A Method of Forecasting Development of Tropical Cyclones
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soaring Weather
Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven contributions to meteorology. For example, soar tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft. -
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FORECASTING CALIFORNIA THUNDERSTORMS a Thesis Submitted in Partial Fulfillment of the Re
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FORECASTING CALIFORNIA THUNDERSTORMS A thesis submitted in partial fulfillment of the requirements For the degree of Master of Arts in Geography By Ilya Neyman May 2013 The thesis of Ilya Neyman is approved: _______________________ _________________ Dr. Steve LaDochy Date _______________________ _________________ Dr. Ron Davidson Date _______________________ _________________ Dr. James Hayes, Chair Date California State University, Northridge ii TABLE OF CONTENTS SIGNATURE PAGE ii ABSTRACT iv INTRODUCTION 1 THESIS STATEMENT 12 IMPORTANT TERMS AND DEFINITIONS 13 LITERATURE REVIEW 17 APPROACH AND METHODOLOGY 24 TRADITIONALLY RECOGNIZED TORNADIC PARAMETERS 28 CASE STUDY 1: SEPTEMBER 10, 2011 33 CASE STUDY 2: JULY 29, 2003 48 CASE STUDY 3: JANUARY 19, 2010 62 CASE STUDY 4: MAY 22, 2008 91 CONCLUSIONS 111 REFERENCES 116 iii ABSTRACT FORECASTING CALIFORNIA THUNDERSTORMS By Ilya Neyman Master of Arts in Geography Thunderstorms are a significant forecasting concern for southern California. Even though convection across this region is less frequent than in many other parts of the country significant thunderstorm events and occasional severe weather does occur. It has been found that a further challenge in convective forecasting across southern California is due to the variety of sub-regions that exist including coastal plains, inland valleys, mountains and deserts, each of which is associated with different weather conditions and sometimes drastically different convective parameters. In this paper four recent thunderstorm case studies were conducted, with each one representative of a different category of seasonal and synoptic patterns that are known to affect southern California. In addition to supporting points made in prior literature there were numerous new and unique findings that were discovered during the scope of this research and these are discussed as they are investigated in their respective case study as applicable. -
The Iberian Peninsula Thermal Low
Q. J. R. Meteorol. Soc. (2003), 129, pp. 1491–1511 doi: 10.1256/qj.01.189 The Iberian Peninsula thermal low 1 2 By KLAUS P. HOINKA ¤ and MANUEL DE CASTRO 1Institut fur¨ Physik der Atmosph¨are, DLR, Oberpfaffenhofen, Germany 2Dpto. Ciencias Ambientales, Universidad Castilla-La Mancha, Toledo, Spain (Received 9 November 2001; revised 26 September 2002) SUMMARY Statistics of the thermal low above the Iberian Peninsula are presented for the period between 1979 and 1993, based on gridded data from the European Centre for Medium-Range Weather Forecasts reanalysis project. The sample of days with a thermal low above the Iberian Peninsula was selected objectively using criteria applied to mean-sea-level pressure and 925 hPa geopotential elds. The synoptic- and regional-scale horizontal structure is characterized by the climatology of the 500 hPa geopotential and mean-sea-level pressure distributions. The diurnal evolution of the mean-sea-level pressure is portrayed by mean elds at 00, 06, 12 and 18 UTC. The climatological vertical structure of the thermal low is shown by relation to meridional and zonal cross- sections passing through the thermal low’s centre. The diurnal evolution of the divergence, relative vorticity, potential temperature and vertical velocity is investigated. Statistics are presented also for the monthly frequency, geographical location, vertical extent and intensity of the Iberian thermal low. KEYWORDS: ERA data Heated low 1. INTRODUCTION A thermal low is a warm, shallow, non-frontal depression which forms above continental regions, mostly in the subtropics, but also in the lower midlatitudes. They form mostly during summer months because of the intense surface heating over land. -
Canadian Airmen Lost in Wwii by Date 1943
