<<

A molecular phylogeny of the subtribe Sporobolinae and a classication of the subfamily ()

P M. P1, 5, K R1, 2, Y H A3,  J M. S4

1Smithsonian Institution, Department of Botany, National Museum of Natu ral History, Washington, DC 20013-7012, U.S.A.; email: peterson@si . edu 2M . G. Kholodny Institute of Botany, National Acad emy of Sciences, Kiev 01601, Ukraine; email: kromaschenko@gmail . com 3Instituto Politécnico Nacional, CIIDIR Unidad - COFAA, Durango, C.P. 34220, Mexico; email: yolah54@gmail . com 4Canadian Museum of Nature, Research and Collections, Ottawa, Ontario K1P 6P4, Canada; email: [email protected] 5Author for correspondence; email: peterson@si . edu

Abstract . The classication of the subtribe Sporobolinae containing the following six genera is poorly understood: (ve endemic to North Amer i ca), (11 species en- demic to and ), Psilolemma (one species endemic to Africa), (17 species cen- tered in North Amer i ca), (186 species distributed worldwide), and Thellungia (one species from Africa and Asia). The goal of this study was to reconstruct the evolutionary history of the Sporobolinae using molecular data with increased species sampling. Most species in this sub- tribe have spikelets with a single oret, one- veined (occasionally three- veined) lemmas, a ciliate membrane or line of hairs for a ligule, and fruits with free pericarps (modied caryopses). A phyloge ne tic analy sis was conducted on 161 species (250 samples), of which 134 species were in the Sporobolinae, using nuclear rITS (ribosomal internal transcribed spacer region) 1 and 2 sequences to infer evolutionary relationships. The maximum likelihood phylogram provides moderate support for a paraphyletic Sporobolus that includes Calamovilfa, Crypsis, Spartina, and Thellungia. The subtribe Zoysiinae ( and ) is sister to a highly supported Sporobolinae where the Psilolemma jaegeri−Sporobolus somalensis clade is sister to the remaining species of Sporobolus s.l. Within Sporobolus s.l. there are 15 major clades, of which 12 are strongly supported, two are moderately supported, and one is unsupported. A complete generic classication of the subfamily Chloridoideae is given. Keywords: Calamovilfa, classication, Crypsis, ITS, phylogeny, Psilolemma, Spartina, Spo- robolus, Thellungia

(11 species endemic to Asia and Africa); Spartina I Schreb. (17 species centered in North Amer i ca); and In the most recent classication of the grass Sporobolus (186 species worldwide) (Mobberley, subfamily Chloridoideae, the tribe Benth. 1956; Lorch, 1962; Napper, 1963; Thieret, 1966, includes the incertae sedis Urochondra C.E. 2003; Tan, 1985; Peterson et al., 2003, 2004, 2007, Hubb. and two subtribes, Zoysiinae Benth. and Spo- 2010a; Nightingale et al., 2005; Clayton et al., 2006; robolinae Benth. (Peterson et al., 2007, 2010a). Zoy- Kern, 2012; Saarela, 2012). Pogononeura Napper, a siinae includes a single genus, Zoysia Willd., with 11 monotypic, morphologically distinct genus with two- species native to Australasia (Nightingale et al., 2005; or three- owered spikelets with short- awned lemmas Clayton et al., 2006). They are primarily mat- forming (Clayton & Renvoize, 1986) has also previously been perennials with cylindrical racemes, spikelets that attributed to the Sporobolinae (Peterson et al., 2010a), usually disarticulate below the glumes, lower glumes but recent analyses place it in the (Pe- absent or much reduced, upper glumes laterally com- terson et al., 2014a). The Sporobolinae share most of pressed and coriaceous, and one- to three- nerved hy- the same character trends as for the Zoysieae, such as, aline lemmas with entire or mucronate apices. The spikelets with a single oret, spiciform in orescences subtribe Sporobolinae Benth. consists of four genera: of numerous deciduous racemes disposed along a Calamovilfa (A. Gray) Hack. ex Scribn. & Southw. (5 central axis, lemmas usually rounded and rarely with species endemic to North Amer i ca); Crypsis Aiton apical awns, and glumes often modied and oddly http://dx.doi.org/10.21135/893275341.003 ©2017 by The New York Botanical Garden Bronx, NY 10458-5126 U.S.A. 128 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN [VOL. 118 shaped but differ by having modied caryopses with though the number of species sampled for molecular free pericarps (pericarps free, reluctantly so in Spar- studies has been rather small. In the rst molecu- tina), spikelets oriented abaxially along the axis lar study of the genus, based on nuclear ribosomal (lemma is facing the rachis), lemmas that are similar DNA ITS sequences, Ortiz- Diaz and Culham in texture to the glumes, and paleas that are relatively (2000) presented 42 species of Sporobolus. Several long and about the same length as the lemma (Bran- DNA- based phylogenies pres ent Sporobolus as para- denberg, 2003; Peterson et al., 2004, 2007). Zoysia phyletic with Calamovilfa, Crypsis, and Spartina have a true caryopsis (fused pericarps), spikelets ori- embedded within (Ortiz-Diaz & Culham, 2000; ented adaxially along the axis (lemma facing away Hilu & Alice, 2001; Columbus et al., 2007; from the rachis), lemmas less rm than the glumes, Bouchenak- Khelladi et al., 2008; Peterson et al., and paleas relatively short or very reduced when 2010a). Peterson et al. (2010a) recommended future compared with the lemma (Peterson et al., 2007). expansion of Sporobolus to include all of these Urochondra was shown to have similar characteris- genera, recognizing that only 42 Sporobolus species tics as Zoysia, and additionally, has beaked caryop- (ca. one fth of the species in the genus) have been ses formed from thickened style bases and caryopses included in a single phyloge ne tic study (Ortiz- Diaz with free pericarps (Clayton & Renvoize, 1986; Clay- & Culham, 2000). Peterson et al. (2010a), in their ton et al., 2006; Peterson et al., 2010a). study investigating 246 species of Chloridoideae using Sporobolus is characterized by having single- seven molecular markers, analyzed 15 species of owered spikelets, one- nerved (rarely three- nerved) Sporobolinae. lemmas, fruits with free pericarps or modied cary- Here we pres ent a new phyloge ne tic analy sis of opses, and ligules a ciliate membrane or line of hairs 58% of the species in Sporobolus based on analy sis (Peterson et al., 1995, 1997). Species of Sporobolus of the nuclear internal transcribed spacer regions generally inhabit dry or stony soils, to saline or alka- (ITS1 and ITS2) and we discuss morphological and line sandy soils, to clay loam soils in prairies, savan- anatomical characters supporting relationships. We nahs, and along disturbed roadsides (Clayton & also include an updated classication of the Chlori- Renvoize, 1986; Peterson et al., 1997). Numerous doideae. infrageneric classications of Sporobolus have been proposed over the last century, based primarily on M  M morphology and anatomy. Stapf (1898) rst divided the genus into two sections: Chaetorhachia Stapf and Eus- T    porobolus Stapf. Pilger (1956) divided the latter section The taxon sampling consists of 250 samples rep- into six groups based on life form and characteristics of resenting 161 species of grasses, of which 157 spe- the glumes and panicles. Based on caryopsis morphol- cies are included in subfamily Chloridoideae; these ogy, Bor (1960) divided Sporobolus into ve groups are represented in the following ve tribes (Soreng (Baaijens & Veldkamp, 1991) and Clayton (1965) et al., 2014): Centropodieae (one species), Triraph- treated the (L.) R.Br. complex in ideae (two species), (11 species), Cyn- the tropics and subtropics. Working on the Malesian odonteae (nine species), and Zoysieae (147 species). species, Baaijens and Veldkamp (1991) divided Spo- Our sampling was principally focused on genera robolus into ve sections based on a leaf anatomical that are morphologically similar to Sporobolus, in- survey and overall morphology. More recently, Weak- cluding a large sample of 134 species within the sub- ley and Peterson (1998) recognized the Sporobolus tribe Sporobolinae (Peterson et al., 2010a). The data oridanus complex to include ve species in the south- set for Sporobolus includes 108 of the 186 species eastern United States and Shrestha et al. (2003) recog- currently placed in the genus (Clayton et al., 2006). nized seven clades within the genus, while Denham A complete list of taxa, voucher information, and and Aliscioni (2010) recognized the S. aeneus (Trin.) GenBank numbers is given in the Appendix. Two Kunth complex to include ve species. Recent major species of (Danthonia compressa revisions of Sporobolus include Boechat and Wagner Austin and Rytidosperma penicellatum (Labill.) Con- (1995) for Brazil, Simon and Jacobs (1999) and Simon nor & Edgar), one species from Aristidoideae (Aristida (2005) for , Peterson et al. (2003, 2009) for gypsophila Beetle), and one species of the United States and Canada, and Giraldo- Cañas and ( (Michx.) H.O. Yates, Peterson (2009) for , Ec ua dor, and . phyloge ne tic root) were chosen as outgroups (Peter- Molecular studies have provided new insights son et al., 2010a, 2011, 2012, 2014a, 2014b, 2014c; into the evolutionary history of Sporobolus, even 2015, 2016). 2017] PETERSON ET AL.: SPOROBOLINAE, CHLORIDOIDEAE (POACEAE) 129

