Worm Comparison Chart Colwyn Sleep

Total Page:16

File Type:pdf, Size:1020Kb

Worm Comparison Chart Colwyn Sleep Worm Comparison Chart Colwyn Sleep Platyhelminthes Nematoda Annelids Flatworms Roundworms Segmented worms Classifications Class Turbellaria: aka “Aschelminthes” Class Polychaeta Predators, scavengers, ¨many bristles¨. -heterotrophic -free-living flatworm Class Oligochaeta -incomplete gut, no includes earthworms. suckers or hooks. Class Hirudinea Class Trematoda: includes leeches. “parasitic worms” -incomplete gut, suckers, outer cuticle. Class Cestodae: “Parasitic worms” -no gut, suckers and hooks on a scolex -body consists of repeating sections called “proglottids.” Body symmetry and -bilaterally symmetrical. -pseudocoelom -bilaterally symmetrical. characteristics -3 layers of tissues with -body cavity partially -three germ layers organs and organelles. lined with mesoderm. -tube-within-a-tube body -no internal cavity. -tube within a tube body plan, and organs. -nervous system of plan -true coelom and longitudinal fibres rather -complete digestive segmentation. than a net. system -body cavity entirely -Reproduction mostly -unsegmented. lined with mesoderm. sexual as -bilateral symmetry. -the coelom is divided hermaphrodites. -cylindrical shape. into separate -mostly feed on animals -three germ layers. compartments by and other smaller life partitions. These septa forms. enable different -Some species occur in compartments to all major habitats, contract or expand including many as independently. parasites of other animals. -cephalization -body cavity filled with mesoderm. Worm Comparison Chart Colwyn Sleep environment (ie. Class Turbellaria: -live in nearly every Class Polychaeta aquatic, terrestrial) Live in the ocean. Some habitat including soil, -some live in tubes that live in fresh water. salt flats, aquatic may be made of sediments, polar calcium, silica (sand) or Trematoda + Cestoda regions, and the tropics protein Parasitic worms that live -don’t like dry places in the liver, lung, heart, Class Oligochaeta or intestine -live in soil and freshwater, some types are found in the ocean Class Hirudinea Aquatic, mostly freshwater, some marine varieties. Nervous system Class Turbellaria: -well developed nervous -chain of ganglia -nervous system is two system comprised of a connected by a ventral lateral nerve cords circum-pharyngeal nerve cord. connected by nerve ring and -most body segments transverse nerves and longitudinal nerves that have a single ganglion. cephalization called a extend down through -also have an anterior “nerve ladder.” the body to the various cerebral ganglia (brain) -cephalization consists parts of the gut and the and respond to light, of a brain, reproductive organs. touch, chemicals, chemosensitive organs, -have several ganglia moisture, temperature, and two eyespots. (groups of nerve cells) and vibrations. -chemosensitive organs in the head region but guide the flatworm no true brain. toward food and the -have simple sense eyespots are sensitive organs. to light. -move away from light likely to avoid predation. Class Trematoda: -nerve cords and anterior ganglia make up the nervous system. Class Cestoda No nervous system Worm Comparison Chart Colwyn Sleep Circulatory system Class Turbellaria: -no true circulatory -consists of a dorsal and -not a true system. system. ventral blood vessel -part of the -do not have an internal with five pairs of gastrovascular cavity. transport system and pseudohearts that -nutrients and gases rely on diffusion. connect the two vessels diffuse directly across together behind the the thin cell layers. head region. -The pseudohearts Class Trematoda + pump the blood toward Class Cestoda: the back of the worm -have no circulatory through the ventral system. blood vessel and blood -absorb nutrients returns through the through the dorsal blood vessel. gastrovascular cavity. Skeletal system None pseudocoelom acts as Hydroelastic skeleton hydrostatic skeleton. -created by septa, the partitions between segments Digestive system Class Turbellaria: The pseudocoelom is Class Oligochaeta Consists of a single filled with fluid and it -food enters the mouth opening to a distributes digested as they burrow and gastrovascular cavity. A foods and dissolved moves into the pharynx. pharynx sucks up food oxygen to the body. It From the pharynx food from the underside of also acts as hydrostatic moves through the the flatworm. The food skeleton. esophagus to the crop is digested in a where it is stored. It gastrovascular cavity. then passes into the The gastrovascular gizzard where muscles cavity circulates grind it down. The food nutrients to the body. then enters the intestine Wastes are expelled where it is chemically through the same digested and absorbed opening. Nutrients can into the blood stream. be carried through the The intestines have a organism by diffusion typhlosole, which is a because the flatworm is fold that increases so thin. surface area for absorption. Undigested Class Cestoda waste exits the anus. No digestive system Worm