Cell Wall Loosening by Expansins1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Commentary Expansins: Proteins That Promote Cell Wall Loosening in Plants Lincoln Taiz Biology Departent, University of California, Santa Cruz, CA 95064
Proc. Nadl. Acad. Sci. USA Vol. 91, pp. 7387-7389, August 1994 Commentary Expansins: Proteins that promote cell wall loosening in plants Lincoln Taiz Biology Departent, University of California, Santa Cruz, CA 95064 It was July 7, 1912, and Harry Houdini, iri against the cell wall, which exerts aa This domain is embedded in a second the company of a bevy of dutiful report- counter force on the protoplast, discour network, pectic polysaccharides. The ers, was going to perform one of hissaging further water uptake. Ifthe osmotic pectic polysaccharides, rich in uronic greatest escapes, from a barge floating inigradient is sufficient, however, water willI acid residues, can form cross-links based the middle of the East River in Newvcontinue to enter the cell for a time, andI on calcium bridges and other ionic inter- York. First he was shackled in leg irons enormous hydrostatic turgor pressures; actions. Structural proteins form a third two pairs of handcuffs, and elbow irons. can build up, distending the wall to its; interlocking network. The latter may in- Then he was crammed into a sturdy elastic limits. But the expanding proto- terweave through the other two domains, wooden crate, 40 inches x 22 inches x 24Iplast does not merely out-muscle the forming a "warp and weft" structure (6). inches, and the lid was nailed shut and wall, like Houdini kicking out the sides ofr Such models, while useful for wall bio- reinforced with steel bands. For addedIhis box. Rather, the protoplast releases chemists, tell us little about the mecha- effect, the box was given a further wrap-*unidentified "wall-loosening factors" nism of wall extension. -
Ap09 Biology Form B Q2
AP® BIOLOGY 2009 SCORING GUIDELINES (Form B) Question 2 Discuss the patterns of sexual reproduction in plants. Compare and contrast reproduction in nonvascular plants with that in flowering plants. Include the following topics in your discussion: (a) alternation of generations (b) mechanisms that bring female and male gametes together (c) mechanisms that disperse offspring to new locations Four points per part. Student must write about all three parts for full credit. Within each part it is possible to get points for comparing and contrasting. Also, specific points are available from details provided about nonvascular and flowering plants. Discuss the patterns of sexual reproduction in plants (4 points maximum): (a) Alternation of generations (4 points maximum): Topic Description (1 point each) Alternating generations Haploid stage and diploid stage. Gametophyte Haploid-producing gametes. Dominant in nonvascular plants. Double fertilization in flowering plants. Gametangia; archegonia and antheridia in nonvascular plants. Sporophyte Diploid-producing spores. Heterosporous in flowering plants. Flowering plants produce seeds; nonvascular plants do not. Flowering plants produce flower structures. Sporangia (megasporangia and microsporangia). Dominant in flowering plants. (b) Mechanisms that bring female and male gametes together (4 points maximum): Nonvascular Plants (1 point each) Flowering Plants (1 point each) Aquatic—requires water for motile sperm Terrestrial—pollination by wind, water, or animal Micropyle in ovule for pollen tube to enter Pollen tube to carry sperm nuclei Self- or cross-pollination Antheridia produce sperm Gametophytes; no antheridia or archegonia Archegonia produce egg Ovules produce female gametophytes/gametes Pollen: male gametophyte that produces gametes © 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com. -
Plantphysiology134-1.Pdf