DNA  ,  , quences dropped below 0.01 and the potential scale   reduction factor was close to or equal to 1.0. The frac- All procedures were performed in the Laboratory tion of the sampled values discarded as burn in was of Analytical Biology at the Smithsonian Institution. set at 0.25. Posterior probabilities (PP) of 0.95−1.00 DNA isolation, amplication, and sequencing of ITS were considered as strong support. were accomplished following procedures outlined in Peterson et al. (2010a, 2010b, 2014c). The ITS re- R gion included 798 total characters (89.1 sequencing success) and includes complete sequences of inter- A total of 209 ITS sequences are newly reported nal transcribed spacer 1 (ITS1), the 5.8S ribosomal in GenBank (see Appendix), and the proportion of in- RNA gene, and internal transcribed spacer 2 (ITS2). variable sites was 0.2174. Supplemental data from parsimony analy sis indicates 448 parsimony informa- Primers include ITS4 as reverse (5′–3′:TCCTCC- tive characters. GCTTATTGATATGC) and ITS5a as forward (5′–3′: CCTTATCATTTAGAGGAAGGAG) (White et al., The ML tree (Fig. 1) is well resolved with weak sup- 1990; Stanford et al., 2000). port for tribe Zoysieae (BS = 69%, PP = 0.95), strong support for subtribe Zoysiinae (BS = 100, PP = 100) and strong support for subtribe Sporobolinae (BS = 100, P       PP = 100). The Zoysiinae includes a monophyletic Zoy- We used Geneious 5.3.4 (Biomatters Limited, sia (BS = 100, PP = 1.00) that is sister to Urochondra Auckland, New Zealand; Drummond et al., 2011) for setulosa (Trin). C.E. Hubb. The Sporobolinae includes contig assembly of bidirectional sequences, and we a Psilolemma jaegeri (Pilg.) S.M. Phillips−Sporobolus used Muscle (Eu ro pean Molecular Biology Labora- somalensis Chiov. clade (BS = 65, PP = 0.90) that is tory, Heidelberg, Germany; Edgar, 2004) to align sister to a moderately supported paraphyletic Spo- consensus sequences and adjust the nal alignment. robolus clade (BS = 71, PP = 100) that includes the re- We conducted maximum likelihood (ML) and Bayes- maining species of Sporobolus, as well as Calamovilfa, ian analyses to infer overall phylogeny. We identied Crypsis, Spartina, and Thellungia. models of molecular evolution for the nrDNA region Within Sporobolus s.l. there are 12 strongly using jModeltest (SoftNews Net SRL, Bucharest, Ro- supported clades (Fig. 1B−J, M−O; BS = 91−100, mania; Posada, 2008). The Nucleotide substitution PP = 1.00), two moderately supported clades (Fig. 1A, model selected by Akaike’s Information Criterion, as K; BS = 82−87, PP = 1.00), and a single unsupported implemented in jModelTest v.0.1.1, was GTR + I + G. clade (Fig. 1L). Species in clades A−O are listed in The ML analy sis was conducted with GARLI 0.951 Table 1. Within clade O there are three strongly sup- (University of , Austin, TX; Zwickl, 2006). ported subclades (BS = 96−100, PP = 1.00) that in- The maximum likelihood bootstrap analy sis was clude: (1) Spartina alterni orus Loisel., S. anglica performed with 1000 replicates, with 10 random ad- C.E. Hubb., S. foliosa Trin., S. maritima (Curtis) Fer- dition sequences per replicate. The output le con- nald, and S. ×townsendii H. Groves & J. Groves; (2) taining the ML trees found for each bootstrap S. bakeri Merr., S. ×caespitosa A.A. Eaton, S. ciliata dataset was read into PAUP* 4.0b10 (Sinauer Asso- Brongn., S. cynosuroides (L.) Roth., S. densi ora ciates, Sunderland, MA; Swofford, 2000), where the Brongn., S. gracilis Trin., S. montevidenis Arechav., majority- rule consensus tree was constructed. Boot- and S. patens (Aiton) Muhl.; and (3) S. spartinae strap (BS) values of 90−100% were interpreted as (Trin) Merr. & Hitchc. strong support, 70−89% as moderate, and 50−69% Species of Sporobolus not recovered in clades as weak. A−O (Fig. 1) include a poorly supported Sporobolus Bayesian posterior probabilities (PP) were esti- acinifolius Stapf−S. albicans Nees−S. tenellus mated using the parallel version of MrBayes v3.1.2 (Spreng.) Kunth clade (BS < 50, PP = 0.95) that is (PubMed, NIH, Bethesda, MD; Huelsenbeck & Ron- sister to all remaining species in Sporobolus s.l; Spo- quist, 2001; Ronquist & Huelsenbeck, 2003) where the robolus oxylepsis Mez−S. robustus Kunth pair are run of eight Markov chain Monte Carlo iterations was sister to two accessions of S. consimilis Fresen. split between an equal number of pro cessors. Bayes- (BS = 98, PP = 1.00), and together these are sister to ian analy sis was initiated with random starting trees two accessions of Thellungia advena Stapf (BS = 100, and was initially run for four million generations, PP = 1.00) in an unsupported clade; Sporobolus tour- sampling once per 100 generations. The analy sis was neuxia Coss. is sister to E−O clades; Sporobolus phle- run until the value of standard deviation of split se- oides Hack. is sister to the H clade; three accessions 130 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN [VOL. 118