Comparison Chart Colwyn Sleep Movement Class Turbellaria: “Undulatory propulsion” Annelids move via -true system -a hypodermis and a alternating contractions -controlled by layer of longitudinal of circular and longitudinal, circular, muscle, with the high longitudinal muscles. and oblique layers of pressure of the system The circular muscles muscle. produce a whip-like encompass the body -sometimes assisted by wriggle nematodes use wall and contractions secreting a layer of to swim. cause the body to mucus. become long and thin. -some larval stages The longitudinal move using cilia while muscles run the length adults move using of the body and cause muscle contractions. the body to shorten and -nervous system fatten. controls muscles used for movement. Class Oligochaete -made possible by Class Cestoda and segmentation. Class Trematoda: -have circular and No muscular system longitudinal muscles. -the worm anchors middle segments using the setae and contracts circular muscles in front of these segments. -hydrostatic fluid in the coelom increases pressure and elongates the worm. -longitudinal muscles then pull posterior segments forward as they contract and shorten. Class Polycaeta -have many setae (bristle-like appendages) that help the polychaetes have traction as they move. - In some marine worms they are arranged like a paddle and are called parapodia. Worm Comparison Chart Colwyn Sleep respiratory system Class Turbellaria: -no true respiratory Class Polycaeta (method and Not a true system system. -Parapodia assist in structures) Part of the -breathe through their respiration as annelids gastrovascular cavity. body walls. breath through their Nutrients and gases -pseudocoelom is filled body wall by diffusion diffuse directly across with fluid and it and parapodia expand the thin cell layers. distributes dissolved the surface area of the The gastrovascular oxygen to the body. animal. cavity circulates oxygen -cuticle is permeable to to the body. both water and gases, Class Oligochaeta respiration occurs by -no specialized Class Trematoda: diffusion through it. respiratory organs -no respiratory system -oxygen and carbon as they live in tissues dioxide diffuse through -gas exchange occurs the skin and into small through the blood vessels when the gastrovascular cavity. skin is moist. Excretory system Class Turbellaria: -liquid wastes are excretory system (method and -use specialized cells collected by two tubes consists of nephridia structures) called “flame cells” for and removed from the (filtering organ) in each excretion. These sac- body through an segment like cells beat the water excretory pore. with cilia to keep water -undigested remains are Class Oligochaeta to keep it moving eliminated out of the -a pair of nephridia in through excretory anus. each segment filter the canals and out blood end excrete excretory pores. wastes out the excretory -indigestible wastes pore. leave the same way -cellular wastes and they came in through excess water are mouth. eliminated through nephridia. Class Trematoda: -flame cells for excretion Class Cestoda No excretory system Worm Comparison Chart Colwyn Sleep Feeding method and Class Turbellaria -often carnivorous. Class Polychaeta structures -mouth is midway along -some eat decaying -predatory worms have the ventral surface on organic matter, some specialized mouth parts the end of a muscular live on the organic and jaws protrusible pharynx. matter, others eat -tube worms are filter -pharynx pushes food bacteria and fungi. feeders into the gastrovascular -parasitic roundworms cavity. attach to and suck -feed on small animals juices from plants and and the remains of animals. larger dead animals -excrete metabolic waste through their Class Cestoda body walls by diffusion. -absorb food by diffusion through their skin Worm Comparison Chart Colwyn Sleep Reproduction Class Turbellaria: -separate sexes Class Oligochaeta methods -hermaphrodites, but (dioecous), a few are -hermaphrodites with reproduce via “cross- hermaphroditic. male organs located in fertilization”. Two -the female has long the head and female flatworms align so that coiled ovaries that organs located within they simultaneously produce thousands of the clitellum. fertilize each other. eggs every day. -cross-fertilize by -also capable of -eggs are stored in a aligning head regions regeneration, if cut uterus. with clitellums. lengthwise, a planarian -the vagina leads to an -clitellum secretes a will grow into two external opening. mucus layer to protect separate animals. If cut -the male has one testis sperm as it transfers. down the center, but not that is coiled
Recommended publications
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Animal Phylum Poster Porifera