The Galactose Residues of Xyloglucan Are Essential to Maintain Mechanical Strength of the Primary Cell Walls in Arabidopsis during Growth1 Marı´a J. Pen˜a2, Peter Ryden, Michael Madson, Andrew C. Smith, and Nicholas C. Carpita* Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907 (M.J.P., M.M., N.C.C.); and the Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom (P.R., A.C.S.) In land plants, xyloglucans (XyGs) tether cellulose microfibrils into a strong but extensible cell wall. The MUR2 and MUR3 genes of Arabidopsis encode XyG-specific fucosyl and galactosyl transferases, respectively. Mutations of these genes give precisely altered XyG structures missing one or both of these subtending sugar residues. Tensile strength measurements of etiolated hypocotyls revealed that galactosylation rather than fucosylation of the side chains is essential for maintenance of wall strength. Symptomatic of this loss of tensile strength is an abnormal swelling of the cells at the base of fully grown hypocotyls as well as bulging and marked increase in the diameter of the epidermal and underlying cortical cells. The presence of subtending galactosyl residues markedly enhance the activities of XyG endotransglucosylases and the accessi- bility of XyG to their action, indicating a role for this enzyme activity in XyG cleavage and religation in the wall during growth for maintenance of tensile strength. Although a shortening of XyGs that normally accompanies cell elongation appears to be slightly reduced, galactosylation of the XyGs is not strictly required for cell elongation, for lengthening the polymers that occurs in the wall upon secretion, or for binding of the XyGs to cellulose. -
Chemists Find Binding Site of Protein That Allows Plant Growth 24 September 2013
Chemists find binding site of protein that allows plant growth 24 September 2013 Online Early Edition. Hong and Daniel Cosgrove, professor and holder of the Eberly Chair in Biology at Penn State University, are the lead authors. The research team also includes Tuo Wang, an Iowa State graduate student in chemistry and a graduate assistant for the Ames Laboratory; Linghao Zhong, an associate professor of chemistry at Penn State Mont Alto; Yong Bum Park, a post-doctoral scholar in biology at Penn State; plus Marc Caporini and Melanie Rosay of the Bruker BioSpin Corp. in Billerica, Mass. Three grants from the U.S. Department of Energy supported the research project. This illustration shows the parts of the expansin protein (magenta) that bind to the surface of specific regions of Iowa State's Hong has long used solid-state plant cell walls. Credit: Illustration courtesy of Mei nuclear magnetic resonance (NMR) spectroscopy Hong/Iowa State University. to study structural biology, including the mechanism used by the flu virus to infect host cells. But in this case, that technology wasn't sensitive enough to identify the binding site of the expansin protein. Using a new and super-sensitive instrument, researchers have discovered where a protein binds So the researchers – working with specialists from to plant cell walls, a process that loosens the cell the Bruker BioSpin Corp., a manufacturer of walls and makes it possible for plants to grow. scientific instruments – used a technology called dynamic nuclear polarization (DNP), to enhance the Researchers say the discovery could one day lead sensitivity of spectroscopy instruments. -
Agrobacterium-Mediated Transformation of Tomato (Solanum Lycopersicum L.) Using the Expansin 10 (Csexp10) Gene
Agrobacterium-mediated transformation of tomato (Solanum lycopersicum L.) using the expansin 10 (CsEXP10) gene Y.D. Sun*, W.R. Luo*, S.Y. Sun and L. Ni School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China *These authors contributed equally to this study. Corresponding author: Y.D. Sun E-mail: [email protected] Genet. Mol. Res. 14 (4): 16215-16221 (2015) Received June 28, 2015 Accepted September 28, 2015 Published December 8, 2015 DOI http://dx.doi.org/10.4238/2015.December.8.11 ABSTRACT. The cucumber expansin 10 (CsEXP10) gene was previously cloned from young cucumber fruits but its role has not been defined. To determine the role of this gene in plant growth and development, a CsEXP10 gene transformation system was established. The open reading frame of the gene was inserted behind the CaMV35S promoter of vector pCAMBIA1301, and the construct was introduced into tomato plants by Agrobacterium-mediated transformation. In