F  A–D. Maximum likelihood tree inferred from nuclear ribosomal ITS sequence data. Numbers above branches are bootstrap values; numbers below branches are posterior probabilities from Bayesian analysis; color indi- cates native distribution (see legend); clades outlined in dashed lines labeled A−O are discussed in the text; scale bar = 1% sequence divergence. (continued) 2017] PETERSON ET AL.: SPOROBOLINAE, CHLORIDOIDEAE (POACEAE) 131

F  B. (continued) 132 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN [VOL. 118

F  C. (continued) 2017] PETERSON ET AL.: SPOROBOLINAE, CHLORIDOIDEAE (POACEAE) 133

F  D. 134 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN [VOL. 118

T . The major clades and incertae sedis within Sporobolus based on nuclear internal transcribed spacer DNA sequence analy sis.1,2

A: Sporobolus africanus (Poir.) Robyns & Tournay, S. atrovirens (Kunth) Kunth, S. berteroanus (Trin.) Hitchc. & Chase, S. blakei De Nardi ex B.K. Simon, S. creber De Nardi, S. diandrus (Retz.) P. Beauv., S. farinosus Hosok., S. fertilis (Steud.) Clayton, S. festivus Hochst. ex A. Rich., S. indicus (L.) R.Br., S. inrmus Mez, S. jacquemontii Kunth, S. laxus B.K. Simon, S. molleri Hack., S. natalensis (Steud.) T. Durand & Schinz, S. myrianthus Benth., S. pectinellus Mez, S. pseudairoides Parodi, S. pyramidalis . Beauv., S. sessilis B.K. Simon, S. stapanus Gand., S. tenuissimus (Mart. ex Schrank) Kuntze, S. trichodes Hitchc. B: Sporobolus brockmanii Stapf, S. connis (Steud.) Chiov., S. diffusus Clayton, S. mbriatus, S. green- wayi Napper, S. montanus (Hook. f.) Engl., S. nervosus Hochst., S. pellucidus Hochst., S. phyllotrichus Hochst., S. smutzii Stent C: Crypsis aculeatus (L.) Aiton, C. alopecuroides (Piller & Mitterp.) Schrad., C. schoenoides (L.) Lam., S. helvolus (Trin.) T. Durand & Schinz, S. humilis J. Presl, Sporobolus mitchellii (Trin.) C.E. Hubb. ex S.T. Blake, S. ruspolianus Chiov. D: Sporobolus acuminatus (Trin.) Hack., S. aeneus (Trin.) Kunth, S. apiculatus Boechat & Longhi- Wagner, S. bogotensis Swallen & García- Barr., S. dinklagei Mez, S. eylesii Stent & J.M. Rattray, S. junceus (P. Beauv.) Kunth, S. lasiophyllus Pilg., S. linearifolius Nicora, S. panicoides A. Rich., S. pilifer (Trin.) Kunth, S. purpurascens (Sw.) Ham., S. sanguineus Rendle, S. stolzii Mez, S. subglobosus Stapf ex C.E. Hubb. E: Sporobolus pungens (Schreb.) Kunth, S. virginicus (L.) Kunth F: Sporobolus kentrophyllus (K. Schum. ex Engl.) Clayton, S. subulatus Hack., S. verdcourtii Napper G: Sporobolus microprotus Stapf, S. scabri orus Stapf ex Massey, S. spicatus (Vahl) Kunth, S. uniglumis Stent & J.M. Rattray H: Sporobolus actinocladus (F. Muell.) F. Muell., S. australasicus Domin, S. caroli Mez, S. nitens Stent I: Sporobolus arabicus Boiss., S. centrifugus (Trin.) Nees, S. coahuilensis Valdés- Reyna, S. contractus Hitchc., S. cordofanus (Hochst. ex Steud.) Coss., S. coromandelianus (Retz.) Kunth, S. domingensis (Trin.) Kunth, S. ioclados (Nees ex Trin.) Nees, S. ludwigii Hochst., S. marginatus Hochst. ex A. Rich., S. pyramidatus, S. scabridus S.T. Blake, S. tenacissimus (L. f.) P. Beauv. J: (Torr.) Torr., S. spiciformis Swallen, S. splendens Swallen, S. wrightii Munro ex Scribn. K: (Torr.) A. Gray, S. exuosus (Thurb. ex Vasey) Rydb., S. giganteus Nash, S. nealleyi Vasey, S. texanus Vasey L: Sporobolus clandestinus (Biehler) Hitchc., S. compositus (Poir.) Merr., S. neglectus Nash, S. vagini o- rus (Torr. ex A. Gray) Alph. Wood M: K.E. Rogers, C. brevipilis (Torr.) Scribn., C. gigantea (Nutt.) Scribn. & Merr., C. longifolia (Hook) Hack. ex Scribn. N: (A. Gray) A. Gray, S. pinetorum Weakley & P.M. Peterson, S. silveanus Swallen, S. teretifolius R.M. Harper O: Spartina alterni ora Loisel., S. anglica C.E. Hubb., S. bakeri Merr., S. caespitosa A.A. Eaton, S. ciliata Brongn., S. cynosuroides (L.) Roth, S. densi ora Brongn., S. foliosa Trin., S. gracilis Trin., S. martima (Curtis) Fernald, S. montevidensis Arechav., S. patens (Aiton) Muhl., S. pectinata Link, S. spartinae (Trin.) Merr. ex Hitchc., S. ×townsendii H. Groves & J. Groves Incertae sedis: S. acinifolius Stapf, S. albicans Nees, S. buckleyi Vasey, S. consimilis Fresen., S. oxylepsis Mez, S. palmeri Scribn., S. phleoides Hack., S. rigens (Trin.) Desv., S. robustus Kunth, S. tenellus (Spreng.) Kunth, S. tourneuxii Coss., Thellungia advena Stapf 2017] PETERSON ET AL.: SPOROBOLINAE, CHLORIDOIDEAE (POACEAE) 135 of Sporobolus buckleyi Vasey and four accessions of The Australian genus, Thellungia, was initially de- S. palmeri Scribn. (BS = 52, PP = 0.69) are sister to scribed by Stapf to include a single species, T. ad- clades J−O and together form a moderately supported vena. Phillips (1982) transferred this species into North American clade (BS = 85, PP = 1.00); and Spo- (E. advena), and more recently, based on robolus rigens (Trin.) E. Desv. is sister to a clade com- plastid rps16 and nuclear waxy sequences, Ingram and prising the L−O clades (BS = 99, PP = 1.00). Doyle (2004, 2007) have shown it to be embedded within Sporobolus. Thellungia has unique features D such as multi owered (one to ve), cleistogamous spikelets with long- curved rachillas (each oret read- S   S , ily disarticulates with a per sis tent rachilla joint), one-   veined (rarely three- veined) lemmas, and caryopses We treat as incertae sedis those taxa that are not with free pericarps (Lazarides, 1997; Palmer et al., part of larger well- supported clades (i.e., with boot- 2005). All of these characteristics, with the exception strap support < 50 and Bayesian posterior probabili- of multi owered spikelets, are common in species of ties < 0.70; see Table 1). Two species, Psilolemma Sporobolus. Thellungia is part of the Sporobolus lin- jaegeri and Sporobolus somalensis, fall outside the eage in our tree and is part of a strongly supported main Sporobolus clade in the ITS tree. Sporobolus so- clade comprising clades B, C, and D plus a Sporobolus malensis is an enigmatic species known only from consimilis– S. oxylepsis– S. robustus clade. and extending into the Ethiopian Ogaden Sporobolus buckleyi from the southwestern U.S.A. (Phillips, 1995). Psilolemma jaegeri and S. somalen- and Mexico and S. palmeri, a Mexican endemic sis are both mat- forming, stoloniferous perennials, known from Durango and San Luis Potosi, form a although the latter species has open, subdichoto- weakly supported clade on the ITS tree. Morphologi- mously branched panicles with numerous one- cally, S. buckleyi and S. palmeri share the densely owered spikelets, while P. jaegeri has narrow and caespitose, perennial habit and open, diffuse panicles spike- like panicles with 4- to 14- owered spikelets with primary branches naked below on lower quarter (Phillips, 1974, 1995; Clayton et al., 2006). Additional to half (Espejo Serna et al., 2000; Peterson et al., study of S. somalensis along with P. jaegeri will be 2004). Sporobolus palmeri differs from S. buckleyi in necessary to determine their relationship to other having shorter culms (13−50 versus 40−100 cm), lon- members of Sporobolus s.l. Psilolemma jaegeri is ger spikelets (3.2−4.4 versus 1.2−2 mm), longer anthers somewhat unique in that it has three- veined lemmas, (1.6−2.4 versus 0.2−0.4 mm), and longer caryopses but there are other species of Sporobolus— S. acinifo- (1.6−2.1 versus 0.6−1 mm). lius, S. albicans, S. brosus Cope (not sampled), S. Our study has provided new insights into the tax- palmeri, S. subtilis Kunth (not sampled), and S. tenel- onomy of S. palmeri. There is much confusion lus Kunth— that share this trait (Phillips, 1974; Cope, between S. palmeri and S. airoides (Torr.) Torr., a 1999). With the exception of S. palmeri, from Mexico, morphologically similar but more widely distributed these are all African taxa. Three of these African species occurring throughout the U.S.A. and Mexico taxa, which