The Heat Transfer Module User's Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HEAT TRANSFER and the SECOND LAW Thus Far We’Ve Used the First Law of Thermodynamics: Energy Is Conserved
HEAT TRANSFER AND THE SECOND LAW Thus far we’ve used the first law of thermodynamics: Energy is conserved. Where does the second law come in? One way is when heat flows. Heat flows in response to a temperature gradient. If two points are in thermal contact and at different temperatures, T1 and T2 then energy is transferred between the two in the form of heat, Q. Heat Transfer and The Second Law page 1 © Neville Hogan The rate of heat flow from point 1 to point 2 depends on the two temperatures. Q˙ = f(T1,T2) If heat flows from hot to cold, (the standard convention) this function must be such that Q˙ > 0 iff T1 > T2 Q˙ < 0 iff T1 < T2 Q˙ = 0 iff T1 = T2 Heat Transfer and The Second Law page 2 © Neville Hogan In other words, the relation must be restricted to 1st and 3rd quadrants of the Q˙ vs. T1 – T2 plane. Q T1-T2 NOTE IN PASSING: It is not necessary for heat flow to be a function of temperature difference alone. —see example later. Heat Transfer and The Second Law page 3 © Neville Hogan HEAT FLOW GENERATES ENTROPY. FROM THE DEFINITION OF ENTROPY: dQ = TdS Therefore Q˙ = TS˙ IDEALIZE THE HEAT TRANSFER PROCESS: Assume no heat energy is stored between points 1 and 2. Therefore Q˙ = T1S˙ 1 = T2S˙ 2 Heat Transfer and The Second Law page 4 © Neville Hogan NET RATE OF ENTROPY PRODUCTION: entropy flow rate out minus entropy flow rate in. S˙ 2 - S˙ 1 = Q˙ /T2 - Q˙ /T1 = Q(T˙ 1 - T2) /T1T2 Absolute temperatures are never negative (by definition). -
HEAT TRANSFER PHYSICS, SECOND EDITION This Graduate Textbook Describes Atomic-Level Kinetics (Mechanisms and Rates) of Thermal E
Cambridge University Press 978-1-107-04178-3 - Heat Transfer Physics: Second Edition Massoud Kaviany Frontmatter More information HEAT TRANSFER PHYSICS, SECOND EDITION This graduate textbook describes atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. The approach combines the fundamentals of molecular orbitals-potentials, sta- tistical thermodynamics, computational molecular dynamics, quantum energy states, transport theories, solid-state and fluid-state physics, and quantum optics. The textbook presents a unified theory, over fine-structure/molecular- dynamics/Boltzmann/macroscopic length and time scales, of heat transfer kinetics in terms of transition rates and relaxation times, and its modern applica- tions, including nano- and microscale size effects. Numerous examples, illustra- tions, and homework problems with answers to enhance learning are included. This new edition includes applications in energy conversion (including chem- ical bond, nuclear, and solar), expanded examples of size effects, inclusion of junction quantum transport, and discussion of graphene and its phonon and electronic conductances. New appendix coverage of phonon contributions to the Seebeck coefficient, Monte Carlo methods, and ladder operators is also included. Massoud Kaviany is a Professor in the Department of Mechanical Engineering and in the Applied Physics Program at the University of Michigan, where he has been since 1986. His area of teaching and research is heat transfer physics, with a particular interest in porous media. His current projects include atomic structural metrics in high-performance thermoelectric materials (both electron and phonon transport) and in laser cooling of solids (including ab initio cal- culations of photon-electron and electron-phonon couplings), and the effect of pore water in polymer electrolyte transport and fuel cell performance. -
A Homemade 2 Dimensional Thermal Conduction Apparatus Designed As
