PLANT REPRODUCTION Plants Exhibit Alternation of Generations

Total Page:16

File Type:pdf, Size:1020Kb

PLANT REPRODUCTION Plants Exhibit Alternation of Generations PLANT REPRODUCTION Plants exhibit alternation of generations. Gametophytes make gametes by mitosis. (sexual phase) Sporophytes make spores by meiosis. (asexual phase) Asexual reproduction permits a species to rapidly exploit a uniform and static, or slowly changing environment. Sexual reproduction permits a species, over generations, to respond to and adapt to a changing environment. Gymnosperms - pines, spruces, firs, cedars, other cone-bearing plants. “Naked-seeded” plants. Seeds develop from ovules. Ovules are on cone scales. Seeds sit on cone scales and are exposed or naked. Seeds are shed directly from open cones. Angiosperms - flowering plants “Vessel-seeded” plants. Seeds develop from ovules. Fruit develops from ovary. Large plant that we see is the sporophyte. The gametophyte generation is very reduced in size. The male gametophyte is the pollen grain (microgametophyte). The female gametophyte is the embryo sac (megagametophyte) that is found inside the ovule. Pollen grains develop in the anther within the flower. Pollen is shed and transported to the stigma of another flower. The pollen grain germinates and grows a pollen tube through the stigma and style and into the ovary. The pollen tube grows into the ovule and penetrates the embryo sac. Two sperm nuclei are discharged from the pollen tube. One sperm nucleus fertilizes the egg to form a diploid zygote. The other sperm nucleus fertilizes the central cell containing two polar nuclei to form triploid endosperm. This double fertilization is characteristic of angiosperms. Pollination may be accomplished by: wind dissemination insect vectors birds bats. Fruit and seed dispersal may be accomplished by: animal ingestion/defecation animal hoarders/dispersers water dispersal wind dispersal animal carriers. Plants may have different life spans: annuals - complete their life cycle in one year biennials - complete life cycle in two years - grow vegetatively first year, flower second year perennials - live for many years. Perennials survive winter by: removing sugars and nutrients from leaves, storing food in stems and roots remove excess water from cells, add anti-freeze type compounds to cells cover vulnerable stem tips with winter buds, insulating tip with overlapping bud scales. Changes are triggered by decreasing temperatures and/or shortened day lengths..
Recommended publications
  • HUNTIA a Journal of Botanical History
    HUNTIA A Journal of Botanical History VOLUME 15 NUMBER 2 2015 Hunt Institute for Botanical Documentation Carnegie Mellon University Pittsburgh The Hunt Institute for Botanical Documentation, a research division of Carnegie Mellon University, specializes in the history of botany and all aspects of plant science and serves the international scientific community through research and documentation. To this end, the Institute acquires and maintains authoritative collections of books, plant images, manuscripts, portraits and data files, and provides publications and other modes of information service. The Institute meets the reference needs of botanists, biologists, historians, conservationists, librarians, bibliographers and the public at large, especially those concerned with any aspect of the North American flora. Huntia publishes articles on all aspects of the history of botany, including exploration, art, literature, biography, iconography and bibliography. The journal is published irregularly in one or more numbers per volume of approximately 200 pages by the Hunt Institute for Botanical Documentation. External contributions to Huntia are welcomed. Page charges have been eliminated. All manuscripts are subject to external peer review. Before submitting manuscripts for consideration, please review the “Guidelines for Contributors” on our Web site. Direct editorial correspondence to the Editor. Send books for announcement or review to the Book Reviews and Announcements Editor. Subscription rates per volume for 2015 (includes shipping): U.S. $65.00; international $75.00. Send orders for subscriptions and back issues to the Institute. All issues are available as PDFs on our Web site, with the current issue added when that volume is completed. Hunt Institute Associates may elect to receive Huntia as a benefit of membership; contact the Institute for more information.