have not previously been sampled in mo- and introduced in Arabia (Peterson et al., 2003, 2004; lecular studies, form a poorly supported clade (Spo- Clayton et al., 2006). Sporobolus palmeri was col- robolus acinifolius−S. albicans−S. tenellus), sister to lected by the rst two authors on a 2012 trip to north- the remaining species of Sporobolus (Fig. 1, BS < 50, eastern Mexico, where it was found growing with S. PP = 0.95). These southern African species are mat- airoides. In a subsequent survey of material in the US forming, rhizomatous perennials with cartilaginous National Herbarium, we found that only the type col- to subcartilaginous leaf blade margins, subdichoto- lection of S. palmeri made in late 1890s and one other mously branched panicles (narrow in S. albicans), and specimen made in the early 1900s were correctly de- small spikelets (1−2.5 mm long) with three- veined termined, while the 10 other specimens included in lemmas (Gibbs Russell et al., 1991; Cope, 1999). Spo- the S. palmeri folder were misidentied. Supercially, robolus brosus, S. salsus Mez, and S. subtilis are S. palmeri resembles S. airoides but differs by also morphologically similar to the three species in having shorter culms [13−50 versus 35−120 (−150) our study (Cope, 1999). Three- veined lemmas may be cm], smaller leaf blades [(3−) 5–20 cm × 0.6−1.4 mm derived in de pen dently in Psilolemma jaegeri, the S. versus (3−) 10−45 (−60) cm × (1−) 2−5 (− 6) mm], acinifolius−S. albicans−S. tenellus lineage, and in S. smaller panicles (7−20 × 5–20 versus 15−45 × 15−25 palmeri (which is nested deep in Sporobolus), or this cm), longer pedicels (2.5−10 versus 0.5−2 mm), longer may be a plesiomorphic character retained in these spikelets (3.2−4.4 versus 1.3−2.8 mm), longer lem- lineages. mas (3.2−4.3 versus 1.2−2.5 mm) that are 3- veined 136 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN [VOL. 118 versus 1- veined, longer paleas (3.1−4.2 versus 1.1−2.4 caryopses; and phosphoenolpyruvate carboxykinase mm), longer anthers (1.6−2.5 versus 1.1−1.8 mm), (PCK) leaf metabolism (Hattersley, 1987; Baaijens & and longer modied caryopses (1.6−2.1 versus 1−1.4 Veldkamp, 1991). This lineage is widely distributed mm) (Peterson et al., 2003, 2004). In addition to being in North Amer i ca, South Amer i ca, Africa– Arabia, confused taxonomically, S. airoides and S. palmeri Australia–Pacic, and Southeast Asia (Fig. 1). have been considered to be closely related. Both Clade B.—Our analyses identify a strongly sup- species were recovered in the same strongly sup- ported clade including S. mbriatus and allies. Spo- ported clade dened in a previous ITS analy sis robolus mbriatus (Trin.) Nees was included in (Ortiz- Diaz & Culham, 2000), in contrast to the cur- group 4B by Pilger (1956) and more recently in S. rent study in which S. palmeri is excluded from the sect. Fimbriatae (Baaijens & Veldkamp, 1991), as S. airoides clade (Fig. 1, clade J). The specimen in treated here ( Table 1). A S. mbriatus lineage was the earlier analy sis may have been misidentied. Un- also found by Ortiz- Diaz and Culham (2000), which fortunately voucher specimens are not listed in that also included S. pyramidatus. Ortiz- Diaz and Cul- study, and the sequences are not available in Gen- ham (2000) noted that the morphology of S. pyrami- Bank, thus it is not pos si ble to check the original datus does not correspond to that of other taxa determination or to compare the earlier ITS se- included in S. sect. Fimbriatae. Their result is likely quence with our new ITS sequences for S. airoides an error, as the multiple samples of S. pyramidatus and S. palmeri. Our analyses conrm that S. palmeri sampled here are clearly part of clade I in our tree. and S. airoides are not conspecic or even sister The S. mbriatus clade is almost entirely African taxa, as they fall in dif fer ent parts of our tree. Most with a single species, S. maderaspatanus Bor, found likely these two species have originated from a sin- in and Ceylon (Lazarides, 1994). Baaijens and gle ITS haplotype and this is an example of rapid Veldkamp (1991) described this section as having in- radiation, since a Bayesian strict consensus tree (not travaginal branched culms, upper glumes slightly shown) would collapse at the base of the North Amer- shorter to as long as the spikelets, and PCK leaf me- ican clade where clades J and K and S. palmeri and tabolism. Baaijens and Veldkamp (1991) also included S. buckleyi reside. An illustration of S. palmeri is S. agrostoides Chiov, S. brockmannii Stapf, and S. ma- provided to familiarize the reader and other agrostol- cranthelus Chiov. as members of S. sect Fimbriatae. ogists with the general morphology of Sporobolus Apparently, Sporobolus diffusus Clayton is the only (Fig. 2). annual member of the S. mbriatus complex. Tetrago- Clade A.—We nd strong support for a lineage cor- nal to ellipsoid caryopses and short upper glumes one responding with the S. indicus complex, as recognized half to four fths as long as the lemmas also character- by previous authors (Pilger, 1956; Baaijens & Veld- ize this lineage. kamp, 1991). The Sporobolus indicus complex, treated Clade C.—We have included three widespread spe- here as S. sect. Sporobolus, consists of at least 23 cies of Crypsis in our study and these form a strongly species, as conrmed in our phylogram (see Table 1). supported clade, and are part of a broader, well- Sporobolus farinosus is sister to the remaining spe- supported clade. Sporobolus helvolus (Trin.) T. Du- cies in this lineage. In the next deepest split, S. rand & Schinz, S. mitchellii (Trin.) C.E. Hubb. ex festivus−S. pectinellus, S. inrmus, and S. stapanus S.T. Blake, and S. humilis J. Presl form a strongly sup- form a grade, with S. stapanus sister to the remain- ported clade that is sister to Crypsis, and together ing species. Several smaller clades of two to several this lineage is sister to three accessions of S. ruspo- species are pres ent in this strongly supported clade. lianus Chiov. Ortiz- Diaz and Culham (2000) recov- Clayton (1965) recognized S. pellucidis Hochst. as oc- ered a clade with 100% jacknife support that included curring in the S. indicus complex. but it clearly has Crypsis alopecuroides (Piller & Mitterp.) Schrad., S. afnities to S. sect Fimbriatae Veldkamp (clade B). helvolus, S. mitchellii, and S. tremulus (Willd.) Kunth. Morphological characteristics that support recog- The later species is morpholgically very similar to S. nition of this clade include: long- lived annuals to virginicus (L.) Kunth but differs by having shorter perennials without stolons or cataphylls; conspicu- lower glumes (Lazarides, 1994). Characters that sup- ously keeled and never pectinate leaf blades; densely port this clade include: geniculate annuals or peren- to moderately contracted, occasionally rather open nials with wiry culms, panicles short, < 12 cm long and diffuse, panicles; solitary branches along the that are spike- like to subspiciform (ovate with stif y lower culm nodes; very short lower glumes and lon- spreading branches in S. ruspolianus), one- owered ger upper glumes, the latter usually shorter than the spikelets with glumes that are usually shorter than the lemma; ellipsoid to oblong (angular in cross- section) lemma, and one- to three- veined lemmas. F  . Sporobolus palmeri Scribn. [P.M. Peterson 24862 & K. Romaschenko (US)]. A. Habit. B. Sheath, ligule, and blade. C. Spikelet with stigmas. D. Lower glume. E. Upper glume. F. Spikelet with stamens. G. Lemma. H. Palea. I. Palea enclosing lodicules and pistil. J. Palea enclosing lodicules, pistil, and stamens. K. Lodicules. L. Caryopsis, dorsal view. M. Caryopsis, ventral view. N. Caryopsis, side view. O. Caryopsis, cross section. Drawn by Alice Tangerini. 138 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN [VOL. 118

