967. No. 4 (pp. 363-588) issued October 14, 1967. TABLE OF CONTENTS COMPARATIVE MORPHOLOGICAL STUDIES IN DILLENL ANATOMY. William C. Dickison A SYNOPSIS OF AFRICAN SPECIES OF DELPHINIUM J Philip A. Munz FLORAL BIOLOGY AND SYSTEMATICA OF EUCNIDE Henry J. Thompson and Wallace R. Ernst .... THE GENUS DUABANGA. Don M. A. Jayaweera .... STUDIES IX SWIFTENIA I MKUACKAE) : OBSERVATION UALITY OF THE FLOWERS. Hsueh-yung Lee .. SOME PROBLEMS OF TROPICAL PLANT ECOLOGY, I Pompa RHIZOME. Martin H. Zimmermann and P. B Two NEW AMERICAN- PALMS. Harold E. Moure, Jr NOMENCLATURE NOTES ON GOSSYPIUM IMALVACE* Brizicky A SYNOPSIS OF THE ASIAN SPECIES OF CONSOLIDA CEAE). Philip A. Munz RESIN PRODUCER. Jean H. Langenheim COMPARATIVE MORPHOLOGICAL STUDIES IN DILLKNI POLLEN. William C. Dickison THE CHROMOSOMES OF AUSTROBAILLVA. Lily Eudi THE SOLOMON ISLANDS. George W. G'dUtt A SYNOPSIS OF THE ASIAN SPECIES OF DELPII STRICTO. Philip A. Munz STATES. Grady L. Webster THE GENERA OF EUPIIORBIACEAE IN THE SOT TUFA OF 1806, AN OVERLOOI EST. C. V. Morton REVISION OF THE GENI Hartley JOURNAL OF THE ARNOLD ARBORETUM HARVARD UNIVERSITY T. G. HARTLEY C. E. WOOD, JR. LAZELLA SCHWARTEN Q9 ^ JANUARY, 1967 THE JOURNAL OF THE ARNOLD ARBORETUM Published quarterly by the Arnold Arboretum of Harvard University. Subscription price $10.00 per year.
    [Show full text]
  • 1. Plant Biodiversity Inventory, Assessment and Monitoring in Eastern Ghats
    Dr. P.C.Panda, Pr. Scientist 1. Plant biodiversity inventory, assessment and monitoring in Eastern Ghats Floristic studies, quantitative and qualitative assessment of plant resources of Eastern Ghat in general and Odisha state, in particular, have been undertaken with special reference to biodiversity-rich habitats like Similipal Biosphere Reserve, Chilika lagoon, Bhitarkanika National Park, Mahendragiri, Barbara-Dhuanali forests etc. Qualitative ecological studies conducted in different forest types, along disturbance gradients, altitudes etc. have yielded useful and interesting results. Species and habitat diversity of canes (Calamus spp.), orchids, aquatic plants, sea grasses, mangroves, endangered plant species and fungi including mushrooms of Odisha have been studied and documented. Systematics of different plant groups of Odisha such as legumes, grasses, Solanaceae, Macrotyloma, Spermacoce, Calamus has been studied. A web-based application software for plant biodiversity mapping in Odisha (BIOMASS) has been developed for use by the researchers. Research fellows during plant collection and photography in the field 2. Population inventory, ecological niche modeling, propagation and reintroduction of threatened plant species of Eastern Ghats of India In order to determine the threat category and initiate appropriate species-specific conservation actions, population inventories, phyto-sociological studies, Ecological Niche Modeling (ENM), standardization of methods of propagation and reintroduction of a number of threatened plant species occurring in Eastern Ghat regions of India such as Lasiococca comberi, Hypericum gaitii, Cycas sphaerica, Cassipourea ceylanica, Alphonsea maderaspatana, Polyalthia simiarum, Uvaria hamiltonii, Dimorphocalyx glabellus, Gnetum ula have been successfully undertaken by RPRC. A total of 3081 individuals of L. comberi, 6914 of C. sphaerica and 1640 individuals of H. gaitii were enumerated from Odisha and Andhra Pradesh as detailed below.
    [Show full text]
  • Threatened Ecosystems of Myanmar
    Threatened ecosystems of Myanmar An IUCN Red List of Ecosystems Assessment Nicholas J. Murray, David A. Keith, Robert Tizard, Adam Duncan, Win Thuya Htut, Nyan Hlaing, Aung Htat Oo, Kyaw Zay Ya and Hedley Grantham 2020 | Version 1.0 Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. Version 1.0. Murray, N.J., Keith, D.A., Tizard, R., Duncan, A., Htut, W.T., Hlaing, N., Oo, A.H., Ya, K.Z., Grantham, H. License This document is an open access publication licensed under a Creative Commons Attribution-Non- commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0). Authors: Nicholas J. Murray University of New South Wales and James Cook University, Australia David A. Keith University of New South Wales, Australia Robert Tizard Wildlife Conservation Society, Myanmar Adam Duncan Wildlife Conservation Society, Canada Nyan Hlaing Wildlife Conservation Society, Myanmar Win Thuya Htut Wildlife Conservation Society, Myanmar Aung Htat Oo Wildlife Conservation Society, Myanmar Kyaw Zay Ya Wildlife Conservation Society, Myanmar Hedley Grantham Wildlife Conservation Society, Australia Citation: Murray, N.J., Keith, D.A., Tizard, R., Duncan, A., Htut, W.T., Hlaing, N., Oo, A.H., Ya, K.Z., Grantham, H. (2020) Threatened Ecosystems of Myanmar. An IUCN Red List of Ecosystems Assessment. Version 1.0. Wildlife Conservation Society. ISBN: 978-0-9903852-5-7 DOI 10.19121/2019.Report.37457 ISBN 978-0-9903852-5-7 Cover photos: © Nicholas J. Murray, Hedley Grantham, Robert Tizard Numerous experts from around the world participated in the development of the IUCN Red List of Ecosystems of Myanmar. The complete list of contributors is located in Appendix 1.
    [Show full text]