The Epifaunal Community Structure on Artificial Reefs in Tampa Bay

Total Page:16

File Type:pdf, Size:1020Kb

The Epifaunal Community Structure on Artificial Reefs in Tampa Bay T The Epifaunal Community Structure on Artificial Reefs in Tampa Bay Grant Agreement #FWCC-03045 Thomas L. Dix, Ph.D., Thomas M. Ash, David J. Karlen, Barbara K. Goetting, Christina M. Holden, Susan M. Estes, June 2005 #FWCC-0304 5 2 ACKNOWLEDGEMENTS Funding was provided by the Florida Fish and Wildlife Conservation Commission (Grant Agreement # FWCC-03045). Stephen A .Grabe, Sara E. Markham and Anthony S. Chacour assisted with sample processing. Carla Wright assisted with instrument calibration. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS .................................................................................................................... ii TABLE OF CONTENTS ...................................................................................................................... iii LIST OF FIGURES .............................................................................................................................. iv LIST OF TABLES .................................................................................................................................. v ABSTRACT ............................................................................................................................................ 1 INTRODUCTION .................................................................................................................................. 2 METHODS AND MATERIALS ............................................................................................................. 3 Study sites ........................................................................................................................................ 3 Sample sites on reef......................................................................................................................... 3 Water and LI-COR® Profiles ......................................................................................................... 3 Field Collection ............................................................................................................................... 5 Sample Procedures ......................................................................................................................... 7 Data Analysis .................................................................................................................................. 7 RESULTS ............................................................................................................................................. 8 Hydrographic .................................................................................................................................. 8 Reef Characteristics ...................................................................................................................... 13 Benthic Community ....................................................................................................................... 13 Biomass ................................................................................................................................... 17 Mollusca Biomass ............................................................................................................. 17 Arthropoda Biomass ......................................................................................................... 26 Chordata Biomass ............................................................................................................ 26 Porifera Biomass .............................................................................................................. 30 Cnidaria Biomass ............................................................................................................. 30 Bryozoa Biomass .............................................................................................................. 30 Biomass Cluster Analysis ................................................................................................. 33 Biomass Multi-Dimensional Scaling (MDS) plots .......................................................... 36 Epifaunal Community Metrics ............................................................................................... 39 Species Richness (S) ......................................................................................................... 39 Abundance (N) .................................................................................................................. 46 Shannon-Weiner Diversity Index (H’) ............................................................................. 46 Pielou’s Evenness Index (J’) ............................................................................................ 47 Abundance Cluster Analysis ............................................................................................ 48 Species Composition and Relative Abundances .............................................................. 52 DISCUSSION ...................................................................................................................................... 60 CONCLUSIONS .................................................................................................................................. 61 REFERENCES .................................................................................................................................... 61 APPENDIX A ...................................................................................................................................... 62 APPENDIX B ...................................................................................................................................... 63 APPENDIX C ...................................................................................................................................... 66 APPENDIX D ...................................................................................................................................... 80 APPENDIX E ...................................................................................................................................... 93 iii LIST OF FIGURES Figure 1 Tampa Bay artificial reefs ................................................................................................ 4 Figure 2 The epifaunal sampler ...................................................................................................... 5 Figure 3 Epifaunal sampler front .................................................................................................... 6 Figure 4 The back of epifaunal sampler ......................................................................................... 6 Figure 5 Epifaunal sampler with cover ........................................................................................... 