Clade D.—Based on our phylogram we recognize panicles, fascicled to solitary branches, upper glumes the S. junceus (P. Beauv.) Kunth complex (Spo- as long as the spikelets, and C4 NAD- ME (nicotin- robolus sect. Triachyrum) to include 15 species. This amide adenine dinucleotide cofactor malic enzyme) leaf lineage was previously identied in the ITS analy sis metabolism, Baaijens and Veldkamp (1991) recognized of Ortiz- Diaz and Culham (2000), who sampled the clade (Sporobolus sect. Vir- seven species, three of which are also sampled here ginicae) to include: S. consimilis, S. humilis, S. pun- (S. purpurascens (Sw.) Ham., S. lasiophyllus Pilg., gens (Schreb.) Kunth, and S. virginicus. Pilger (1956) S. sanguineus Rendle). Palisot de Beauvois (1812) recognized these same species in his group two, along rst recognized the distinctive features of Sporobolus with S. compositus (Poir.) Merr., S. spicatus, and S. junceus by describing a new genus, Heleochloa P. rigens, which we nd aligned in other lineages or in- Beauv. Later, Triachyrum Hochst. ex A. Braun was certae sedis based on their positions in our tree. Ortiz- recognized to emphasize species that have panicles Diaz and Culham (2000) identied S. virginicus as a with ve or more whorled primary branches and cary- distinct lineage, but they did not sample other mem- opses that are strongly compressed (Braun, 1841). bers of the lineage. In our study S. pungens and S. vir- Pilger (1956) included ve species of the S. junceus ginicus exclusively form a clade. complex in his group 3A. Baaijens and Veldkamp Clade F.—This strongly supported clade (BS = 100, (1991) included in this group S. pilifer (Trin.) Kunth, PP = 1.00), which has not previously been recovered a species we surveyed, along with S. amaliae Veld- in molecular studies, consists of two accessions of S. kamp, S. harmandii Henrard, S. novoguineensis kentrophyllus (K. Schum. ex Engl.) Clayton that are Baaijens, and S. sciadocladus Ohwi. The characteris- sister to S. subulatus Hack.−S. verdcourtii Napper. tics that unite the S. junceus complex are: caespitose Clayton (1974) placed S. verdcourtii as a synonym of habit, either annual or perennial, leaf blades that are S. kentrophyllus, but we retain this as a separate spe- often heteromorphic (e.g., blades at often with cies since our sample forms a strongly supported clade pectinate margins and cauline blades involute with (BS = 100, PP = 1.00) with S. subulatus and not with margins usually smooth), panicles that have whorled other accessions of S. kentrophyllus. These three Af- primary branches, upper glumes that are as long or rican species are characterized in having the peren- longer than the oret, and caryopses that are spheri- nial habit with caespitose often tussocky culms, these cal or laterally attened. Weakley and Peterson (1998) often connected by stolons, culms 15−80 cm tall, suggested that S. junceus and S. purpurascens may be whorled primary panicle branches that are bare on sibling species. This hypothesis is supported in part lower quarter to half; lower glumes one third to three by our tree, in which the North American samples quarters as long as the spikelet; upper glumes two of S. purpurascens and both samples of S. junceus thirds to as long as the spikelet; and ellipsoid caryop- are sister taxa. Clade D also includes a subclade we ses 0.8−2 mm long. call the southern South American S. aeneus (Trin.) Clade G.—This strongly supported clade (BS = 100, Kunth complex, a group of some 14 traditionally rec- PP = 1.00), which has not previously been recovered ognized species that were recently revised to include in molecular studies, consists of four African species. only ve species (Denham & Aliscioni, 2010). We Three accessions of the primarily mat- forming, tufted sampled three taxa that have been placed in this group, perennial with pungent leaf blades, S. spicatus, form S. aeneus, S. acuminatus (Trin.) Hack. (= S. aeneus a weakly supported clade (BS = 64, PP = 0.61) that is var. aeneus in Denham & Aliscioni, 2010), and S. lin- sister to a strongly supported S. microprotus Stapf−S. earifolius Nicora. These three species are sister to an scabri orus Stapf ex Massey−S. uniglumis Stent & accession of S. purpuracens collected in Ec ua dor, to- J.M. Rattray clade (BS = 100, PP = 1.00) consisting gether forming a strongly supported clade (BS = 99, of three small, caespitose annuals. Clayton (1974) PP = 1.00). It is in ter est ing that the accession of S. pur- placed S. scabri orus as a synonym of S. micropro- puracens from Ec ua dor does not align with the two tus, but our ITS sequences are not identical and there other accessions of S. purpuracens, both collected in seem to be some morphological characters that sepa- Texas. We see no major morphological differences be- rate these species. Sporobolus scabri orus has sca- tween these three accessions of S. purpurascens other brous to minutely pubescent lemmas and the than that the North American are taller and have caryopses are obovate whereas most individuals of S. longer leaf blades. microprotus have glabrous or smooth lemmas and Clade E.—This lineage is recovered with strong spherical to subglobose caryopses (PMP, pers. ob- support (BS = 100, PP = 1.00) and corresponds to serv.). Morphological characteristics that support Sporobolus sect. Virginicae Veldkamp. Based on recognition of clade G include caespitose annuals or possessing stolons, contracted and densely spikeleted perennials; leaf blades with pectinate- ciliate margins 2017] PETERSON ET AL.: SPOROBOLINAE, CHLORIDOIDEAE (POACEAE) 139 near the base; panicles with whorled primary branches, datus and S. coromandelianus (Retz.) Kunth, and the especially on the lower nodes, the primary branches narrowly distributed S. coahuilensis Valdés- Reyna bare below; lower glumes that are tiny, ovate to oblong and S. contractus Hitchc. Species delimitation among scales less than one third as long as the spikelet, the these four morphologically similar entities needs clar- scales often suppressed or lacking; upper glumes two ication, requiring a worldwide approach. Likewise, thirds to as long as the spikelet; and caryopses 0.7−1.1 the two accessions of S. cordofanus and of S. margin- mm long that are elliptic, obovate to spherical or sub- atus are found in dif fer ent, moderate to strongly sup- globose, and usually laterally attened. ported subclades. This could be the result of multiple Clade H.—Three endemic species from Australia— gene copies of ITS, multiple origins of these taxa, or S. australasicus Domin, S. caroli Mez, and S. scabri- there could have been a mishandling or misidenti- dus S.T. Blake— form a moderately supported clade cation of our samples in the laboratory. Baaijens and (BS = 72, PP = 0.98) and are sister to the southern Veldkamp (1991) had tentatively included S. coroman- African S. nitens Stent. Together, these four species delianus in their S. sect Triachyrum (S. junceous form a strongly supported (BS = 99, PP = 1.00) complex) but noted that it differed by numerous ana- clade that has not been previously recovered in mo- tomical characters from other members. Whorled pri- lecular studies. There are another four endemic mary panicle branches apparently have arisen Australian species, S. contiguus S.T. Blake, S. len- in de pen dently at least two times within Sporobolus ticularis S.T. Blake, S. partimpatens R. Mills ex since this character state is also found in the S. jun- B.K. Simon, and S. pulchellus R. Br., that probably ceus complex (clade D) and the F−G−H−I clade, the belong in this group but were not included in our latter with poor support (BS < 50, PP = 0.51). analy sis (Simon & Jacobs, 1999; Simon, 2005). The Clade J.—This clade was rst recovered by Ortiz- following shared morphological features support Diaz and Culham (2000) and is found with strong recognition of Clade H: caespitose annuals, occa- support in our ITS tree. We refer to this as the Spo- sionally biennial or perennial, then with short rhi- robolus airoides complex, which consists of four caes- zomes and stolons; leaf blade margins smooth or pitose perennials (S. airoides, S. spiciformis Swallen, pectinate- ciliate; panicles with whorled primary S. splendens Swallen, S. wrightii Munro ex Scribn.) branches, especially on the lower nodes, primary with spiciform (S. spiciformis Swallen) to pyramidal branches bare on lower quarter to half; lower glumes panicles and ascending or spreading primary one to two thirds as long as the spikelet; upper branches, short spikelets 1.3−2.8 mm long, and lower glumes as long as the spikelet; and caryopses 0.6−1.5 glumes about half as long as the lemmas. All four spe- mm long, elliptic to oblong, often subterete, some- cies occur in alkaline soils and quite often are con- times quadrangular or trigonous. spic u ous members of the community on xeric Clade I.—We refer to this lineage as the S. pyrami- ats and playas. Polyploid races as high as 14x datus (Lam.) Hitchc. complex only because this spe- (2n = 128, x = 9) have been found in Sporobolus ai- cies is the most wide- ranging member in the Western roides (Stebbins, 1985; Peterson et al., 2003). Hemi sphere. All species in this complex share the fol- Clade K.—The Sporobolus cryptandrus (Torr.) A. lowing morphological characteristics: caespitose an- Gray complex, a group of ve species (S. cryptandrus, nuals or rhizomatous perennials; leaf blade margins S. exuosus (Thurb. ex Vasey) Rydb., S. giganteus smooth or pectinate- ciliate, often cartilaginous, some- Nash, S. nealleyi Vasey, S. texanus Vasey) is moder- times bearing stiff hairs; panicles with whorled pri- ately supported as a clade (BS = 87, PP = 1.00). Ortiz- mary branches, especially on the lower nodes, primary Diaz and Culham (2000) recovered this clade in their branches bare below; lower glumes one fth to nearly ITS analy sis, which included four of the ve species as long as the spikelet; upper glumes about as long as sampled here plus S. contractus. In our analy sis, S. the spikelet, rarely longer; caryopses ellipsoid to ob- contractus is part of clade I. The ve species in the ovoid, 0.6−1 mm long. Species in this clade are widely S. cryptandrus complex are all located in the south- distributed from Africa, North and South Amer i ca, western U.S.A./Mexico, and share the following and Australia, although the deepest split, a strongly morphological features: lower branches of the pani- supported clade (BS = 89, PP = 1.00) containing S. cles are usually included in the uppermost culm centrifugus (Trin.) Nees, S. cordofanus (Hochst. ex sheath, lower glumes that are one third to one half Steud.) Coss., and S. marginatus Hochst. ex A. Rich., as long as the lemma, upper glumes about as long or contains only indigenous African species probably in- longer than the lemma, and ellipsoid to obovoid cary- dicating African origins for the S. pyramidatus com- opses. Species in this complex tend to occur in salt- plex. There is strikingly little morphological and desert scrub and pinyon- juniper woodlands in slightly ge ne tic variation among the wide ranging S. pyrami- saline environments (Peterson et al., 2003). 140 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN [VOL. 118

