A Heat Transfer Textbook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HEAT TRANSFER and the SECOND LAW Thus Far We’Ve Used the First Law of Thermodynamics: Energy Is Conserved
HEAT TRANSFER AND THE SECOND LAW Thus far we’ve used the first law of thermodynamics: Energy is conserved. Where does the second law come in? One way is when heat flows. Heat flows in response to a temperature gradient. If two points are in thermal contact and at different temperatures, T1 and T2 then energy is transferred between the two in the form of heat, Q. Heat Transfer and The Second Law page 1 © Neville Hogan The rate of heat flow from point 1 to point 2 depends on the two temperatures. Q˙ = f(T1,T2) If heat flows from hot to cold, (the standard convention) this function must be such that Q˙ > 0 iff T1 > T2 Q˙ < 0 iff T1 < T2 Q˙ = 0 iff T1 = T2 Heat Transfer and The Second Law page 2 © Neville Hogan In other words, the relation must be restricted to 1st and 3rd quadrants of the Q˙ vs. T1 – T2 plane. Q T1-T2 NOTE IN PASSING: It is not necessary for heat flow to be a function of temperature difference alone. —see example later. Heat Transfer and The Second Law page 3 © Neville Hogan HEAT FLOW GENERATES ENTROPY. FROM THE DEFINITION OF ENTROPY: dQ = TdS Therefore Q˙ = TS˙ IDEALIZE THE HEAT TRANSFER PROCESS: Assume no heat energy is stored between points 1 and 2. Therefore Q˙ = T1S˙ 1 = T2S˙ 2 Heat Transfer and The Second Law page 4 © Neville Hogan NET RATE OF ENTROPY PRODUCTION: entropy flow rate out minus entropy flow rate in. S˙ 2 - S˙ 1 = Q˙ /T2 - Q˙ /T1 = Q(T˙ 1 - T2) /T1T2 Absolute temperatures are never negative (by definition). -
A Homemade 2 Dimensional Thermal Conduction Apparatus Designed As
AC 2008-292: A HOMEMADE 2-DIMENSIONAL THERMAL CONDUCTION APPARATUS DESIGNED AS A STUDENT PROJECT Robert Edwards, Pennsylvania State University-Erie Robert Edwards is currently a Lecturer in Engineering at The Penn State Erie, The Behrend College where he teaches Statics, Dynamics, and Fluid and Thermal Science courses. He earned a BS degree in Mechanical Engineering from Rochester Institute of Technology and an MS degree in Mechanical Engineering from Gannon University. Page 13.49.1 Page © American Society for Engineering Education, 2008 A Homemade 2-Dimensional Thermal Conduction Apparatus Designed as a Student Project Abstract: It can be fairly expensive to equip a heat transfer lab with commercially available devices. It is always nice to be able to make a device that provides an effective lab experience for the students. It is an extra bonus if the device can be designed as a student project, giving the students working on the device both a real design experience and a better understanding of the principles involved with the device and the associated lab exercise. One example of such a device is a 2-dimensional heat conduction device which was designed and built as a student senior design project by mechanical engineering technology students at Penn State Erie, The Behrend College. The device described in this paper allows the students to determine the thermal conductivity of several different materials, and to graphically see the effect of contact resistance in the heat conduction path. The students use the conductivity information to try to determine what material the test samples are made of. This paper describes the design of the device and the basic theory including a description of how it applies to this particular device. -
Introduction to Thermal Transport
Introduction to Thermal Transport Simon Phillpot Department of Materials Science and Engineering University of Florida Gainesville FL 32611 [email protected] Objectives •Identify reasons that heat transport is important •Describe fundamental processes of heat transport, particularly conduction •Apply fundamental ideas and computer simulation methods to address significant issues in thermal conduction in solids Many Thanks to … •Patrick Schelling (Argonne National Lab Æ U. Central Florida) •Pawel Keblinski (Rensselaer Polytechnic Institute) •Robin Grimes (Imperial College London) •Taku Watanabe (University of Florida) •Priyank Shukla (U. Florida) •Marina Yao (Dalian University / U. Florida) Part 1: Fundamentals Thermal Transport: Why Do We Care? Heat Shield: Disposable space vehicles Cross-section of Mercury Heat Shield Apollo 10 Heat Shield Ablation of polymeric system Heat Shield: Space Shuttle Thermal Barrier Coatings for Turbines http://www.mse.eng.ohio-state.edu/fac_staff/faculty/padture/padturewebpage/padture/turbine_blade.jpg Heat Generation in NanoFETs SOURCE ELECTRON 20 nm FINS RELAXATION G A D ~ 20 nm 10 3 T Q”’ ~ 10 eV/nm /s E DRAIN HOTSPOT EDGE Y-K. Choi et al., EECS, U.C. Berkeley BALLISTIC DRAIN TRANSPORT • Scaling → Localized heating → Phonon hotspot • Impact on ESD, parasitic resistances ? Thermoelectrics cold junction n-type p-type hot junctions Heat Transfer Mechanisms Three fundamental mechanisms of heat transfer: • Convection • Conduction •Radiation ¾ Convection is a mass movement of fluids (liquid or gas) rather than -
Heat Transfer and Thermal Modelling
H0B EAT TRANSFER AND THERMAL RADIATION MODELLING HEAT TRANSFER AND THERMAL MODELLING ................................................................................ 2 Thermal modelling approaches ................................................................................................................. 2 Heat transfer modes and the heat equation ............................................................................................... 3 MODELLING THERMAL CONDUCTION ............................................................................................... 5 Thermal conductivities and other thermo-physical properties of materials .............................................. 5 Thermal inertia and energy storage ....................................................................................................... 7 Numerical discretization. Nodal elements ............................................................................................ 7 Thermal conduction averaging .................................................................................................................. 9 Multilayer plate ..................................................................................................................................... 9 Non-uniform thickness ........................................................................................................................ 11 Honeycomb panels ............................................................................................................................. -
Lecture 2. BASICS of HEAT TRANSFER ( )
Lecture 2. BASICS OF HEAT TRANSFER 2.1 SUMMARY OF LAST WEEK LECTURE There are three modes of heat transfer: conduction, convection and radiation. We can use the analogy between Electrical and Thermal Conduction processes to simplify the representation of heat flows and thermal resistances. T q R Fourier’s law relates heat flow to local temperature gradient. T qx Axk x Convection heat transfer arises when heat is lost/gained by a fluid in contact with a solid surface at a different temperature. TW Ts TW Ts q hAs TW Ts [Watts] or q 1/ hAs Rconv 1 Where: Rconv hAs Radiation heat transfer is dependent on absolute temperature of surfaces, surface properties and geometry. For case of small object in a large enclosure. 4 4 q s As Ts Tsurr Kosasih 2012 Lecture 2 Basics of Heat Transfer 1 2.2 CONTACT RESISTANCE In practice materials in thermal contact may not be perfectly bonded and voids at their interface occur. Even a flat surfaces that appear smooth turn out to be rough when examined under microscope with numerous peaks and valleys. Figure 1. Comparison of temperature distribution and heat flow along two plates pressed against each other for the case of perfect and imperfect contact. In imperfect contact, the “contact resistance”, Ri causes an additional temperature drop at the interface Ti Ri qx (1) Ri is very difficult to predict but one should be aware of its effect. Some order‐ of‐magnitude values for metal‐to‐metal contact are as follows. Material 2 Contact Resistance Ri [m W/K] ‐5 Aluminum 5 x 10 Copper 1 x 10‐5 Stainless steel 3 x 10‐4 Kosasih 2012 Lecture 2 Basics of Heat Transfer 2 We use grease or soft metal foil to improve contact resistance e.g. -
Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt Number Average Nusselt Number: Nul = Convective
Jingwei Zhu http://jingweizhu.weebly.com/course-note.html Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer 1. Nusselt number Average Nusselt number: convective heat transfer ℎ퐿 Nu = = L conductive heat transfer 푘 where L is the characteristic length, k is the thermal conductivity of the fluid, h is the convective heat transfer coefficient of the fluid. Selection of the characteristic length should be in the direction of growth (or thickness) of the boundary layer; some examples of characteristic length are: the outer diameter of a cylinder in (external) cross flow (perpendicular to the cylinder axis), the length of a vertical plate undergoing natural convection, or the diameter of a sphere. For complex shapes, the length may be defined as the volume of the fluid body divided by the surface area. The thermal conductivity of the fluid is typically (but not always) evaluated at the film temperature, which for engineering purposes may be calculated as the mean-average of the bulk fluid temperature T∞ and wall surface temperature Tw. Local Nusselt number: hxx Nu = x k The length x is defined to be the distance from the surface boundary to the local point of interest. 2. Prandtl number The Prandtl number Pr is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity (kinematic viscosity) to thermal diffusivity. That is, the Prandtl number is given as: viscous diffusion rate ν Cpμ Pr = = = thermal diffusion rate α k where: ν: kinematic viscosity, ν = μ/ρ, (SI units : m²/s) k α: thermal diffusivity, α = , (SI units : m²/s) ρCp μ: dynamic viscosity, (SI units : Pa ∗ s = N ∗ s/m²) W k: thermal conductivity, (SI units : ) m∗K J C : specific heat, (SI units : ) p kg∗K ρ: density, (SI units : kg/m³). -
Time Scale of Thermal Conduction Xiaoshan Xu the Importance of Thermal Conduction
Time scale of thermal conduction Xiaoshan Xu The importance of thermal conduction • Energy consumption: Hot reservoir • transfer through conduction • Energy generation: Δ푉 • Thermoelectric effect (Seebeck effect) Cold reservior • Spin Seebeck effect Basics of thermal conduction Example of irreversible process: Heat conduction Heat Conductivity in Solids (an example for irreversibility) Remember: Heat is an energy transferred from one system to another because of temperature difference T1 > T2 System System 1 2 Heat Q flows from 1 to 2 Example of irreversible process: heat conductions as a non-equilibrium process: *(in the textbook T >T ) T1 > T2 2 1 Heat reservoir Heat reservoir 1 2 L T(x) T1 T2 0 L x A Heat transfer per time interval through homogeneous solid object: Q K K: thermal conductivity of the rod (T1 T2 )A where L t L A: cross-section of the rod Diffusion (time and space dependence of matter/energy) T(x) T1 T2 퐿 → ∆푥 푇2 − 푇1 → ∆푇 0 L x Q T K At x Fourier’s law Define flux: 푄 휕푇 푥, 푡 푆 = lim 푆 푥, 푡 = −퐾 Q Δ푡K→0 퐴∆푡 휕푥 (T T )A t L 1 2 Diffusion (time and space dependence of matter/energy) A 푺: flux (energy flow per unit area per unit 푆(푥, 푡) 푢(푥, 푡), 푈 푆(푥 + ∆푥, 푡) time, similar to electric current) 풖: energy density (energy per unit volume) 푥 푥 + ∆푥 How would energy change in the system? 퐴 푆 푥 + ∆푥, 푡 − 푆 푥, 푡 ∆푡 = −[푢(푥, 푡 + ∆푡) − 푢(푥, 푡)]퐴∆푥 푆 푥 + ∆푥, 푡 − 푆 푥, 푡 푢 푥, 푡 + ∆푡 − 푢 푥, 푡 = − ∆푥 ∆푡 Continuity equation: 휕푢 푥, 푡 휕푆 푥, 푡 = − 휕푡 휕푥 Diffusion (time and space dependence of matter/energy) A 푆(푥, 푡) 푢(푥, 푡), 푈 푆(푥 + ∆푥, 푡) Flux across a boundary 푥 푥 + ∆푥 휕푇 푥, 푡 푆 푥, 푡 = −퐾 휕푥 Energy change in a system 휕푢 푥, 푡 휕푆 푥, 푡 = − 휕푡 휕푥 Diffusion (time and space dependence of matter/energy) A 푺: flux (energy flow per unit area per unit 푆(푥, 푡) 푢(푥, 푡), 푈 푆(푥 + ∆푥, 푡) time, similar to electric current) 풖: energy density (energy per unit volume) 푥 푥 + ∆푥 휕푢 푥, 푡 휕푆 푥, 푡 To study temperature distribution. -
TOPIC 3. CONDUCTION Conduction Is the Transfer of Heat Energy In