    [Show full text]
  • Gymnosperms the MESOZOIC: ERA of GYMNOSPERM DOMINANCE
    Chapter 24 Gymnosperms THE MESOZOIC: ERA OF GYMNOSPERM DOMINANCE THE VASCULAR SYSTEM OF GYMNOSPERMS CYCADS GINKGO CONIFERS Pinaceae Include the Pines, Firs, and Spruces Cupressaceae Include the Junipers, Cypresses, and Redwoods Taxaceae Include the Yews, but Plum Yews Belong to Cephalotaxaceae Podocarpaceae and Araucariaceae Are Largely Southern Hemisphere Conifers THE LIFE CYCLE OF PINUS, A REPRESENTATIVE GYMNOSPERM Pollen and Ovules Are Produced in Different Kinds of Structures Pollination Replaces the Need for Free Water Fertilization Leads to Seed Formation GNETOPHYTES GYMNOSPERMS: SEEDS, POLLEN, AND WOOD THE ECOLOGICAL AND ECONOMIC IMPORTANCE OF GYMNOSPERMS The Origin of Seeds, Pollen, and Wood Seeds and Pollen Are Key Reproductive SUMMARY Innovations for Life on Land Seed Plants Have Distinctive Vegetative PLANTS, PEOPLE, AND THE Features ENVIRONMENT: The California Coast Relationships among Gymnosperms Redwood Forest 1 KEY CONCEPTS 1. The evolution of seeds, pollen, and wood freed plants from the need for water during reproduction, allowed for more effective dispersal of sperm, increased parental investment in the next generation and allowed for greater size and strength. 2. Seed plants originated in the Devonian period from a group called the progymnosperms, which possessed wood and heterospory, but reproduced by releasing spores. Currently, five lineages of seed plants survive--the flowering plants plus four groups of gymnosperms: cycads, Ginkgo, conifers, and gnetophytes. Conifers are the best known and most economically important group, including pines, firs, spruces, hemlocks, redwoods, cedars, cypress, yews, and several Southern Hemisphere genera. 3. The pine life cycle is heterosporous. Pollen strobili are small and seasonal. Each sporophyll has two microsporangia, in which microspores are formed and divide into immature male gametophytes while still retained in the microsporangia.
    [Show full text]
  • Reproduction in Plants Which But, She Has Never Seen the Seeds We Shall Learn in This Chapter
    Reproduction in 12 Plants o produce its kind is a reproduction, new plants are obtained characteristic of all living from seeds. Torganisms. You have already learnt this in Class VI. The production of new individuals from their parents is known as reproduction. But, how do Paheli thought that new plants reproduce? There are different plants always grow from seeds. modes of reproduction in plants which But, she has never seen the seeds we shall learn in this chapter. of sugarcane, potato and rose. She wants to know how these plants 12.1 MODES OF REPRODUCTION reproduce. In Class VI you learnt about different parts of a flowering plant. Try to list the various parts of a plant and write the Asexual reproduction functions of each. Most plants have In asexual reproduction new plants are roots, stems and leaves. These are called obtained without production of seeds. the vegetative parts of a plant. After a certain period of growth, most plants Vegetative propagation bear flowers. You may have seen the It is a type of asexual reproduction in mango trees flowering in spring. It is which new plants are produced from these flowers that give rise to juicy roots, stems, leaves and buds. Since mango fruit we enjoy in summer. We eat reproduction is through the vegetative the fruits and usually discard the seeds. parts of the plant, it is known as Seeds germinate and form new plants. vegetative propagation. So, what is the function of flowers in plants? Flowers perform the function of Activity 12.1 reproduction in plants. Flowers are the Cut a branch of rose or champa with a reproductive parts.
    [Show full text]
  • Plant Reproduction Angiosperm Specific Adaptations Angiosperms
    4/15/2013 Gymnosperms Angiosperms Pterophytes Seeds Plant Reproduction Lycophytes Bryophytes Vascular tissue Green algae: BI 103 Plant-Animal A&P Chlorophytes Turn in Homework #1 Land plants Angiosperm specific adaptations • Unlike other plants they have: Why do plants have flowers? In – Flowers other words, what are the – Double fertilization advantages of flowering? – Fruit Discuss this question in groups Alternating Generations In more advanced plants, the sporophyte generation is Angiosperms: the Flowering plants dominant. Why do plants have flowers? Enlists partnerships with insects and other animals Less inbreeding Higher probability the pollen will reach the right plant They don’t have to produce as much pollen 1 4/15/2013 How is pollen an adaptation to land? Alternation of generations modified Allows fertilization to occur even in the absence • Pollen= Male gametophyte of available water. Contains sperm • Ovule= Female gametophyte water Contains egg Moss fertilization Pollen grains Anthers with microspores Microspore to pollen 1. The microspores divides by mitosis to produce two cells Generative cell (1n) Tube cell== vegetative nucleus (1n) 2. A two layered wall develops around the microspore to become the pollen 3. The generative cell undergoes division once more 3n total (3 nuclei) in pollen Double fertilization Fruit development 1. Two pollen nuclei enter ovule 2. One fuses with the egg to form the zygote 3. The other fuses with 2 central cell nuclei to become the endosperm (3n), food for the zygote Becomes the seed! Becomes
    [Show full text]