Clade L.—Pilger (1956) delineated this as group marily by short rhizomes and ligules to 0.7 mm long ve in his subgeneric treatment of Sporobolus and and sect. Interior Thieret, including C. gigantea and Riggins (1969, 1977) investigated most of the mem- C. longifolia, distinguished by elongate rhizomes bers of clade L in a study of the annual cleistoga- and longer ligules (0.7–2.5 mm). Our analy sis does mous species and a biosystematic study of the not support this sectional classication. In our tree, Sporobolus asper (Michx.) Kunth [= S. compositus] C. brevilipis, C. arcuata, and C. longifolia are suc- complex. Our results support the derivation of Spo- cessive sister groups (all strongly supported) of C. robolus clandestinus (Biehler) Hitchc., S. composi- gigantea (C. curtisii was not sampled). tus, S. neglectus Nash, and S. vagini orus (Torr. ex Clade N.—This clade consists of four species (S. A. Gray) Alph. Wood from a common ancestor. In heterolepis (A. Gray) A. Gray, S. pinetorum Weakley our tree one individual of S. clandestinus (Waterfall & P.M. Peterson, S. silveanus Swallen, and S. tereti- 5881) does not align with three other samples of S. foliius R.M. Harper); three of these were previously clandestinus; rather, this sample and S. compositus studied and attributed to the Sporobolus oridanus form a clade that is the unsupported sister of the rest complex, a group found in pine savannas and seeps of of the S. asper complex in the ITS tree. This could the coastal plain in southeastern U.S.A. (Weakley & indicate hybridization with a member of the highly Peterson, 1998). Clades M and N are depicted as variable S. compositus complex (Peterson et al., 2003, strongly supported sister clades in our tree (BS = 97, 2009), multiple origins of this taxon, or simply the oc- PP = 1.00), consistent with earlier results (Hilu & Al- currence of multiple copies of ITS since S. apser is a ice, 2001; Peterson et al., 2010a). It is not surprising known hexaploid (Riggins, 1977). Impor tant char- that members of the S. oridanus complex are closely acters in this lineage include panicles included in related to species of Calamovilfa since herbarium the uppermost sheath with cleistogamous spikelets specimens of these two groups are often mistaken for and laterally attened caryopses. Ortiz- Diaz and one another (Weakley & Peterson, 1998). Sporobolus Culham (2000) sampled only S. asper from this heterolepis (A. Gray) A. Gray, a species distributed in complex, which was placed in a clade with Calamov- north- central U.S.A., has been considered to be a close ilfa, in contrast with our results. relative of the complex (Pilger, 1956; Weakley & Pe- Clade M.—This is the strongly supported Calamov- terson, 1998). Weakley and Peterson (1998) hypoth- ilfa lineage, congruent with the multiple molecular esized a close relationship between S. heterolepis and studies that have found Calamovilfa to be nested S. silveanus, which is supported by our data. Spo- within Sporobolus (Ortiz- Diaz & Culham, 2000; robolus interruptus Vasey, an Arizonian endemic, Hilu & Alice, 2001; Columbus et al., 2007; Peterson has also been considered to be close to this lineage, et al., 2010a). Based on caryopsis, embryo, lodicule, and possibly a sister to S. heterolepis (Weakley & leaf epidermal, and anatomical characteristics, Peterson, 1998). Members of the S. oridanus complex Reeder and Ellington (1960) pointed out the simi- share the following morphological features: the peren- larities of Calamovilfa with Sporobolus. Gray (1848) nial caespitose habit, tall culms [(0.2−)0.25−2(−2.5) originally recognized Calamovilfa as a section of m], shiny and indurated basal sheaths or dull and - Calamagrostis, and later Hackel (1890) raised it to ge- brous sheaths, open to somewhat contracted panicles neric rank. Traditionally, agrostologists have empha- that are generally longer than wide with 1−2(−3) pri- sized the hairy callus to circumscribe the species of mary branches at the lower nodes, long purplish or Calamovilfa. Reeder and Ellington (1960: 76) con- plumbeous spikelets [3−7(−7.2)] mm long that are pur- cluded, “while such hairs are lacking among species plish or plumbeous, spikelets with a glabrous callus of Sporobolus [it] is apparently a matter of relatively and paleas, and caryopses that fall free from the minor taxonomic importance.” The occurrence of lemma and palea at maturity. callus hairs one fourth to seven eighths as long as Clade O.—This is the strongly supported Spartina the lemma and the disarticulation of the entire lineage. Hubbard (1947) and Clayton and Renvoize spikelet with intact caryopses are two synapomor- (1986: 245) suggested that Spartina, “lacks close rel- phic characters that support recognition of clade M atives,” and based on panicles with spikes (multiple [C. arcuata K.E. Rogers, C. brevipilis (Torr.) Hack. branches) that bear two rows on two sides of a some- ex Scribn. & Southw., C. gigantea (Nutt.) Scribn. & what attened, triangular rachis (that supercially ap- Merr., and C. longifolia (Hook.) Hack. ex Scribn. pears to be one- sided or pectinate) arrangement of & Southw.]