total, 19 kanamycin-positive lines were produced and nine independent transgenic lines were identified by β-glucuronidase and polymerase chain reaction (PCR) analysis. Quantitative real-time PCR analysis showed that levels of the CsEXP10 transcript were higher in transgenic lines than in a non-transgenic line. Key words: CsEXP10; GUS-staining assay; Regeneration; Tomato (Solanum lycopersicum L.); Transformation system Genetics and Molecular Research 14 (4): 16215-16221 (2015) ©FUNPEC-RP www.funpecrp.com.br Y.D. Sun et al. 16216 INTRODUCTION The expansin genes belong to a large gene superfamily and are found throughout the plant kingdom (Cosgrove, 1999; Li et al., 2002; Carey and Cosgrove, 2007). -
1589168583 289 16.Pdf
Plant Physiology and Biochemistry 136 (2019) 155–161 Contents lists available at ScienceDirect Plant Physiology and Biochemistry journal homepage: www.elsevier.com/locate/plaphy Research article Molecular insights of a xyloglucan endo-transglycosylase/hydrolase of radiata pine (PrXTH1) expressed in response to inclination: Kinetics and T computational study Luis Morales-Quintanaa,b, Cristian Carrasco-Orellanaa, Dina Beltrána, ∗ María Alejandra Moya-Leóna, Raúl Herreraa, a Functional Genomics, Biochemistry and Plant Physiology, Instituto de Ciencias Biológicas, Universidad de Talca, Campus Lircay s/n, Talca, Chile b Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, 5 poniente #1670, Talca, Chile ARTICLE INFO ABSTRACT Keywords: Xyloglucan endotransglycosylase/hydrolases (XTH) may have endotransglycosylase (XET) and/or hydrolase Plant cell wall (XEH) activities. Previous studies confirmed XET activity for PrXTH1 protein from radiata pine. XTHs could Xyloglucan endotransglycosylase/hydrolases interact with many hemicellulose substrates, but the favorite substrate of PrXTH1 is still unknown. The pre- Enzymatic parameters diction of union type and energy stability of the complexes formed between PrXTH1 and different substrates Xyloglycans (XXXGXXXG, XXFGXXFG, XLFGXLFG and cellulose) were determined using bioinformatics tools. Molecular Docking, Molecular Dynamics, MM-GBSA and Electrostatic Potential Calculations were employed to predict the binding modes, free energies of interaction and the distribution of electrostatic charge. The results suggest that the enzyme formed more stable complexes with hemicellulose substrates than cellulose, and the best ligand was − the xyloglucan XLFGXLFG (free energy of −58.83 ± 0.8 kcal mol 1). During molecular dynamics trajectories, hemicellulose fibers showed greater stability than cellulose. Aditionally, the kinetic properties of PrXTH1 en- zyme were determined. -
Expression of Three Expansin Genes During Development and Maturation of Kyoho Grape Berries
ARTICLE IN PRESS Journal of Plant Physiology 164 (2007) 1675—1682 www.elsevier.de/jplph Expression of three expansin genes during development and maturation of Kyoho grape berries Megumi Ishimarua,Ã, David L. Smithb, Kenneth C. Grossb, Shozo Kobayashic aGraduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan bProduce Quality and Safety Laboratory, USDA-ARS, 10300 Baltimore Avenue, Beltsville, MD 20705, USA cDepartment of Grape and Persimmon Research, National Institute of Fruit Tree Science, Akitsu, Hiroshima 729-2494, Japan Received 5 January 2006; accepted 11 July 2006 KEYWORDS Summary Expansin; Expansins are cell-wall-localized proteins that induce loosening of isolated plant cell Gene expression; walls in vitro in a pH-dependent manner, but exhibit no detectable hydrolase or Grape berry; transglycosylase activity. Three putative expansin cDNAs, Vlexp1, Vlexp2, and Ve´raison; Vlexp3 were isolated from a cDNA library made from mature berries of the Kyoho Softening grape. Expression profiles of the 3 genes were analyzed throughout berry development. Accumulation of the Vlexp3 transcript was closely correlated with berry softening, and expression of this gene was detected before ve´raison and markedly increased at ve´raison (onset of berry softening). Expression of Vlexp3 was berry-specific. Vlexp1 and Vlexp2 mRNA accumulation began during the expansion stage of berry development and expression increased for both genes during ripening. Vlexp1 and Vlexp2 mRNA was detected in leaf, tendril and flower tissues and Vlexp2 mRNA was additionally detected in root and seed tissues. These findings suggest that the three expansin genes are associated with cell division or expansion and berry ripening. -