TOPIC 3. CONDUCTION Conduction is the transfer of heat energy in which kinetic energy 1s passed from one molecule to another by collisions. Thermal conductivity de pends on the availability of free electrons drifting through intramolecular space, so metals, with an abundance of free electrons, are good conductors, and organic materials are generally poor conductors. Air has a low the rmal conductivity, and air trapped between hairs in an animal's coat con tributes significantly to the insulating properties of the hair coat. Conduction is associated with temperature gradients as faster vibrat ing molecules, characteristic of higher heat energy, strike slower vibrating molecules and give up energy. Energy is dissipated from regions of higher temperature to regions of lower temperature regions. When the energy is equally distributed, molecular vibrations are on the average, uniform and energy exchange by conduction is equal in all directions. Ecologically, conduction is an important mode of heat transfer through the hair coats of animals to the soil and snow. An animal bedded in the snow, for example, has a subskin temperature that is higher than the snow. Heat energy passes through the skin and hair coat to the snow. The rate at which heat energy is conducted through the insulating hair is dependent on the depth of the insulating materJal, the temperature gradient between the skin and the snow, and the efficiency wi th which the hair conducts heat. The efficiency is expressed as a thermal conductivity coefficient, and is often represented by the symbol k. It is analagous to the convection coef ficients discussed in the previous TOPIC. -
Me6502 Heat & Mass Transfer
M.I.E.T. ENGINEERING COLLEGE/ DEPT. of Mechanical Engineering M.I.E.T. ENGINEERING COLLEGE (Approved by AICTE and Affiliated to Anna University Chennai) TRICHY – PUDUKKOTTAI ROAD, TIRUCHIRAPPALLI – 620 007 DEPARTMENT OF MECHANICAL ENGINEERING COURSE MATERIAL ME6502 - HEAT & MASS TRANSFER III YEAR - V SEMESTER M.I.E.T. /Mech. / III /HMT M.I.E.T. ENGINEERING COLLEGE/ DEPT. of Mechanical Engineering M.I.E.T. ENGINEERING COLLEGE (Approved by AICTE and Affiliated to Anna University Chennai) TRICHY – PUDUKKOTTAI ROAD, TIRUCHIRAPPALLI – 620 007 DEPARTMENT OF MECHANICAL ENGINEERING SYLLABUS (THEORY) Sub. Code : ME6502 Branch / Year / Sem : MECH/III/V Sub.Name : HEAT & MASS TRANSFER Staff Name : E MANIKANDAN L T P C 3 0 0 3 UNIT I CONDUCTION 9 General Differential equation of Heat Conduction– Cartesian and Polar Coordinates – One Dimensional Steady State Heat Conduction –– plane and Composite Systems – Conduction with Internal Heat Generation – Extended Surfaces – Unsteady Heat Conduction – Lumped Analysis – Semi Infinite and Infinite Solids –Use of Heisler’s charts. UNIT II CONVECTION 9 Free and Forced Convection - Hydrodynamic and Thermal Boundary Layer. Free and Forced Convection during external flow over Plates and Cylinders and Internal flow through tubes . UNIT III PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGERS 9 σusselt’s theory of condensation - Regimes of Pool boiling and Flow boiling. Correlations in boiling and condensation. Heat Exchanger Types - Overall Heat Transfer Coefficient – Fouling Factors - Analysis – LMTD method - NTU method. UNIT IV RADIATION 9 Black Body Radiation – Grey body radiation - Shape Factor – Electrical Analogy – Radiation Shields. Radiation through gases. UNIT V MASS TRANSFER 9 Basic Concepts – Diffusion Mass Transfer – Fick’s Law of Diffusion – Steady state Molecular Diffusion – Convective Mass Transfer – Momentum, Heat and Mass Transfer Analogy –Convective Mass Transfer Correlations. -
Effect of Phonon Dispersion on Thermal Conduction Across Si/Ge Interfaces1
Effect of phonon dispersion on thermal conduction across Si/Ge interfaces1 Dhruv Singh Jayathi Y. Murthy* Timothy S. Fisher School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN -47907, USA ABSTRACT We report finite-volume simulations of the phonon Boltzmann transport equation (BTE) for heat conduction across the heterogeneous interfaces in SiGe superlattices. The diffuse mismatch model incorporating phonon dispersion and polarization is implemented over a wide range of Knudsen numbers. The results indicate that the thermal conductivity of a Si/Ge superlattice is much lower than that of the constitutive bulk materials for superlattice periods in the submicron regime. We report results for effective thermal conductivity of various material volume fractions and superlattice periods. Details of the non-equilibrium energy exchange between optical and acoustic phonons that originate from the mismatch of phonon spectra in silicon and germanium are delineated for the first time. Conditions are identified for which this effect can produce significantly more thermal resistance than that due to boundary scattering of phonons. * Corresponding Author, e-mail: [email protected] 1Paper presented at the 2009 ASME/Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS (InterPACK ‟09), San Francisco, CA, Jul 19-23, 2009. 