. the spikelets, included the genus in the Cynodonteae Thieret (1966, 2003) recognized two sections: sect. (Mobberley, 1956). Molecular studies have since Calamovilfa, including C. arcuata, C. curtissii rmly placed Spartina within the Sporobolinae, (Vasey) Scribn., and C. brevipilis, distinguished pri- nested within Sporobolus (Hilu & Alice, 2001; Co- 2017] PETERSON ET AL.: SPOROBOLINAE, CHLORIDOIDEAE (POACEAE) 141 lumbus et al., 2007; Peterson et al., 2010a), as re- were identied, neither of which was congruent with ected in recent classications (Peterson et al., 2004, the clades identied in our ITS analy sis. Multiple cop- 2007). These earlier analyses, which all had sparse ies of waxy representing divergent lineages were sampling of Spartina, Sporobolus and relatives, vari- found in S. alterni ora and S. foliosa, and the hexa- ously placed Spartina in a strongly supported clade ploid lineage was not found to be monophyletic; these with Calamovilfa plus S. heterolepis (Hilu & Al- data support an allopolyploid origin for the hexaploid ice, 2001; matK), Calamovilfa (Columbus et al., clade. Multiple divergent copies were also found in 2007; combined ITS and trnL- F), and Calamovilfa other Spartina species, and the phyloge ne tic tree longifolia plus S. teretifolius– S. pinetorum (Peterson based on these sequences was similarly discordant et al., 2010a; combined ITS and plastid data). Our with the tree inferred from ITS data (Fortune et al., better- sampled tree is consistent with these earlier 2007). This study also sampled waxy in other Chlori- results. In our ITS tree, Spartina is part of a well- doideae taxa, and found the sequences of Thellungia supported clade (BS = 98, PP = 1.00) that includes a advena, Sporobolus indica, Calamovilfa gigantea, clade of Calamovilfa (clade M) (plus a clade com- and C. longifolia to be part of the Spartina lineage. prising S. compositus and one individual of S. clan- Fortune et al. (2007) hypothesized that the two major destinus) and the Sporobolus oridanus complex waxy clades represent paralogous copies of the gene (clade N) and the core Sporobolus asper complex that were inherited by Spartina (i.e., the paralogous (clade L). Our data suggests that Spartina and sev- copies were pres ent prior to the origin of the genus) eral of the other major North American lineages are and also by other members of the Chloridoideae. The derived from a common ancestor. placement of Sporobolus indicus (in Clade A)— a Within Spartina, our tree identies three major taxon that shares a waxy paralogue with some Spar- lineages, one comprising mostly tetraploid (2n = 40) tina species— near the base of the Sporobolinae sub- species Spartina gracilis Trin., S. cynosuroides (L.) tree in our analyses suggests that the gene duplication Roth, S. ×caespitosa A.A. Eaton, S. pectinata Link, may have occurred early during, or prior to, the evo- S. bakeri Merr., S. patens (Aiton) Muhl., S. ciliata lution of the Sporobolinae lineage. In the seminal re- Brongn., S. densi ora Brongn., and S. montevidensis visionary treatment of Spartina, Mobberley (1956) Arechav.; one comprising the hexaploid (2n = 60, 62) recognized three complexes that, with the exception species S. alterni ora Loisel., S. foliosa Trin., and S. of Spartina ciliata, correspond with the three sub- maritima (Curtis) Fernald; and S. spartinae (Trin.) clades in our phylogram. Mobberley (1956) described Merr. ex Hitchc. This topology is congruent with, and complex 1 (Spartina arundinacea and S. spartinae) better resolved than, the trees recovered in earlier as having hard and slender culms, without rhizomes phyloge ne tic analyses based on ITS and the plastid or with short (less than 1.5 cm) and thick rhizomes, trnT- trnL region (Baumel et al., 2002; Fortune et al., panicles spike- like with closely imbricate spikes 2008), with the caveat that we did not sample S. arun- (multiple branches), spikelets lanceolate and closely dinacea (Thouars) Carmich. Trees based on nuclear imbricate, and upper glumes with hispid keels; com- data differed from the pres ent study only in the in- plex 2 (S. alterni ora, S. anglica S. foliosa, S. lon- ferred interrelationships among S. cynosuroides, S. gispica Hauman & Parodi ex St.- Yves [now considered pectinata, and S. gracilis. These species formed a to be a hybrid of S. alterni ora and S. densi ora (Bor- polytomy with the other lineages in the tetraploid tolus, 2006)], S. maritima, and S. ×townsendii) as hav- clade, but are fully resolved here. This may re ect ing thick, eshy, and succulent culms that become alignment differences and/or the dif fer ent phyloge ne- brownish in age with a distinctly disagreeable odor tic analyses conducted (parsimony in the earlier stud- when fresh, smooth and glabrous leaf blades, and pan- ies and ML and Bayesian here). icles with remote or moderately imbricate spikes, and Baumel et al. (2002) sampled the nuclear waxy lo- upper glumes with glabrous, pilose, or rarely hispid cus, which is incongruent with ITS. In the waxy trees keels; and complex 3 (S. bakeri, S. ×caespitosa, the tetraploid species S. argentinensis (= S. spartinae) S. ciliata, S. cynosuroides, S. densi ora, S. gracilis, was sister to the hexaploid clade, and the heptaploid S. patens, S. pectinata, and S. versicolor Fabre) as S. densi ora (2n = 70; Ayres et al., 2008; Fortune having hard culms often tinged or streaked with pur- et al., 2008) was the sister group of the hexaploid plus ple, scabrous leaf blades, panicle spikes more or less S. argentinensis clade. Subsequent phyloge ne tic stud- spreading and often tinged or streaked with purple, ies of Spartina, based on extensive cloning of the low closely imbricate spikelets, and upper glumes with copy nuclear gene waxy, focused on the hexaploid spe- hispid keels. Although S. densi ora has a complicated cies (Fortune et al., 2007) and S. densi ora (Fortune reticulate origin, we include it in complex three on et al., 2008). In the former study, two major lineages the basis of its morphology. 142 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN [VOL. 118