Two Expansin Genes, Atexpa4 and Atexpb5, Are Redundantly Required for Pollen Tube Growth and Atexpa4 Is Involved in Primary Root Elongation in Arabidopsis Thaliana
G C A T T A C G G C A T genes Article Two Expansin Genes, AtEXPA4 and AtEXPB5, Are Redundantly Required for Pollen Tube Growth and AtEXPA4 Is Involved in Primary Root Elongation in Arabidopsis thaliana Weimiao Liu 1,2, Liai Xu 1,2 , Hui Lin 3 and Jiashu Cao 1,2,4,* 1 Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; [email protected] (W.L.); [email protected] (L.X.) 2 Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China 3 Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; [email protected] 4 Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China * Correspondence: [email protected]; Tel.: +86-131-8501-1958 Abstract: The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the functions of most expansin genes in plant growth and development are still poorly understood. In this study, the functions of two expansin genes, AtEXPA4 and AtEXPB5 were characterized in Arabidopsis thaliana. AtEXPA4 and AtEXPB5 displayed consistent expression patterns in mature pollen grains and pollen tubes, but AtEXPA4 also showed a high expression level in primary roots. Two single mutants, atexpa4 and atexpb5, showed normal reproductive development, whereas atexpa4 atexpb5 double mutant was defective in pollen tube growth. Moreover, AtEXPA4 overexpression enhanced primary root Citation: Liu, W.; Xu, L.; Lin, H.; Cao, elongation, on the contrary, knocking out AtEXPA4 made the growth of primary root slower. -
Plant Xyloglucan Xyloglucosyl Transferases and the Cell Wall Structure: Subtle but Significant
molecules Review Plant Xyloglucan Xyloglucosyl Transferases and the Cell Wall Structure: Subtle but Significant Barbora Stratilová 1,2 , Stanislav Kozmon 1 , Eva Stratilová 1 and Maria Hrmova 3,4,* 1 Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84538 Bratislava, Slovakia; [email protected] (B.S.); [email protected] (S.K.); [email protected] (E.S.) 2 Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská Dolina, SK-84215 Bratislava, Slovakia 3 School of Life Science, Huaiyin Normal University, Huai’an 223300, China 4 School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia * Correspondence: [email protected] or [email protected]; Tel.: +61-8-8313-7181 Academic Editor: László Somsák Received: 25 October 2020; Accepted: 26 November 2020; Published: 29 November 2020 Abstract: Plant xyloglucan xyloglucosyl transferases or xyloglucan endo-transglycosylases (XET; EC 2.4.1.207) catalogued in the glycoside hydrolase family 16 constitute cell wall-modifying enzymes that play a fundamental role in the cell wall expansion and re-modelling. Over the past thirty years, it has been established that XET enzymes catalyse homo-transglycosylation reactions with xyloglucan (XG)-derived substrates and hetero-transglycosylation reactions with neutral and charged donor and acceptor substrates other than XG-derived. This broad specificity in XET isoforms is credited to a high degree of structural and catalytic plasticity that has evolved ubiquitously in algal, moss, fern, basic Angiosperm, monocot, and eudicot enzymes. These XET isoforms constitute gene families that are differentially expressed in tissues in time- and space-dependent manners during plant growth and development, and in response to biotic and abiotic stresses. -
Drought Stress Reduces Stem Elongation and Alters Gibberellin-Related Gene Expression During Vegetative Growth of Tomato
