bioRxiv preprint doi: https://doi.org/10.1101/2021.04.15.440065; this version posted April 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 A soil-binding polysaccharide complex released from root hairs functions in 2 rhizosheath formation 3 4 Andrew F. Galloway1, Jumana Akhtar1, Emma Burak2, Susan E. Marcus1, Katie J. Field2, Ian 5 C. Dodd3*, Paul Knox1* 6 1Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 7 9JT 8 2Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN 9 3Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ 10 * Author for correspondence (email:
[email protected]) 11 Conflict of Interest Statement 12 The authors declare that there is no conflict of interest 13 14 A.F.G, J.A., E.B., K.J.F., I.C.D., and P.K. designed the research; E.B. carried out rhizosheath 15 analyses; A.F.G., J.A and E.B. carried out the isolation, soil-binding studies and 16 immunoanalyses of root exudates: S.E.M and P.K carried out seedling prints and 17 immunofluorescence studies. A.F.G and P.K. drafted the manuscript. All authors contributed 18 to and approved the final version of the article. 19 20 Keywords 21 Barley (Hordeum vulgare), root hairs, bald root barley (brb), root exudates, rhizosheath, soil, 22 polysaccharide, xyloglucan 23 24 One sentence summary 25 The root exudate of a root hairless mutant of barley, relative to wild type, has an altered pattern 26 of polysaccharide epitopes and lesser amounts of an acidic soil-binding polysaccharide 27 complex.