  • Seed and Seed Dispersal
    1st GRADE SEEDS AND SEED DISPERSAL Summary: This lab is all about seeds. First, students take apart a swollen lima bean seed and find the seed coat, food storage area, and the plant embryo. Second, the students sort a bag of seeds into groups and notice that all seeds look different but have the same three seed parts. Finally, students sort seeds that are dispersed in different ways. Students identify seeds that are dispersed by wind, hitchiking, animals carrying and burying, and animals eating and pooping. Intended Learning Outcomes for 1st Grade: Objective 1: Framing questions. Conducting investigations. Drawing conclusions. Objective 2: Developing social interaction skills with peers. Sharing ideas with peers. Connecting ideas with reasons. Objective 3: Ideas are supported by reasons. Communicaiton of ideas in science is important for helping to check the reasons for ideas. Utah State Core Curriculum Tie: Standard 4 Objective 1: Life Science Analyze the individual similarities and differences within and across larger groups. Standard 4 Objective 2: Life Science Describe and model life cycles of living things. Make observations about living things and their environment using the five senses. Preparation time: 1 hour to locate seeds the first time, then 20 min if seeds are reused Lesson time: 50 min Small group size: works best with one adult for every 5 students Materials: 1. one petri dish or paper towel per student 2. 1 bag of dried lima beans 3. One seed classification bag per group, this should include 5-6 seeds of about 15 different seed types. Use old seeds from seed packets or spices or seeds or nuts you may have in your kitchen.
    [Show full text]
  • Flower Power
    FLOWER POWER IDAHO BOTANICAL GARDEN WHAT IS A FLOWER? INSTRUCTIONAL OBJECTIVE: When students finish this project, they will have gained respect for the beauty of flowers and appreciate their ecological and practical importance. INTRODUCTION Dear Teacher, The Idaho Botanical Garden is an outdoor learning environment. We want to make your visit comfortable and enjoyable, and ask that your students are dressed appropriately for the weather and have water, especially in the warm weather months. TERMS Angiosperms: Flowering plants that produce seeds enclosed in a fruit. Anthers: The boxlike structures at the top of stamens, where pollen is produced. Botanical garden: A place where plants are collected and displayed for scientific, educational and artistic purposes. Fertilization: The union of male sperm cells and female egg cells. Filament: The stalk of the stamen. Flower: The reproductive structure of an angiosperm. Fruit: A ripened ovary conaining seeds. Nectar: The sweet liquid produced by flowers to attract pollinators. Ovary: The hollow compartment at the base of the pistil which contains ovules. It develops into a fruit containing seeds. Ovules: The structures in a flower ovary that can develop into seeds. Pistil: The female part of a flower; stigma, style, and ovary. Pollen: A yellow, powder-like material containing sperm cells. Pollen tubes: Tubes that carry sperm cells from the stigma into the ovary. Pollination: The process of pollen coming together with the stigma of a flower. Pollinators: Animals which carry pollen from one flower to another. Seed: A structure containing a baby plant and its food supply, which is surrounded by a protective seed coat.
    [Show full text]
  • "Role of the Gynoecium in Cytokinin-Induced Carnation Petal
    J. AMER. Soc. HORT. SCI. 116(4):676-679. 1991. Role of the Gynoecium in Cytokinin-induced Carnation Petal Senescence William R. Woodson and Amanda S. Brandt Department of Horticulture, Purdue University, West Lafayette, IN 47907 Additional index words. benzyladenine, Dianthus caryophyllus, ethylene Abstract. Treatment of cut carnation (Dianthus caryophyllus L. ‘White Sim’) flowers with the synthetic cytokinin benzyladenine (BA) at concentrations >1.0 µM induced premature petal senescence. Flowers treated with 100 µM BA exhibited elevated ethylene production in styles and petals before untreated flowers. The gynoecia of BA-treated flowers accumulated 1-aminocyclopropane-l-carboxyllc acid (ACC) and enlarged before untreated flowers. Removal of the gynoecium (ovary and styles) or styles prevented BA-induced petal senescence and resulted in a substantial delay in petal senescence. In contrast, removal of the gynoecium had no effect on timing of petal senescence in flowers held in water. These results indicate BA stimulates petal senescence by inducing premature ACC accumulation and ethylene production in the gynoecium. The senescence of carnation flowers is associated with a sub- cytokinins have been shown to stimulate petal senescence (Ei- stantial increase in ethylene production (Nichols, 1966, 1968). singer, 1977; Van Staden and Joughin, 1988). We now report This increase in ethylene plays an important role in regulating results that indicate the gynoecium plays a critical role in de- the processes of petal senescence, including changes in gene termining the response of carnations to exogenously supplied expression (Borochov and Woodson, 1989; Lawton et al., 1990; cytokinin. Woodson and Lawton, 1988). While the petals account for a large amount of the ethylene produced by carnation flowers, Materials and Methods other floral tissues, including the gynoecium, produce a signif- Plant material.