    Phylum PORIFERA CNIDARIA PLATYHELMINTHES ANNELIDA MOLLUSCA ECHINODERMATA ARTHROPODA CHORDATA Hexactinellida -- glass (siliceous) Anthozoa -- corals and sea Turbellaria -- free-living or symbiotic Polychaetes -- segmented Gastopods -- snails and slugs Asteroidea -- starfish Trilobitomorpha -- tribolites (extinct) Urochordata -- tunicates Groups sponges anemones flatworms (Dugusia) bristleworms Bivalves -- clams, scallops, mussels Echinoidea -- sea urchins, sand Chelicerata Cephalochordata -- lancelets (organisms studied in detail in Demospongia -- spongin or Hydrazoa -- hydras, some corals Trematoda -- flukes (parasitic) Oligochaetes -- earthworms (Lumbricus) Cephalopods -- squid, octopus, dollars Arachnida -- spiders, scorpions Mixini -- hagfish siliceous sponges Xiphosura -- horseshoe crabs Bio1AL are underlined) Cubozoa -- box jellyfish, sea wasps Cestoda -- tapeworms (parasitic) Hirudinea -- leeches nautilus Holothuroidea -- sea cucumbers Petromyzontida -- lamprey Mandibulata Calcarea -- calcareous sponges Scyphozoa -- jellyfish, sea nettles Monogenea -- parasitic flatworms Polyplacophora -- chitons Ophiuroidea -- brittle stars Chondrichtyes -- sharks, skates Crustacea -- crustaceans (shrimp, crayfish Scleropongiae -- coralline or Crinoidea -- sea lily, feather stars Actinipterygia -- ray-finned fish tropical reef sponges Hexapoda -- insects (cockroach, fruit fly) Sarcopterygia -- lobed-finned fish Myriapoda Amphibia (frog, newt) Chilopoda -- centipedes Diplopoda -- millipedes Reptilia (snake, turtle) Aves (chicken, hummingbird) Mammalia
    [Show full text]
  • Invertebrates Invertebrates: • Are Animals Without Backbones • Represent 95% of the Animal Kingdom Animal Diversity Morphological Vs
    Invertebrates Invertebrates: • Are animals without backbones • Represent 95% of the animal kingdom Animal Diversity Morphological vs. Molecular Character Phylogeny? A tree is a hypothesis supported or not supported by evidence. Groupings change as new evidence become available. Sponges - Porifera Natural Bath Sponges – over-collected, now uncommon Sponges • Perhaps oldest animal phylum (Ctenphora possibly older) • may represent several old phyla, some now extinct ----------------Ctenophora? Sponges - Porifera • Mostly marine • Sessile animals • Lack true tissues; • Have only a few cell types, cells kind of independent • Most have no symmetry • Body resembles a sac perforated with holes, system of canals. • Strengthened by fibers of spongin, spicules Sponges have a variety of shapes Sponges Pores Choanocyte Amoebocyte (feeding cell) Skeletal Water fiber flow Central cavity Flagella Choanocyte in contact with an amoebocyte Sponges - Porifera • Sessile filter feeder • No mouth • Sac-like body, perforated by pores. • Interior lined by flagellated cells (choanocytes). Flagellated collar cells generate a current, draw water through the walls of the sponge where food is collected. • Amoeboid cells move around in the mesophyll and distribute food. Sponges - Porifera Grantia x.s. Sponge Reproduction Asexual reproduction • Fragmentation or by budding. • Sponges are capable of regeneration, growth of a whole from a small part. Sexual reproduction • Hermaphrodites, produce both eggs and sperm • Eggs and sperm released into the central cavity • Produces
    [Show full text]
  • R E S E a R C H / M a N a G E M E N T Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea)
    RESEARCH/MANAGEMENT FINDINGSFINDINGS “Put a piece of raw meat into a small stream or spring and after a few hours you may find it covered with hundreds of black worms... When not attracted into the open by food, they live inconspicuously under stones and on vegetation.” – BUCHSBAUM, et al. 1987 Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea) Records from Wisconsin Dreux J. Watermolen D WATERMOLEN Bureau of Integrated Science Services INTRODUCTION The phylum Platyhelminthes encompasses three distinct Nemerteans resemble turbellarians and possess many groups of flatworms: the entirely parasitic tapeworms flatworm features1. About 900 (mostly marine) species (Cestoidea) and flukes (Trematoda) and the free-living and comprise this phylum, which is represented in North commensal turbellarians (Turbellaria). Aquatic turbellari- American freshwaters by three species of benthic, preda- ans occur commonly in freshwater habitats, often in tory worms measuring 10-40 mm in length (Kolasa 2001). exceedingly large numbers and rather high densities. Their These ribbon worms occur in both lakes and streams. ecology and systematics, however, have been less studied Although flatworms show up commonly in invertebrate than those of many other common aquatic invertebrates samples, few biologists have studied the Wisconsin fauna. (Kolasa 2001). Terrestrial turbellarians inhabit soil and Published records for turbellarians and ribbon worms in leaf litter and can be found resting under stones, logs, and the state remain limited, with most being recorded under refuse. Like their freshwater relatives, terrestrial species generic rubric such as “flatworms,” “planarians,” or “other suffer from a lack of scientific attention. worms.” Surprisingly few Wisconsin specimens can be Most texts divide turbellarians into microturbellarians found in museum collections and a specialist has yet to (those generally < 1 mm in length) and macroturbellari- examine those that are available.