AC 2008-292: A HOMEMADE 2-DIMENSIONAL THERMAL CONDUCTION APPARATUS DESIGNED AS A STUDENT PROJECT Robert Edwards, Pennsylvania State University-Erie Robert Edwards is currently a Lecturer in Engineering at The Penn State Erie, The Behrend College where he teaches Statics, Dynamics, and Fluid and Thermal Science courses. He earned a BS degree in Mechanical Engineering from Rochester Institute of Technology and an MS degree in Mechanical Engineering from Gannon University. Page 13.49.1 Page © American Society for Engineering Education, 2008 A Homemade 2-Dimensional Thermal Conduction Apparatus Designed as a Student Project Abstract: It can be fairly expensive to equip a heat transfer lab with commercially available devices. It is always nice to be able to make a device that provides an effective lab experience for the students. It is an extra bonus if the device can be designed as a student project, giving the students working on the device both a real design experience and a better understanding of the principles involved with the device and the associated lab exercise. One example of such a device is a 2-dimensional heat conduction device which was designed and built as a student senior design project by mechanical engineering technology students at Penn State Erie, The Behrend College. The device described in this paper allows the students to determine the thermal conductivity of several different materials, and to graphically see the effect of contact resistance in the heat conduction path. The students use the conductivity information to try to determine what material the test samples are made of. This paper describes the design of the device and the basic theory including a description of how it applies to this particular device. -
Introduction to Thermal Transport
Introduction to Thermal Transport Simon Phillpot Department of Materials Science and Engineering University of Florida Gainesville FL 32611 [email protected] Objectives •Identify reasons that heat transport is important •Describe fundamental processes of heat transport, particularly conduction •Apply fundamental ideas and computer simulation methods to address significant issues in thermal conduction in solids Many Thanks to … •Patrick Schelling (Argonne National Lab Æ U. Central Florida) •Pawel Keblinski (Rensselaer Polytechnic Institute) •Robin Grimes (Imperial College London) •Taku Watanabe (University of Florida) •Priyank Shukla (U. Florida) •Marina Yao (Dalian University / U. Florida) Part 1: Fundamentals Thermal Transport: Why Do We Care? Heat Shield: Disposable space vehicles Cross-section of Mercury Heat Shield Apollo 10 Heat Shield Ablation of polymeric system Heat Shield: Space Shuttle Thermal Barrier Coatings for Turbines http://www.mse.eng.ohio-state.edu/fac_staff/faculty/padture/padturewebpage/padture/turbine_blade.jpg Heat Generation in NanoFETs SOURCE ELECTRON 20 nm FINS RELAXATION G A D ~ 20 nm 10 3 T Q”’ ~ 10 eV/nm /s E DRAIN HOTSPOT EDGE Y-K. Choi et al., EECS, U.C. Berkeley BALLISTIC DRAIN TRANSPORT • Scaling → Localized heating → Phonon hotspot • Impact on ESD, parasitic resistances ? Thermoelectrics cold junction n-type p-type hot junctions Heat Transfer Mechanisms Three fundamental mechanisms of heat transfer: • Convection • Conduction •Radiation ¾ Convection is a mass movement of fluids (liquid or gas) rather than -
Heat Transfer and Thermal Modelling
H0B EAT TRANSFER AND THERMAL RADIATION MODELLING HEAT TRANSFER AND THERMAL MODELLING ................................................................................ 2 Thermal modelling approaches ................................................................................................................. 2 Heat transfer modes and the heat equation ............................................................................................... 3 MODELLING THERMAL CONDUCTION ............................................................................................... 5 Thermal conductivities and other thermo-physical properties of materials .............................................. 5 Thermal inertia and energy storage ....................................................................................................... 7 Numerical discretization. Nodal elements ............................................................................................ 7 Thermal conduction averaging .................................................................................................................. 9 Multilayer plate ..................................................................................................................................... 9 Non-uniform thickness ........................................................................................................................ 11 Honeycomb panels ............................................................................................................................. -