CANADA'S AIR WAR 1945 updated 21/04/08 January 1945 424 Sqn. and 433 Sqn. begin to re-equip with Lancaster B.I & B.III aircraft (RCAF Sqns.). 443 Sqn. begins to re-equip with Spitfire XIV and XIVe aircraft (RCAF Sqns.). Helicopter Training School established in England on Sikorsky Hoverfly I helicopters. One of these aircraft is transferred to the RCAF. An additional 16 PLUTO fuel pipelines are laid under the English Channel to points in France (Oxford). Japanese airstrip at Sandakan, Borneo, is put out of action by Allied bombing. Built with forced labour by some 3,600 Indonesian civilians and 2,400 Australian and British PoWs captured at Singapore (of which only some 1,900 were still alive at this time). It is decided to abandon the airfield. Between January and March the prisoners are force marched in groups to a new location 160 miles away, but most cannot complete the journey due to disease and malnutrition, and are killed by their guards. Only 6 Australian servicemen are found alive from this group at the end of the war, having escaped from the column, and only 3 of these survived to testify against their guards. All the remaining enlisted RAF prisoners of 205 Sqn., captured at Singapore and Indonesia, died in these death marches (Jardine, wikipedia). On the Russian front Soviet and Allied air forces (French, Czechoslovakian, Polish, etc, units flying under Soviet command) on their front with Germany total over 16,000 fighters, bombers, dive bombers and ground attack aircraft (Passingham & Klepacki). During January #2 Flying Instructor School, Pearce, Alberta, closes (http://www.bombercrew.com/BCATP.htm). -
A Summary of Palau's Typhoon History 1945-2013
A Summary of Palau’s Typhoon History 1945-2013 Coral Reef Research Foundation, Palau Dec, 2014 © Coral Reef Research Foundation 2014 Suggested citation: Coral Reef Research Foundation, 2014. A Summary of Palau’s Typhoon History. Technical Report, 17pp. www.coralreefpalau.org Additions and suggestions welcome. Please email: [email protected] 2 Summary: Since 1945 Palau has had 68 recorded typhoons, tropical storms or tropical depressions come within 200 nmi of its islands or reefs. At their nearest point to Palau, 20 of these were typhoon strength with winds ≥64kts, or an average of 1 typhoon every 3 years. November and December had the highest number of significant storms; July had none over 40 kts and August had no recorded storms. Data Compilation: Storms within 200 nmi (nautical miles) of Palau were identified from the Digital Typhoon, National Institute of Informatics, Japan web site (http://agora.ex.nii.ac.jp/digital- typhoon/reference/besttrack.html.en). The storm tracks and intensities were then obtained from the Joint Typhoon Warning Center (JTWC) (https://metoc.ndbc.noaa.gov/en/JTWC/). Three storm categories were used following the JTWC: Tropical Depression, winds ≤ 33 kts; Tropical Storm, winds 34-63 kts; Typhoon ≥64kts. All track data was from the JTWC archives. Tracks were plotted on Google Earth and the nearest distance to land or reef, and bearing from Palau, were measured; maximum sustained wind speed in knots (nautical miles/hr) at that point was recorded. Typhoon names were taken from the Digital Typhoon site, but typhoon numbers for the same typhoon were from the JTWC archives. -
Dynamical and Synoptic Characteristics of Heavy Rainfall Episodes in Southern Brazil
598 MONTHLY WEATHER REVIEW VOLUME 135 Dynamical and Synoptic Characteristics of Heavy Rainfall Episodes in Southern Brazil MATEUS DA SILVA TEIXEIRA Instituto Nacional de Pesquisas Espaciais, Sdo Jose dos Campos, Sdo Paulo, Brazil PRAKKI SATYAMURTY Centro de Previsao de Tempo e Estudos Climdticos/INPE,Sio Jose dos Campos, Sdo Paulo, Brazil (Manuscript received 21 December 2005, in final form 19 May 2006) ABSTRACT The dynamical and synoptic characteristics that distinguish heavy rainfall episodes from nonheavy rainfall episodes in southern Brazil are discussed. A heavy rainfall episode is defined here as one in which the 2 50 mm day-' isohyet encloses an area of not less than [0 000 km in the domain of southern Brazil. One hundred and seventy such events are identified in the 11-yr period'of 1991-2001. The mean flow patterns in the period of 1-3 days preceding the episodes show some striking synoptic-scale features that may be considered forerunners of these episodes: (i) a deepening midtropospheric trough in the eastern South Pacific approaches the continent 3 days before, (ii) a surface low,pressure center forms in northern Ar- gentina 1 day before, (iii) a northerly low-level jet develops over Paraguay 2 days before, and (iv) a strong moisture flux convergence over southern Brazil becomes prominent 1 day before the episode. A parameter called rainfall quantity, defined as the product .of the area enclosed by the 50 mm day-' isohyet and the average rainfall intensity, is,correlated with fields of atmospheric variables such as 500-hPa geopotential and 850-hPa meridional winds. Significant lag correlations show that the anomalies of some atmospheric vari- ables could be viewed as precursors of heavy rainfall in southern Brazil that can be explored for use in improving the forecasts. -
The Demand for Responsiveness in Past U.S. Military Operations for More Information on This Publication, Visit