    [Show full text]
  • The Comparative Embryology of Sponges Alexander V
    The Comparative Embryology of Sponges Alexander V. Ereskovsky The Comparative Embryology of Sponges Alexander V. Ereskovsky Department of Embryology Biological Faculty Saint-Petersburg State University Saint-Petersburg Russia [email protected] Originally published in Russian by Saint-Petersburg University Press ISBN 978-90-481-8574-0 e-ISBN 978-90-481-8575-7 DOI 10.1007/978-90-481-8575-7 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010922450 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface It is generally assumed that sponges (phylum Porifera) are the most basal metazoans (Kobayashi et al. 1993; Li et al. 1998; Mehl et al. 1998; Kim et al. 1999; Philippe et al. 2009). In this connection sponges are of a great interest for EvoDevo biolo- gists. None of the problems of early evolution of multicellular animals and recon- struction of a natural system of their main phylogenetic clades can be discussed without considering the sponges. These animals possess the extremely low level of tissues organization, and demonstrate extremely low level of processes of gameto- genesis, embryogenesis, and metamorphosis. They show also various ways of advancement of these basic mechanisms that allow us to understand processes of establishment of the latter in the early Metazoan evolution.
    [Show full text]
  • Predatory Drill Holes in Paleocene Ostracods from Argentina and Methods to Infer Predation Intensit
    [Palaeontology, 2019, pp. 1–26] A SMALL YET OCCASIONAL MEAL: PREDATORY DRILL HOLES IN PALEOCENE OSTRACODS FROM ARGENTINA AND METHODS TO INFER PREDATION INTENSITY by JORGE VILLEGAS-MARTIN1 ,DAIANECEOLIN2 , GERSON FAUTH1,2 and ADIEL€ A. KLOMPMAKER3 1Graduate Program in Geology, Universidade do Vale do Rio dos Sinos-UNISINOS, Av. Unisinos 950, 93022-000, S~ao Leopoldo, Rio Grande do Sul Brazil; [email protected], [email protected] 2Instituto Tecnologico de Micropaleontologia – itt Fossil, Universidade do Vale do Rio dos Sinos-UNISINOS, Av. Unisinos, 950, 93022-000, S~ao Leopoldo, Rio Grande do Sul Brazil; [email protected] 3Department of Integrative Biology & Museum of Paleontology, University of California, Berkeley, 1005 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA; [email protected] Typescript received 6 May 2018; accepted in revised form 14 December 2018 Abstract: Ostracods are common yet understudied prey in ostracods. The cylindrical (Oichnus simplex) and parabolic item in the fossil record. We document drill holes in Pale- (O. paraboloides) drill holes from Argentina may have been ocene (Danian) ostracods from central Argentina using 9025 caused primarily by naticid and possibly muricid gastropods. specimens representing 66 species. While the percentage of Two oval drill holes (O. ovalis) are morphologically similar drilled specimens at assemblage-level is only 2.3%, consider- to octopod drill holes, but their small size, the fact that able variation exists within species (0.3–25%), suggesting extant octopods are not known to drill ostracods and the prey preference by the drillers. This preference is not deter- absence of such holes in co-occurring gastropods, preclude mined by abundance because no significant correlation is ascription to a predator clade.