7 Figure 6. Howard Frankland Reef (04HFR104s) ......................................................................... 14 Figure 7. Howard Frankland Reef (04HFR157s) ......................................................................... 14 Figure 8. Bahia Beach Reef (04BBR050s) .................................................................................. 15 Figure 9. Bahia Beach Reef (04BBR083s) ................................................................................... 15 Figure 10. Egmont Key Reef (04EKR096s) ................................................................................. 16 Figure 11. Egmont Key Reef (04EKR112s) ................................................................................ 16 Figure 12. Total wet biomass at each reef and season for each phylum ....................................... 18 Figure 13. The relative percent biomass at Howard Frankland Reef in the spring ...................... 19 Figure 14. The relative percent biomass at Howard Frankland Reef in the fall ........................... 20 Figure 15. The relative percent biomass at Bahia Beach Reef in the spring ................................ 21 Figure 16. The relative percent biomass at Bahia Beach Reef in the fall ..................................... 22 Figure 17. The relative percent biomass at Egmont Key Reef in the spring ................................ 23 Figure 18. The relative percent biomass at Egmont Key Reef in the fall ..................................... 24 Figure 19. The average relative percent biomass at each reef and season for each phylum ........ 25 Figure 20. The average relative percent biomass at each reef and season for Mollusca .............. 27 Figure 21. The average relative percent biomass at each reef and season for Arthropoda ........... 28 Figure 22. The average relative percent biomass at each reef and season for Chordata .............. 29 Figure 23. The average relative percent biomass at each reef and season for Porifera ................ 31 Figure 24. The average relative percent biomass at each reef and season for Cnidaria ............... 32 Figure 25. The average relative percent biomass at each reef and season for Bryozoa ............... 34 Figure 26. Bray-Curtis similarity of sites based on epifaunal biomass ........................................ 35 Figure 27. The biomass MDS plot for the reefs and seasons........................................................ 37 Figure 28. The total biomass MDS plot for the reefs and seasons ............................................... 37 Figure 29. The relative percent biomass MDS plot for Perna viridis .......................................... 38 Figure 30. The relative percent biomass MDS
Recommended publications
  • "Lophophorates" Brachiopoda Echinodermata Asterozoa
    Deuterostomes Bryozoa Phoronida "lophophorates" Brachiopoda Echinodermata Asterozoa Stelleroidea Asteroidea Ophiuroidea Echinozoa Holothuroidea Echinoidea Crinozoa Crinoidea Chaetognatha (arrow worms) Hemichordata (acorn worms) Chordata Urochordata (sea squirt) Cephalochordata (amphioxoius) Vertebrata PHYLUM CHAETOGNATHA (70 spp) Arrow worms Fossils from the Cambrium Carnivorous - link between small phytoplankton and larger zooplankton (1-15 cm long) Pharyngeal gill pores No notochord Peculiar origin for mesoderm (not strictly enterocoelous) Uncertain relationship with echinoderms PHYLUM HEMICHORDATA (120 spp) Acorn worms Pharyngeal gill pores No notochord (Stomochord cartilaginous and once thought homologous w/notochord) Tornaria larvae very similar to asteroidea Bipinnaria larvae CLASS ENTEROPNEUSTA (acorn worms) Marine, bottom dwellers CLASS PTEROBRANCHIA Colonial, sessile, filter feeding, tube dwellers Small (1-2 mm), "U" shaped gut, no gill slits PHYLUM CHORDATA Body segmented Axial notochord Dorsal hollow nerve chord Paired gill slits Post anal tail SUBPHYLUM UROCHORDATA Marine, sessile Body covered in a cellulose tunic ("Tunicates") Filter feeder (» 200 L/day) - perforated pharnx adapted for filtering & repiration Pharyngeal basket contractable - squirts water when exposed at low tide Hermaphrodites Tadpole larvae w/chordate characteristics (neoteny) CLASS ASCIDIACEA (sea squirt/tunicate - sessile) No excretory system Open circulatory system (can reverse blood flow) Endostyle - (homologous to thyroid of vertebrates) ciliated groove
    [Show full text]
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • National Reports (Term of Reference A) Presented at the 46Th Meeting of the ICES Working Group on Introductions and Transfers Of
    National Reports (Term of Reference a) Presented at the 46th meeting of the ICES Working Group on Introductions and Transfers of Marine Organisms, held in Gdynia, Poland from 4 to 6 March 2020. Arranged Alphabetically by Country Compiled by Cynthia H McKenzie, Chair, WGITMO CANADA …………………………………………………………………… …. 2 DENMARK ………………………………………………………………………. 10 FINLAND ………………………………………………………………………. 18 FRANCE ………………………………………………………………………. 21 GERMANY ………………………………………………………………………. 33 GREECE ………………………………………………………………………. 46 ICELAND ………………………………………………………………………. 54 ITALY ………………………………………………………………………. 58 LITHUANIA ………………………………………………………………………. 73 NETHERLANDS …………………………………………………………………. 75 NORWAY ………………………………………………………………………. 77 POLAND ………………………………………………………………………. 86 PORTUGAL ………………………………………………………………………. 89 SWEDEN ………………………………………………………………………. 99 UNITED KINGDOM ……………………………………………………………. 104 UNITED STATES …………………………………………………………………. 119 1 CANADA National Report for Canada 2019 Report Prepared By: Cynthia McKenzie, Fisheries and Oceans Canada, Newfoundland and Labrador Region: [email protected]; Contributions By: Nathalie Simard, Fisheries and Oceans Canada, Quebec Region: [email protected]; Kimberly Howland, Fisheries and Oceans Canada, Central and Arctic Region: [email protected]; Renée Bernier and Chantal Coomber, Fisheries and Oceans Canada, Gulf Region: renee.bernier@dfo- mpo.gc.ca, [email protected]; Angelica Silva, Fisheries and Oceans Canada, Maritimes Region: [email protected] Overview: NEW or SPREAD
    [Show full text]
  • Larval Development of Shallow Water Barnacles of the Carolinas (Cirripedia
    421 NOAA Technical Report Circular 421 OF <•*>" *o, Larval Development of / Shallow Water Barnacles of the Carolinas (Cirripedia: Sr V/ *TES O* Thoracica) With Keys to Naupliar Stages William H. Lang February 1979 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA TECHNICAL REPORTS National Marine Fisheries Service, Circulars The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry. The NOAA Technical Report NMFS Circular series continues a series that has been in existence since 1941. The Circulars are technical publications of general interest intended to aid conservation and management. Publications that review in considerable detail and at a high technical level certain broad areas of research appear in this series. Technical papers originating in economics studies and from management in- vestigations appear in the Circular series. NOAA Technical Report NMFS Circulars are available free in limited numbers to governmental agencies, both Federal and State.