Lecture 2. BASICS of HEAT TRANSFER ( )
Lecture 2. BASICS OF HEAT TRANSFER 2.1 SUMMARY OF LAST WEEK LECTURE There are three modes of heat transfer: conduction, convection and radiation. We can use the analogy between Electrical and Thermal Conduction processes to simplify the representation of heat flows and thermal resistances. T q R Fourier’s law relates heat flow to local temperature gradient. T qx Axk x Convection heat transfer arises when heat is lost/gained by a fluid in contact with a solid surface at a different temperature. TW Ts TW Ts q hAs TW Ts [Watts] or q 1/ hAs Rconv 1 Where: Rconv hAs Radiation heat transfer is dependent on absolute temperature of surfaces, surface properties and geometry. For case of small object in a large enclosure. 4 4 q s As Ts Tsurr Kosasih 2012 Lecture 2 Basics of Heat Transfer 1 2.2 CONTACT RESISTANCE In practice materials in thermal contact may not be perfectly bonded and voids at their interface occur. Even a flat surfaces that appear smooth turn out to be rough when examined under microscope with numerous peaks and valleys. Figure 1. Comparison of temperature distribution and heat flow along two plates pressed against each other for the case of perfect and imperfect contact. In imperfect contact, the “contact resistance”, Ri causes an additional temperature drop at the interface Ti Ri qx (1) Ri is very difficult to predict but one should be aware of its effect. Some order‐ of‐magnitude values for metal‐to‐metal contact are as follows. Material 2 Contact Resistance Ri [m W/K] ‐5 Aluminum 5 x 10 Copper 1 x 10‐5 Stainless steel 3 x 10‐4 Kosasih 2012 Lecture 2 Basics of Heat Transfer 2 We use grease or soft metal foil to improve contact resistance e.g. -
Downloadable in Supplementary Materials of Ref[190], and the Training Process Is Performed Using the QUIP Package
THERMAL CONDUCTIVITY OF COMPLEX CRYSTALS, HIGH TEMPERATURE MATERIALS AND TWO DIMENSIONAL LAYERED MATERIALS By XIN QIAN B.S. Huazhong University of Science and Technology, 2014 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Mechanical Engineering 2019 i This thesis entitled: Thermal Conductivity of Complex Crystals, High Temperature Materials and Two Dimensional Layered Materials written by Xin Qian has been approved for the Department of Mechanical Engineering Prof. Ronggui Yang, Chair Prof. Baowen Li Date: The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii ABSTRACT Xin Qian (Ph.D, Mechanical Engineering) Thermal Conductivity of Complex Crystals, High Temperature Materials and Two Dimensional Layered Materials Thesis directed by Professor Ronggui Yang Thermal conductivity is a critical property for designing novel functional materials for engineering applications. For applications demanding efficient thermal management like power electronics and batteries, thermal conductivity is a key parameter affecting thermal designs, stability and performances of the devices. Thermal conductivity is also the critical material metrics for applications like thermal barrier coatings (TBCs) in gas turbines and thermoelectrics (TE). Therefore, thermal conductivities of various functional materials have been investigated in the past decade, but most of the materials are simple and isotropic crystals at low temperature. This is because the first-principles calculation is limited to simple crystals at ground state and few experimental methods are only capable of measuring thermal conductivity along a single direction. -
Fundamental Governing Equations of Motion in Consistent Continuum Mechanics
Fundamental governing equations of motion in consistent continuum mechanics Ali R. Hadjesfandiari, Gary F. Dargush Department of Mechanical and Aerospace Engineering University at Buffalo, The State University of New York, Buffalo, NY 14260 USA [email protected], [email protected] October 1, 2018 Abstract We investigate the consistency of the fundamental governing equations of motion in continuum mechanics. In the first step, we examine the governing equations for a system of particles, which can be considered as the discrete analog of the continuum. Based on Newton’s third law of action and reaction, there are two vectorial governing equations of motion for a system of particles, the force and moment equations. As is well known, these equations provide the governing equations