    [Show full text]
  • Phylum Porifera
    790 Chapter 28 | Invertebrates updated as new information is collected about the organisms of each phylum. 28.1 | Phylum Porifera By the end of this section, you will be able to do the following: • Describe the organizational features of the simplest multicellular organisms • Explain the various body forms and bodily functions of sponges As we have seen, the vast majority of invertebrate animals do not possess a defined bony vertebral endoskeleton, or a bony cranium. However, one of the most ancestral groups of deuterostome invertebrates, the Echinodermata, do produce tiny skeletal “bones” called ossicles that make up a true endoskeleton, or internal skeleton, covered by an epidermis. We will start our investigation with the simplest of all the invertebrates—animals sometimes classified within the clade Parazoa (“beside the animals”). This clade currently includes only the phylum Placozoa (containing a single species, Trichoplax adhaerens), and the phylum Porifera, containing the more familiar sponges (Figure 28.2). The split between the Parazoa and the Eumetazoa (all animal clades above Parazoa) likely took place over a billion years ago. We should reiterate here that the Porifera do not possess “true” tissues that are embryologically homologous to those of all other derived animal groups such as the insects and mammals. This is because they do not create a true gastrula during embryogenesis, and as a result do not produce a true endoderm or ectoderm. But even though they are not considered to have true tissues, they do have specialized cells that perform specific functions like tissues (for example, the external “pinacoderm” of a sponge acts like our epidermis).
    [Show full text]
  • Black Spicules from a New Interstitial Opheliid Polychaete Thoracophelia Minuta Sp
    www.nature.com/scientificreports OPEN Black spicules from a new interstitial opheliid polychaete Thoracophelia minuta sp. nov. (Annelida: Opheliidae) Naoto Jimi1*, Shinta Fujimoto2, Mami Takehara1 & Satoshi Imura1,3 The phylum Annelida exhibits high morphological diversity coupled with its extensive ecological diversity, and the process of its evolution has been an attractive research subject for many researchers. Its representatives are also extensively studied in felds of ecology and developmental biology and important in many other biology related disciplines. The study of biomineralisation is one of them. Some annelid groups are well known to form calcifed tubes but other forms of biomineralisation are also known. Herein, we report a new interstitial annelid species with black spicules, Thoracophelia minuta sp. nov., from Yoichi, Hokkaido, Japan. Spicules are minute calcium carbonate inclusions found across the body and in this new species, numerous black rod-like inclusions of calcium-rich composition are distributed in the coelomic cavity. The new species can be distinguished from other known species of the genus by these conspicuous spicules, shape of branchiae and body formula. Further, the new species’ body size is apparently smaller than its congeners. Based on our molecular phylogenetic analysis using 18S and 28S sequences, we discuss the evolutionary signifcance of the new species’ spicules and also the species’ progenetic origin. Annelida is one of the most ecologically and morphologically diverse group of animals known from both marine and terrestrial environments. Several groups are highly specialised with distinct ecological niches such as intersti- tial, parasitic, pelagic, or chemosynthetic zones 1. Like many other animal phyla 2–6, annelids are known to produce biominerals2.
    [Show full text]
  • Turbellaria, Rhabdocoelida), a Parasite of Macoma Nasuta
    AN ABSTRACT OF THE THESIS OF ALFRED WARREN HANSON for the M.S. in Zoology (Name) (Degree) (Major) Redacted for Privacy Date thesis is presented Title THE SYMBIOTIC RELATIONSHIPS AND MORPHOLOGY OF PARAVORTEX SP. NOV. (TURBELLARIA, RHABDOCOELIDA), A PARASITE OF MACOMA NASUTA CONRAD, 1837 Redacted for Privacy Abstract approved (Major professor) Rhabdocoels of the genus Paravortex are parasites of marine molluscs. The bent-nosed clams, Macoma nasuta(Conrad, 1837) of Yaquina Bay, Lincoln County, Oregon are commonly infected with a new species of Paravortex. The morphology of the adult worm has been described and it has been compared to the other three species of this genus. The percent infection increased as the size of the clams increased. Analysis of the size frequency distribution of the clam population suggests at least two age classes. Incidence of infection was substantially lower in the younger of these two classes. Clams less than 14 mm in length were not infected. Possible reasons for this distribution of the parasite population were discussed. A peak in the percent of infection, in the incidence of multiple infection, and in the abundance of immature worms was found during April, May, and June, 1968. These data suggest a seasonal periodicity in the reproduction of Paravortex sp. nov. A correlation between the sex of the bent-nosed clams and the incidence and degree of infection could not be established. Paravortex sp. nov. was found only in the pericardial cavity of Macoma nasuta. It is postulated that the rhabdocoel enters this cavity from the suprabranchial space by passing through the kidney.