C O R P O R A T I O N STACIE L. PETTYJOHN The Demand for Responsiveness in Past U.S. Military Operations For more information on this publication, visit www.rand.org/t/RR4280 Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-1-9774-0657-6 Published by the RAND Corporation, Santa Monica, Calif. 2021 RAND Corporation R® is a registered trademark. Cover: U.S. Air Force/Airman 1st Class Gerald R. Willis. Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous. RAND is nonprofit, nonpartisan, and committed to the public interest. RAND’s publications do not necessarily reflect the opinions of its research clients and sponsors. Support RAND Make a tax-deductible charitable contribution at www.rand.org/giving/contribute www.rand.org Preface The Department of Defense (DoD) is entering a period of great power competition at the same time that it is facing a difficult budget environment. -
Chapter 7 – Atmospheric Circulations (Pp
Chapter 7 - Title Chapter 7 – Atmospheric Circulations (pp. 165-195) Contents • scales of motion and turbulence • local winds • the General Circulation of the atmosphere • ocean currents Wind Examples Fig. 7.1: Scales of atmospheric motion. Microscale → mesoscale → synoptic scale. Scales of Motion • Microscale – e.g. chimney – Short lived ‘eddies’, chaotic motion – Timescale: minutes • Mesoscale – e.g. local winds, thunderstorms – Timescale mins/hr/days • Synoptic scale – e.g. weather maps – Timescale: days to weeks • Planetary scale – Entire earth Scales of Motion Table 7.1: Scales of atmospheric motion Turbulence • Eddies : internal friction generated as laminar (smooth, steady) flow becomes irregular and turbulent • Most weather disturbances involve turbulence • 3 kinds: – Mechanical turbulence – you, buildings, etc. – Thermal turbulence – due to warm air rising and cold air sinking caused by surface heating – Clear Air Turbulence (CAT) - due to wind shear, i.e. change in wind speed and/or direction Mechanical Turbulence • Mechanical turbulence – due to flow over or around objects (mountains, buildings, etc.) Mechanical Turbulence: Wave Clouds • Flow over a mountain, generating: – Wave clouds – Rotors, bad for planes and gliders! Fig. 7.2: Mechanical turbulence - Air flowing past a mountain range creates eddies hazardous to flying. Thermal Turbulence • Thermal turbulence - essentially rising thermals of air generated by surface heating • Thermal turbulence is maximum during max surface heating - mid afternoon Questions 1. A pilot enters the weather service office and wants to know what time of the day she can expect to encounter the least turbulent winds at 760 m above central Kansas. If you were the weather forecaster, what would you tell her? 2. -
ERTH 365 - Lecture 8 Notes
1 Yoon Chang Kimberly Le ERTH 365 - Lecture 8 Notes Topics Discussed - Further processes for warming and cooling the atmosphere - Cold and warm core low pressure systems; - Hurricanes in depth - Hurricane Harvey review for Homework 2 (suppl. Notes) Warming & Cooling the atmosphere - other processes ● Another way of WARMING air ○ Physicists tell us that when water vapor condenses, a certain amount of thermal energy is “given” to the atmosphere. In short, condensation is a warming process. ○ The amount of heating is proportional to the amount of water that condenses. At sea-level temperatures and pressures, the warming is about 590 calories for each gram of water that condenses. The 590 calories is known as “latent heat.” ○ Since air with 100% relative humidity at lower dewpoint temperatures holds less water vapor than air with 100% relative humidity at higher dewpoint temperatures, much more heat is liberated in cases for which cloud development is occurring in high dewpoint environments. ● Another way of COOLING air ○ Conductional Cooling ■ Air flows over a cold surface and is cooled by conduction. (this process is termed “advective cooling”) If the cooling is sufficient to take the air parcel’s temperature to the dew point, the resulting condensation will produce a layered cloud on the ground. ■ Air “sits” on a surface that gets cold overnight. (radiation cooling) if the cooling is sufficient to take the air parcel’s temperature to the 2 dew point, the resulting condensation will produce a layered cloud on the ground. ○ Expansion cooling ■ Air expands, molecules get “further apart”, do not strike each other as often, do not “vibrate” as much. -
Patrol Craft Sailors Association