    [Show full text]
  • Pollen Tube Guidance by Pistils Ensures Successful Double Fertilization Ravishankar Palanivelu∗ and Tatsuya Tsukamoto
    Advanced Review Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization Ravishankar Palanivelu∗ and Tatsuya Tsukamoto Sexual reproduction in flowering plants is unique in multiple ways. Distinct multicellular gametophytes contain either a pair of immotile, haploid male gametes (sperm cells) or a pair of female gametes (haploid egg cell and homodiploid central cell). After pollination, the pollen tube, a cellular extension of the male gametophyte, transports both male gametes at its growing tip and delivers them to the female gametes to affect double fertilization. The pollen tube travels a long path and sustains its growth over a considerable amount of time in the female reproductive organ (pistil) before it reaches the ovule, which houses the female gametophyte. The pistil facilitates the pollen tube’s journey by providing multiple, stage-specific, nutritional, and guidance cues along its path. The pollen tube interacts with seven different pistil cell types prior to completing its journey. Consequently, the pollen tube has a dynamic gene expression program allowing it to continuously reset and be receptive to multiple pistil signals as it migrates through the pistil. Here, we review the studies, including several significant recent advances, that led to a better understanding of the multitude of cues generated by the pistil tissues to assist the pollen tube in delivering the sperm cells to the female gametophyte. We also highlight the outstanding questions, draw attention to opportunities created by recent advances and point to approaches that could be undertaken to unravel the molecular mechanisms underlying pollen tube–pistil interactions. 2011 Wiley Periodicals, Inc.
    [Show full text]
  • Ap09 Biology Form B Q2
    AP® BIOLOGY 2009 SCORING GUIDELINES (Form B) Question 2 Discuss the patterns of sexual reproduction in plants. Compare and contrast reproduction in nonvascular plants with that in flowering plants. Include the following topics in your discussion: (a) alternation of generations (b) mechanisms that bring female and male gametes together (c) mechanisms that disperse offspring to new locations Four points per part. Student must write about all three parts for full credit. Within each part it is possible to get points for comparing and contrasting. Also, specific points are available from details provided about nonvascular and flowering plants. Discuss the patterns of sexual reproduction in plants (4 points maximum): (a) Alternation of generations (4 points maximum): Topic Description (1 point each) Alternating generations Haploid stage and diploid stage. Gametophyte Haploid-producing gametes. Dominant in nonvascular plants. Double fertilization in flowering plants. Gametangia; archegonia and antheridia in nonvascular plants. Sporophyte Diploid-producing spores. Heterosporous in flowering plants. Flowering plants produce seeds; nonvascular plants do not. Flowering plants produce flower structures. Sporangia (megasporangia and microsporangia). Dominant in flowering plants. (b) Mechanisms that bring female and male gametes together (4 points maximum): Nonvascular Plants (1 point each) Flowering Plants (1 point each) Aquatic—requires water for motile sperm Terrestrial—pollination by wind, water, or animal Micropyle in ovule for pollen tube to enter Pollen tube to carry sperm nuclei Self- or cross-pollination Antheridia produce sperm Gametophytes; no antheridia or archegonia Archegonia produce egg Ovules produce female gametophytes/gametes Pollen: male gametophyte that produces gametes © 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com.