    [Show full text]
  • Marine Flora and Fauna of the Northeastern United States Erect Bryozoa
    NOAA Technical Report NMFS 99 February 1991 Marine Flora and Fauna of the Northeastern United States Erect Bryozoa John S. Ryland Peter J. Hayward U.S. Department of Commerce NOAA Technical Report NMFS _ The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for their optimum use. NMFS i also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, urveillance of foreign fishing off nited States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage in­ surance and ve sel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Report NMFS series was established in 1983 to replace two subcategories of the Technical Reports series: "Special Scientific Report-Fisheries" and "Circular." The series contains the following types of reports: Scientific investigations that document long-term continuing programs of NMFS; intensive scientific report on studies of restricted scope; papers on applied fishery problems; technical reports of general interest intended to aid conservation and management; reports that review in considerable detail and at a high technical level certain broad areas of research; and technical papers originating in economics studies and from management investigations. Since this is a formal series, all submitted papers receive peer review and those accepted receive professional editing before publication.
    [Show full text]
  • Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida
    1 Animal Diversity I: Porifera, Cnidaria, Ctenophora, Platyhelminthes, Rotifera, Annelida Objectives: • Be able to distinguish radial symmetry from bilateral symmetry . • Be able to identify which of the phyla represented here exhibit radial or bilateral symmetry , the presence or absence of different tissues , and diploblastic versus triploblastic organization. • Be able to use a dichotomous key . • Be able to identify the major taxonomic groups of animals. • Be able to describe important features of the animals covered in these labs, including their movement, nervous and sensory systems, reproduction and life history, feeding, circulation, and excretion. Animal Phylogeny All phylogenies are hypotheses about the evolution of groups of organisms. Below are two phylogenies of the animal kingdom, one based on data available before about 1995, and the other based on data first published in 2005 using RNA sequence homologies. Tree before 1995 Tree using RNA sequence homologies 2 Dichotomous keys A dichotomous key is a tool for identifying organisms based on a series of either/or questions that lead you to an identification. It is important to know that a dichotomous key is not a phylogeny, but only a tool for identification. A dichotomous key can be based on the same traits used to construct a phylogeny, or it can use different criteria, as long as it uses either/or questions that lead to an identification. Below is an example of a dichotomous key based on the phylogeny shown earlier in this lab: Dichotomous key for major groups of Metazoa: 1. Does the animal have spicules and no distinct tissues? a. Yes: Porifera (sponges) b.
    [Show full text]
  • Phylum Platyhelminthes
    Author's personal copy Chapter 10 Phylum Platyhelminthes Carolina Noreña Departamento Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain Cristina Damborenea and Francisco Brusa División Zoología Invertebrados, Museo de La Plata, La Plata, Argentina Chapter Outline Introduction 181 Digestive Tract 192 General Systematic 181 Oral (Mouth Opening) 192 Phylogenetic Relationships 184 Intestine 193 Distribution and Diversity 184 Pharynx 193 Geographical Distribution 184 Osmoregulatory and Excretory Systems 194 Species Diversity and Abundance 186 Reproductive System and Development 194 General Biology 186 Reproductive Organs and Gametes 194 Body Wall, Epidermis, and Sensory Structures 186 Reproductive Types 196 External Epithelial, Basal Membrane, and Cell Development 196 Connections 186 General Ecology and Behavior 197 Cilia 187 Habitat Selection 197 Other Epidermal Structures 188 Food Web Role in the Ecosystem 197 Musculature 188 Ectosymbiosis 198 Parenchyma 188 Physiological Constraints 199 Organization and Structure of the Parenchyma 188 Collecting, Culturing, and Specimen Preparation 199 Cell Types and Musculature of the Parenchyma 189 Collecting 199 Functions of the Parenchyma 190 Culturing 200 Regeneration 190 Specimen Preparation 200 Neural System 191 Acknowledgment 200 Central Nervous System 191 References 200 Sensory Elements 192 INTRODUCTION by a peripheral syncytium with cytoplasmic elongations. Monogenea are normally ectoparasitic on aquatic verte- General Systematic brates, such as fishes,
    [Show full text]