PATROL CRAFT SAILORS ASSOCIATION COLLECTION & ARCHIVES List reflects both artifacts and research materials contained in the PCSA Collection and Archives by topic and/or ship number PATROL CRAFT SAILORS ASSOCIATION (PCSA) Media - General Media - Video Official Documents & Correspondence PCSA Endowment Fund PCSA Library Dedication PCSA Gallery Openings PCSA Newsletter Directories PCSA Reunion Directories Photographs-General Color/B & W Plaques & Commendations UNITED STATES NAVY (GENERAL) Media – General Flags & Pennants NATO Phonetic Alphabet History/Traditions/Lore Official Manuals/Posters/Publications Photographs-General (Color/B & W) Role of Women & Minorities (WWI to Present) Uniforms/Ratings/Insignia U.S. Navy Nurse Corps U.S. Navy WAVES U.S. Naval Historical Center U.S. Navy Memorial/Heritage Center WW I - EAGLE CLASS PATROL CRAFT Eagle Boat- General PE 2 PE 26 PE 35 PE 48 PE 54 PE 58 PE 59 PE 60 WORLD WAR II (GENERAL) Books & Other Publications Daily Life/Personal Stories & Related Maps & Charts Media – General Photographs-General (Color/B & W) The Selective Training and Service Act of 1940 The Servicemen’s Readjustment Act of 1944 WII Bay County/Bay City U-Boats – General WORLD WAR II - PATROL CRAFT (GENERAL) Blueprints & Drawings Books & Other Publications Commissioning/Launching/Change of Command/Sponsors Communication & Navigation Mechanical & Technical Media - General Photographs-General (Color/B & W) KOREAN WAR Korean War – General Patrol Craft- General VIETNAM WAR Vietnam War - General Groups & Organizations - General Vietnam Veterans of America Brown Water Navy-General Maps/ Charts/Posters Books & Other Publications Photographs –General (Color/B& W) PBR/PCF/WPB - General Riverine Forces - General Coastal Surveillance Force/Task Force 115 River Force Patrol/Task Force 116 Mobile Riverine Force/Task Force 117 U.S. -
An Analysis of the 28Th August 1999 Tornadic Event in Eastern Spain
Atmospheric Research 67–68 (2003) 301–317 www.elsevier.com/locate/atmos Tornadoes over complex terrain: an analysis of the 28th August 1999 tornadic event in eastern Spain V. Homara,*, M. Gaya` b, R. Romeroa, C. Ramisa, S. Alonsoa,c a Meteorology Group, Departament de Fı´sica, Universitat de les Illes Balears, Palma de Mallorca 07071, Spain b Instituto Nacional de Meteorologı´a, Centre Meteorolo`gic a les Illes Balears, Palma de Mallorca, Spain c IMEDEA, UIB-CSIC, Palma de Mallorca, Spain Accepted 28 March 2003 Abstract On 28 August 1999, a tornadic storm developed during the afternoon over the Gudar range, near the border between Teruel and Castello´n provinces (Sistema Ibe´rico, eastern Spain). The area has a characteristic complex terrain with peaks up to 2000 m. At least one tornado developed, which attained F3 intensity, producing severe damage in the forest that covers the mountains. The region is well known as a summer convective storm nest and, not surprisingly, a range in the Sistema Iberico is called Sierra del Rayo (lightning range). The meteorological situation on 28 August 1999 shows the presence of a thermal low over the Iberian peninsula, producing warm and moist air advection towards inland Castellon at low levels. Meanwhile, a cold trough crossed the Iberian Peninsula from west to east at upper levels. Deep convection is identified on the Meteosat images during the afternoon, when the upper level trough reached the area where warm and humid Mediterranean air was concentrated. The radar images reveal signals indicating the supercellular character of the tornado-producing storm. -
Significant Data on Major Disasters Worldwide, 1900-Present
DISASTER HISTORY Signi ficant Data on Major Disasters Worldwide, 1900 - Present Prepared for the Office of U.S. Foreign Disaster Assistance Agency for International Developnent Washington, D.C. 20523 Labat-Anderson Incorporated Arlington, Virginia 22201 Under Contract AID/PDC-0000-C-00-8153 INTRODUCTION The OFDA Disaster History provides information on major disasters uhich have occurred around the world since 1900. Informtion is mare complete on events since 1964 - the year the Office of Fore8jn Disaster Assistance was created - and includes details on all disasters to nhich the Office responded with assistance. No records are kept on disasters uhich occurred within the United States and its territories.* All OFDA 'declared' disasters are included - i.e., all those in uhich the Chief of the U.S. Diplmtic Mission in an affected country determined that a disaster exfsted uhich warranted U.S. govermnt response. OFDA is charged with responsibility for coordinating all USG foreign disaster relief. Significant anon-declared' disasters are also included in the History based on the following criteria: o Earthquake and volcano disasters are included if tbe mmber of people killed is at least six, or the total nmber uilled and injured is 25 or more, or at least 1,000 people art affect&, or damage is $1 million or more. o mather disasters except draught (flood, storm, cyclone, typhoon, landslide, heat wave, cold wave, etc.) are included if the drof people killed and injured totals at least 50, or 1,000 or mre are homeless or affected, or damage Is at least S1 mi 1l ion. o Drought disasters are included if the nunber affected is substantial.