    [Show full text]
  • Botanical Origin, Pollen Profile, and Physicochemical Properties of Algerian Honey from Different Bioclimatic Areas
    foods Article Botanical Origin, Pollen Profile, and Physicochemical Properties of Algerian Honey from Different Bioclimatic Areas Mounia Homrani 1 , Olga Escuredo 2 , María Shantal Rodríguez-Flores 2 , Dalache Fatiha 1, Bouzouina Mohammed 3, Abdelkader Homrani 1 and M. Carmen Seijo 2,* 1 Laboratory of Sciences and Technics of Animal Production (LSTPA), Abdelhamid Ibn Badis University (UMAB), 27000 Mostaganem, Algeria; [email protected] (M.H.); [email protected] (D.F.); [email protected] (A.H.) 2 Department of Vegetal Biology and Soil Sciences, Faculty of Sciences, University of Vigo, As Lagoas, 32004 Ourense, Spain; [email protected] (O.E.); [email protected] (M.S.R.-F.) 3 Laboratory of Vegatal Protection, Abdelhamid Ibn Badis University (UMAB), 27000 Mostaganem, Algeria; [email protected] * Correspondence: [email protected] Received: 27 May 2020; Accepted: 9 July 2020; Published: 16 July 2020 Abstract: The palynological and physicochemical analysis of 62 honey samples produced in different biogeographical areas of Algeria was conducted. Results showed high variety in the botanical origin of samples and their physicochemical profile. Twenty-six samples were polyfloral honey, 30 were unifloral honey from different botanical sources such as Eucalyptus, Citrus, Apiaceae, Punica, Erica, Rosmarinus, Eriobotrya, or Hedysarum, and 6 were characterized as honeydew honey. Pollen analysis allowed the identification of 104 pollen types belonging to 51 botanical families, whereas the physicochemical profile showed important variations between samples. Multivariate techniques were used to compare the characteristics of samples from different biogeographical areas, showing significant differences between humid-area samples, located in the northeast of the country, and samples taken in semiarid, subhumid, and arid zones.
    [Show full text]
  • Starch Biosynthesis in the Developing Endosperms of Grasses and Cereals
    Review Starch Biosynthesis in the Developing Endosperms of Grasses and Cereals Ian J. Tetlow * and Michael J. Emes Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-519-824-4120 Received: 31 October 2017; Accepted: 27 November 2017; Published: 1 December 2017 Abstract: The starch-rich endosperms of the Poaceae, which includes wild grasses and their domesticated descendents the cereals, have provided humankind and their livestock with the bulk of their daily calories since the dawn of civilization up to the present day. There are currently unprecedented pressures on global food supplies, largely resulting from population growth, loss of agricultural land that is linked to increased urbanization, and climate change. Since cereal yields essentially underpin world food and feed supply, it is critical that we understand the biological factors contributing to crop yields. In particular, it is important to understand the biochemical pathway that is involved in starch biosynthesis, since this pathway is the major yield determinant in the seeds of six out of the top seven crops grown worldwide. This review outlines the critical stages of growth and development of the endosperm tissue in the Poaceae, including discussion of carbon provision to the growing sink tissue. The main body of the review presents a current view of our understanding of storage starch biosynthesis, which occurs inside the amyloplasts of developing endosperms. Keywords: amylopectin; amylose; cereals; debranching enzymes; endosperm; forage grasses; Poaceae; starch; starch synthase; starch branching enzyme 1. Introduction The grasses can rightly be regarded as a cornerstone of human civilization.
    [Show full text]
  • Molecular Control of Oil Metabolism in the Endosperm of Seeds
    International Journal of Molecular Sciences Review Molecular Control of Oil Metabolism in the Endosperm of Seeds Romane Miray †, Sami Kazaz † , Alexandra To and Sébastien Baud * Institut Jean-Pierre Bourgin, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; [email protected] (R.M.); [email protected] (S.K.); [email protected] (A.T.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: In angiosperm seeds, the endosperm develops to varying degrees and accumulates different types of storage compounds remobilized by the seedling during early post-germinative growth. Whereas the molecular mechanisms controlling the metabolism of starch and seed-storage proteins in the endosperm of cereal grains are relatively well characterized, the regulation of oil metabolism in the endosperm of developing and germinating oilseeds has received particular attention only more recently, thanks to the emergence and continuous improvement of analytical techniques allowing the evaluation, within a spatial context, of gene activity on one side, and lipid metabolism on the other side. These studies represent a fundamental step toward the elucidation of the molecular mechanisms governing oil metabolism in this particular tissue. In particular, they highlight the importance of endosperm-specific transcriptional controls for determining original oil compositions usually observed in this tissue. In the light of this research, the biological functions of oils stored in the endosperm of seeds then appear to be more diverse than simply constituting a source of carbon made available for the germinating seedling. Keywords: seed; endosperm; oil; fatty acid; metabolism Citation: Miray, R.; Kazaz, S.; To, A.; Baud, S.
    [Show full text]