    [Show full text]
  • Marine Ecology Progress Series 464:135
    Vol. 464: 135–151, 2012 MARINE ECOLOGY PROGRESS SERIES Published September 19 doi: 10.3354/meps09872 Mar Ecol Prog Ser Physical and biological factors affect the vertical distribution of larvae of benthic gastropods in a shallow embayment Michelle J. Lloyd1,*, Anna Metaxas1, Brad deYoung2 1Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2 2Department of Physics and Physical Oceanography, Memorial University, St. John’s, Newfoundland, Canada A1B 3X7 ABSTRACT: Marine gastropods form a diverse taxonomic group, yet little is known about the factors that affect their larval distribution and abundance. We investigated the larval vertical dis- tribution and abundance of 9 meroplanktonic gastropod taxa (Margarites spp., Crepidula spp., Astyris lunata, Diaphana minuta, Littorinimorpha, Arrhoges occidentalis, Ilyanassa spp., Bittiolum alternatum and Nudibranchia), with similar morphology and swimming abilities, but different adult habitats and life-history strategies. We explored the role of physical (temperature, salinity, density, current velocities) and biological (fluorescence) factors, as well as periodic cycles (lunar phase, tidal state, diel period) in regulating larval vertical distribution. Using a pump, we collected plankton samples at 6 depths (3, 6, 9, 12, 18 and 24 m) at each tidal state, every 2 h over a 36 and a 26 h period, during a spring and neap tide, respectively, in St. George’s Bay, Nova Scotia. Con- currently, we measured temperature, salinity, density, fluorescence (as a proxy for chlorophyll, i.e. phytoplankton density), and current velocity. Larval abundance was most strongly related to tem- perature, except for Littorinimorpha and Crepidula spp., for which it was most strongly related to fluorescence. Margarites spp., A.
    [Show full text]
  • Journal of Experimental Marine Biology and Ecology Subtropical Epibenthos Varies with Location, Reef Type, and Grazing Intensity
    Journal of Experimental Marine Biology and Ecology 509 (2018) 54–65 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Subtropical epibenthos varies with location, reef type, and grazing intensity T ⁎ Kara R. Wall , Christopher D. Stallings College of Marine Science, University of South Florida, 140 7th Ave, St Petersburg, FL 33705, USA ARTICLE INFO ABSTRACT Keywords: Composition of marine epibenthic communities are influenced by both physical and biotic processes. For in- West Florida Shelf stance, the larval supply and cues that influence colonization (physical), as well as the growth and mortality of Coral individuals (biotoic), may differ across location and reef type. Determining the relative influence of these pro- Warm temperate cesses is important to understanding how epibenthic communities can develop in a region. Using both a partial Fouling caging experiment that controlled grazing by urchins and in situ photographic surveys of epibenthic commu- Habitat heterogeneity Settlement nities, this study examined the relationship between urchin grazing and the composition of epibenthos on natural limestone and artificial reefs in the eastern Gulf of Mexico (eGOM). In the experiment, tiles that were open to urchin grazing had lower percent cover of algae (−12%) and higher cover of crustose coralline algae (CCA) (13%) than those that excluded urchins. Patterns in tile cover were likely the result of CCA either resisting grazing mortality or recolonizing exposed areas after algae were removed. Variation in colonization was ob- served between inshore and offshore reef groups. Urchin density was positively correlated with the structural complexity of the habitats, which was higher on artificial reefs than natural ones, a factor that potentially had important effects on several observed patterns.