of motion for infinitesimal elements of matter at each point, consisting of three force equations for translation, and three moment equations for rotation. We also examine the character of other first and second moment equations, which result in non-physical governing equations violating Newton’s third law of action and reaction. Finally, we derive the consistent governing equations of motion in continuum mechanics within the framework of couple stress theory. For completeness, the original couple stress theory and its evolution toward consistent couple stress theory are presented in true tensorial forms. Keywords: Governing equations of motion, Higher moment equations, Couple stress theory, Third order tensors, Newton’s third law of action and reaction 1 1. Introduction The governing equations of motion in continuum mechanics are based on the governing equations for systems of particles, in which the effect of internal forces are cancelled based on Newton’s third law of action and reaction. -
A Fast Synthetic Iterative Scheme for the Stationary Phonon Boltzmann Transport Equation
A fast synthetic iterative scheme for the stationary phonon Boltzmann transport equation Chuang Zhanga, Songze Chena, Zhaoli Guoa,∗, Lei Wub,∗ aState Key Laboratory of Coal Combustion, Huazhong University of Science and Technology,Wuhan, 430074, China bJames Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ, UK Abstract The heat transfer in solid materials at the micro- and nano-scale can be described by the mesoscopic phonon Boltzmann transport equation (BTE), rather than the macroscopic Fourier's heat conduction equa- tion that works only in the diffusive regime. The implicit discrete ordinate method (DOM) is efficient to find the steady-state solutions of the BTE for highly non-equilibrium heat transfer problems, but converges extremely slowly in the near-diffusive regime. In this paper, a fast synthetic iterative scheme is developed to accelerate convergence for the implicit DOM based on the stationary phonon BTE. The key innovative point of the present scheme is the introduction of the macroscopic synthetic diffusion equation for the tempera- ture, which is obtained from the zero- and first-order moment equations of the phonon BTE. The synthetic diffusion equation, which is asymptomatically preserving to the Fourier's heat conduction equation in the diffusive regime, contains a term related to the Fourier's law and a term determined by the second-order moment of the distribution function that reflects the non-Fourier heat transfer. The mesoscopic kinetic equation and macroscopic diffusion equations are tightly coupled together, because the diffusion equation provides the temperature for the BTE, while the BTE provides the high-order moment to the diffusion equa- tion to describe the non-Fourier heat transfer. -
Time Scale of Thermal Conduction Xiaoshan Xu the Importance of Thermal Conduction
Time scale of thermal conduction Xiaoshan Xu The importance of thermal conduction • Energy consumption: Hot reservoir • transfer through conduction • Energy generation: Δ푉 • Thermoelectric effect (Seebeck effect) Cold reservior • Spin Seebeck effect Basics of thermal conduction Example of irreversible process: Heat conduction Heat Conductivity in Solids (an example for irreversibility) Remember: Heat is an energy transferred from one system to another because of temperature difference T1 > T2 System System 1 2 Heat Q flows from 1 to 2 Example of irreversible process: heat conductions as a non-equilibrium process: *(in the textbook T >T ) T1 > T2 2 1 Heat reservoir Heat reservoir 1 2 L T(x) T1 T2 0 L x A Heat transfer per time interval through homogeneous solid object: Q K K: thermal conductivity of the rod (T1 T2 )A where L t L A: cross-section of the rod Diffusion (time and space dependence of matter/energy) T(x) T1 T2 퐿 → ∆푥 푇2 − 푇1 → ∆푇 0 L x Q T K At x Fourier’s law Define flux: 푄 휕푇 푥, 푡 푆 = lim 푆 푥, 푡 = −퐾 Q Δ푡K→0 퐴∆푡 휕푥 (T T )A t L 1 2 Diffusion (time and space dependence of matter/energy) A 푺: flux (energy flow per unit area per unit 푆(푥, 푡) 푢(푥, 푡), 푈 푆(푥 + ∆푥, 푡) time, similar to electric current) 풖: energy density (energy per unit volume) 푥 푥 + ∆푥 How would energy change in the system? 퐴 푆 푥 + ∆푥, 푡 − 푆 푥, 푡 ∆푡 = −[푢(푥, 푡 + ∆푡) − 푢(푥, 푡)]퐴∆푥 푆 푥 + ∆푥, 푡 − 푆 푥, 푡 푢 푥, 푡 + ∆푡 − 푢 푥, 푡 = − ∆푥 ∆푡 Continuity equation: 휕푢 푥, 푡 휕푆 푥, 푡 = − 휕푡 휕푥 Diffusion (time and space dependence of matter/energy) A 푆(푥, 푡) 푢(푥, 푡), 푈 푆(푥 + ∆푥, 푡) Flux across a boundary 푥 푥 + ∆푥 휕푇 푥, 푡 푆 푥, 푡 = −퐾 휕푥 Energy change in a system 휕푢 푥, 푡 휕푆 푥, 푡 = − 휕푡 휕푥 Diffusion (time and space dependence of matter/energy) A 푺: flux (energy flow per unit area per unit 푆(푥, 푡) 푢(푥, 푡), 푈 푆(푥 + ∆푥, 푡) time, similar to electric current) 풖: energy density (energy per unit volume) 푥 푥 + ∆푥 휕푢 푥, 푡 휕푆 푥, 푡 To study temperature distribution. -