J. AMER.SOC.HORT.SCI. 141(6):591–597. 2016. doi: 10.21273/JASHS03913-16 Drought Stress Reduces Stem Elongation and Alters Gibberellin-related Gene Expression during Vegetative Growth of Tomato Alexander G. Litvin1, Marc W. van Iersel, and Anish Malladi Department of Horticulture, University of Georgia, 1111 Miller Plant Sciences, Athens, GA 30602 ADDITIONAL INDEX WORDS. expansin, GA20ox, GA3ox, GA2ox, EXP1, phytohormones, paclobutrazol ABSTRACT. Drought stress reduces stem elongation and cell expansion. Since gibberellins (GAs) play an important role in controlling cell elongation, the objective of this study was to determine if the reduction in growth under drought stress is associated with altered GA metabolism or signaling. We exposed ‘Moneymaker’ tomato (Solanum lycopersicum) to drought stress to observe the effects on growth. Irrigation was automated using a data logger, which maintained volumetric water contents (VWC) of 0.35 and 0.15 m3ÁmL3 for well-watered and drought-stressed conditions, respectively. To further investigate the effect of GAs on elongation, paclobutrazol (PAC), a GA biosynthesis inhibitor, was applied to reduce endogenous GA production. Drought stress and PAC treatment reduced plant height. Internode length, cell size, and shoot dry weight displayed an interaction between the VWC and PAC treatments. The transcript levels of SlGA20ox1,-2, -3,and-4, SlGA3ox2,andSlGA2ox2, -4,and-5, corresponding to enzymes in GA metabolism, and LeEXP1, and -2, encoding expansin enzymes related to cell wall loosening necessary for cell expansion, were analyzed. Downregulation of transcript accumulation due to drought stress was observed for SlGA20ox4, SlGA2ox5, and LeEXP1, but not for any of the other genes. PAC increased expression of SlGA20ox-3, and SlGA3ox2, potentially through feedback regulation. -
Comparison of Seed and Ovule Development in Representative Taxa of the Tribe Cercideae (Caesalpinioideae, Leguminosae) Seanna Reilly Rugenstein Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1983 Comparison of seed and ovule development in representative taxa of the tribe Cercideae (Caesalpinioideae, Leguminosae) Seanna Reilly Rugenstein Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons Recommended Citation Rugenstein, Seanna Reilly, "Comparison of seed and ovule development in representative taxa of the tribe Cercideae (Caesalpinioideae, Leguminosae) " (1983). Retrospective Theses and Dissertations. 8435. https://lib.dr.iastate.edu/rtd/8435 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. -
Ovule, Embryo Sac, Embryo and Endosperm Development in Leafy Spurge (Euphorbia Esula L.)1
Reprinted with permission from: Canadian Journal of Botany. 1999. 77:599-610. Published and copyrighted by: National Research Council of Canada, http://www.nrc.ca/cisti/journals/ Ovule, embryo sac, embryo and endosperm development in leafy spurge (Euphorbia 1 esula L.) JEFFREY S. CARMICHAEL* and SARENA M. SELBO Department of Biology, University of North Dakota, Grand Forks, ND 58202, Phone: (701) 777-4666, Fax: (701) 777- 2623, *Author for correspondence, e-mail: [email protected]. Abstract: Leafy spurge (Euphorbia esula) is a noxious, invasive weed that domi- nates many agriculturally important regions. While many research efforts are currently aimed at controlling the spread of this plant, relatively little is known about its sexual reproductive biology, especially from a struc- tural perspective. This report describes key features of ovule development, embryogenesis, and endosperm formation in leafy spurge. Ovules are ana- tropous, bitegmic, and form a zigzag micropyle. A distinct elaisome (ca- runcle) and hypostase are formed as ovules mature. Obturators are present and are derived from placental tissue. The embryo sac conforms to the Po- lygonum type. A single embryo is formed in each seed and stores nutrients primarily as globoid protein bodies. Endosperm is persistent and also con- tains protein bodies as its primary nutrient reserve. Preliminary structural evidence is presented that indicates the potential for apomixis. Keywords: Leafy spurge, Euphorbiaceae, Euphorbia, ovule, endosperm, embryo. Introduction Leafy spurge (Euphorbia esula L.) is an herbaceous perennial that has flourished as a noxious weed of economic and ecological significance (Lajeunesse et al. 1995; Lym and Messersmith 1983; Messersmith 1983; Messersmith and Lym 1983a, b).