    [Show full text]
  • A Blind Abyssal Corambidae (Mollusca, Nudibranchia) from the Norwegian Sea, with a Reevaluation of the Systematics of the Family
    A BLIND ABYSSAL CORAMBIDAE (MOLLUSCA, NUDIBRANCHIA) FROM THE NORWEGIAN SEA, WITH A REEVALUATION OF THE SYSTEMATICS OF THE FAMILY ÁNGEL VALDÉS & PHILIPPE BOUCHET VALDÉS, ÁNGEL & PHILIPPE BOUCHET 1998 03 13. A blind abyssal Corambidae (Mollusca, Nudibranchia) SARSIA from the Norwegian Sea, with a reevaluation of the systematics of the family. – Sarsia 83:15-20. Bergen. ISSN 0036-4827. Echinocorambe brattegardi gen. et sp. nov. is described based on five eyeless specimens collected between 2538 and 3016 m depth in the Norwegian Sea. This new monotypic genus differs from other confamilial taxa in having the dorsum covered with long papillae and a radula formula n.3.1.3.n. The posterior notch in the notum and gill morphology, which have traditionally been used as generic characters in the family Corambidae, are considered to have little or no taxonomical value above species level. Instead of the currently described 11 nominal genera, we recognize as valid only Corambe and Loy, to which is now added Echinocorambe. Loy differs from Corambe in the asym- metrical lobes of the posterior notal notch and the presence of spicules in the notum. All other nominal genera are objective or subjective synonyms of these two. Ángel Valdés, Departamento de Biología de Organismos y Sistemas, Laboratorio de Zoología, Universidad de Oviedo, E-33071 Oviedo, Spain (E-mail: [email protected]). – Philippe Bouchet, Muséum National d’Histoire Naturelle, Laboratoire de Biologie des Invertébrés Marins et Malacologie, 55 Rue de Buffon, F-75005 Paris, France. KEYWORDS: Mollusca; Nudibranchia; Corambidae; new genus and new species; abyssal waters; Norwegian Sea. cal with transverse lamellae.
    [Show full text]
  • Primer Registro De Caprella Scaura Y Caprella Penantis (Crustacea: Peracarida: Amphipoda) En La Laguna Madre, Tamaulipas, México
    Revista Mexicana de Biodiversidad 84: 989-993, 2013 Revista Mexicana de Biodiversidad 84: 989-993, 2013 DOI: 10.7550/rmb.31501 DOI: 10.7550/rmb.31501989 Nota científica Primer registro de Caprella scaura y Caprella penantis (Crustacea: Peracarida: Amphipoda) en la laguna Madre, Tamaulipas, México First record of Caprella scaura and Caprella penantis (Crustacea: Peracarida: Amphipoda) in the Laguna Madre, Tamaulipas, Mexico Gabino A. Rodríguez-Almaraz y Víctor M. Ortega-Vidales Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León. Av. Universidad s/n, Ciudad Universitaria, 66451 San Nicolás de los Garza, Nuevo León, México. [email protected] Resumen. Se registran por primera vez los anfípodos caprélidos Caprella scaura y C. penantis en la laguna Madre de Tamaulipas. Ambas especies son cosmopolitas y con numerosos registros exóticos alrededor del mundo. El registro de C. scaura es también el primero en el suroeste del golfo de México. Este caprélido se recolectó entre mantos del alga verde Ulva lactuca adheridos en rocas de arenisca en la boca de Catán de esta laguna. Mientras que los especímenes de C. penantis se recolectaron entre el pasto marino Halodule wrightii. Palabras clave: Caprellidea, laguna Madre, Tamaulipas. Abstract. The caprellid amphipods Caprella scaura and C. penantis are recorded for first time in the Laguna Madre from Tamaulipas. Both species are cosmopolitan and with exotic numerous records worldwide. The finding of C. scaura is also the first record for the southwestern Gulf of Mexico. This caprellid was collected among green-algae Ulva lactuca that colonized tidal inlets at Laguna Madre. While that specimens of C.
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora)
    Gulf of Mexico Science Volume 34 Article 4 Number 1 Number 1/2 (Combined Issue) 2018 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution Martha Reguero Universidad Nacional Autónoma de México Andrea Raz-Guzmán Universidad Nacional Autónoma de México DOI: 10.18785/goms.3401.04 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Reguero, M. and A. Raz-Guzmán. 2018. Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution. Gulf of Mexico Science 34 (1). Retrieved from https://aquila.usm.edu/goms/vol34/iss1/4 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Reguero and Raz-Guzmán: Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Lagu Gulf of Mexico Science, 2018(1), pp. 32–55 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution MARTHA REGUERO AND ANDREA RAZ-GUZMA´ N Molluscs were collected in Laguna Madre from seagrass beds, macroalgae, and bare substrates with a Renfro beam net and an otter trawl. The species list includes 96 species and 48 families. Six species are dominant (Bittiolum varium, Costoanachis semiplicata, Brachidontes exustus, Crassostrea virginica, Chione cancellata, and Mulinia lateralis) and 25 are commercially important (e.g., Strombus alatus, Busycoarctum coarctatum, Triplofusus giganteus, Anadara transversa, Noetia ponderosa, Brachidontes exustus, Crassostrea virginica, Argopecten irradians, Argopecten gibbus, Chione cancellata, Mercenaria campechiensis, and Rangia flexuosa).
    [Show full text]