TOPIC 3. CONDUCTION Conduction Is the Transfer of Heat Energy In
TOPIC 3. CONDUCTION Conduction is the transfer of heat energy in which kinetic energy 1s passed from one molecule to another by collisions. Thermal conductivity de pends on the availability of free electrons drifting through intramolecular space, so metals, with an abundance of free electrons, are good conductors, and organic materials are generally poor conductors. Air has a low the rmal conductivity, and air trapped between hairs in an animal's coat con tributes significantly to the insulating properties of the hair coat. Conduction is associated with temperature gradients as faster vibrat ing molecules, characteristic of higher heat energy, strike slower vibrating molecules and give up energy. Energy is dissipated from regions of higher temperature to regions of lower temperature regions. When the energy is equally distributed, molecular vibrations are on the average, uniform and energy exchange by conduction is equal in all directions. Ecologically, conduction is an important mode of heat transfer through the hair coats of animals to the soil and snow. An animal bedded in the snow, for example, has a subskin temperature that is higher than the snow. Heat energy passes through the skin and hair coat to the snow. The rate at which heat energy is conducted through the insulating hair is dependent on the depth of the insulating materJal, the temperature gradient between the skin and the snow, and the efficiency wi th which the hair conducts heat. The efficiency is expressed as a thermal conductivity coefficient, and is often represented by the symbol k. It is analagous to the convection coef ficients discussed in the previous TOPIC. -
Heat Transfer Physics, Winter 2011 Tu & Th, 11:30-1:00, 104 EWRE 3 Credits, Prerequisite: Heat Transfer (ME 335 Or Equivalent), Instructor: M
ME 539 (AP 639), Heat Transfer Physics, Winter 2011 Tu & Th, 11:30-1:00, 104 EWRE 3 Credits, Prerequisite: Heat Transfer (ME 335 or equivalent), Instructor: M. Kaviany Department of Mechanical Engineering, University of Michigan, Ann Arbor OBJECTIVE Heat Transfer Physics is a graduate course describing atomic-level kinetics (mechanisms and rates) of thermal energy storage, transport (conduction, convection, and radiation), and transformation (various energy conversions) by principal energy carriers. These carriers are: phonon (lattice vibration wave also treated as quasi-particle), electron (as classical or quantum entity), fluid particle (classical particle with quantum features), and photon (classical electromagnetic wave also as quantum-particle), as show in figure below. The approach combines fundamentals (through survey and summaries) of following fields. Molecular orbitals/potentials, statistical thermodynamics, computational molecular dynamics (including lattice dynamics), quantum energy states, transport theories (e.g., the Boltzmann and stochastic transport equations and the Maxwell equations), solid-state (including semiconductors) and fluid-state (including surface interactions) physics, and quantum optics (e.g., spontaneous and stimulated emission, photon– electron–phonon couplings). These are rationally connected to atomic-level heat transfer (e.g., heat capacity, thermal conductivity, photon absorption coefficient) and thermal energy conversion (e.g., ultrasonic heating, thermoelectric and laser cooling). The course presents a unified theory, over fine-structure/molecular-dynamics/Boltzmann/macroscopic length and time scales (as shown in figure below), of the heat transfer kinetics which are the transition rates and relaxation times. The fundamentals are also relates to modern applications (including nano- and microscale size effects). The prerequisite is ME 335 (Heat Transfer) or consensus of the instructor.