1 I. INTRODUCTION During the past decade, there has been growing interest in developing nanostructured materials such as composites and superlattices for use in thermoelectrics, thermal interface materials and in macroelectronics [1-5]. It has long been known that the thermal and electrical transport properties of isolated nanostructures such as thin films, nanowires and nanotubes often exhibit significant deviations from their bulk counterparts [6-8]. -
Thermal Conduction in Amorphous Materials and the Role of Collective Excitations
Thermal conduction in amorphous materials and the role of collective excitations Thesis by Jaeyun Moon In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2020 Defended December 11, 2019 ii © 2020 Jaeyun Moon ORCID: 0000-0001-8199-5588 All rights reserved iii ACKNOWLEDGEMENTS Looking back through a little over 5 years of my Ph. D. journey, it is crystal clear that I couldn’t have finished this thesis without the support I have received during this time. I would like to first thank my advisor and mentor, Prof. Austin J. Minnich for his guidance and endless support. I am grateful for the countless discussions we have had for the last 5 years. I learned a lot about how to do research and how to ask good questions from working with him. I am extremely fortunate that he had given me a lot of scientific freedom and independence and that he allowed me to pursue projects that excite me. Because I am very interested in X-ray sciences and ultrafast phenomena, he allowed me to be away for a year at SLAC National Accelerator Laboratory and Stanford University to learn about these topics. For that, I owe a debt of gratitude to my advisor. I am also very fortunate that I was able to tackle scientific questions from several angles from calculations to experiments under his guidance. I have had many enriching experiences at SLAC and Stanford. Due to close interac- tions between SLAC and Stanford researchers, there are many specialized courses regarding X-ray sciences, and I was fortunate to take some of these courses that are directly related to my current Ph. -
Modes of Heat Transfer What Is Conduction
Modes of Heat Transfer What is Heat? Heat is a form of energy. It makes a substance hotter. We cannot see heat. We can only feel it by the effect of hotness it produces. We can define heat as energy in transit. heat transfer definition :- Since we know that heat is thermal energy in transit. Heat transfer is also referred to as heat. Here thermal energy moves from one place to another by virtue of the difference in temperature. Heat is the energy that is transferred from one body to another due to the temperature difference between the two bodies. With the definition of heat transfer or heat in mind, we now move on to know more about heat transfer. Modes of Heat Transfer There are three modes of heat transfer. Heat transfer or transmission of heat from one place to another takes place by three different ways that are: 1. Conduction 2. Convection and 3. Radiation In solids, heat passes from one point to another through conduction. In Liquids and gases, heat transfer takes place by convection. Heat transfer takes place by the process of radiation when there are no particles of any kind which can move and transfer heat. So, in an empty space or vacuum heat is transferred by radiation. We shall now study heat transfer by conduction, convection, and radiation in detail. What is conduction If we heat one end of a metal bar by keeping it over a gas burner, we find that its other end also gets hot after some time. So heat is transferred from hot end of the bar to its cold end.