C   C http:// tropicos . org/projectwebportal.aspx?pagename Since Peterson et al. (2010a), the classication =ClassicationNWG&projectid=10 (Soreng et al., within the Chloridoideae has under gone considerable 2016). rearrangement (Kellogg, 2015; Peterson et al., 2011, 2012, 2014a, 2015, 2016; Soreng et al., 2015). We pres- A   ent an updated version of our classication ( Table 2) We thank the National Geographic Society Com- to point out areas lacking critical data. Eight genera mittee for Research and Exploration (Grant No. 8848- are listed as incertae sedis within the subfamily, and 10, 8087-06) for eld and laboratory support, the there are seven incertae sedis genera listed in the Smithsonian Institution’s Restricted Endowments Cynodonteae. Most genera listed as incertae sedis Fund, the Scholarly Studies Program, Research Op- have not yet been included in a molecular analy sis portunities, Atherton Seidell Foundation, Biodiver- simply because material is unavailable or, in a few sity Surveys and Inventories Program, Small Grants cases, known only from a single collection. It is no Program, and the Laboratory of Analytical Biology, longer pos si ble to objectively evaluate relationships all for nancial support. We would also like to ac- among taxa without baseline information from DNA knowledge Gabriel Johnson for help in the labora- sequence markers because there is no way to accu- tory; Robert J. Soreng and Carol R. Annable for rately polarize complex morphological traits (i.e., de- accompanying the rst author on numerous eld ex- termine what is pleisiomorphic or apomorphic) in the peditions; Robert J. Soreng for many extended dis- evolution of a lineage or ascertain the criteria of cussions pertinent to the manuscript; Alice Tangerini homology (i.e., the difference between an analogous for preparing the illustration; and two anonymous or homologous character). An online version of this reviewers for providing helpful comments on the classication (continually updated) is available at manuscript.

T . A proposed tribal and subtribal classication of genera in subfamily Chloridoideae (Poaceae).

Subfamily Chloridoideae Kunth ex Beilschm. Incertae sedis: Indopoa Bor, Lepturopetium Morat, Myriostachya (Benth.) Hook.f., Pogonochloa C. E. Hubb., Pseudozoysia Chiov., Silentvalleya V. J. Nair, Viguierella A. Camus Tribe Centropodieae P. M. Peterson, N. P. Barker & H. P. Linder: Centropodia Rchb., Ellisochloa P. M. Peterson & N. P. Barker Tribe Cynodonteae Dumort. Incertae sedis: Allolepis Soderstr. & H. F. Decker, Decaryella A. Camus, Jouvea E. Fourn., Kalinia H. L. Bell & Columbus, Kampochloa Clayton, Lepturidium Hitchc. & Ekman, Oxychloris Lazarides, Sohnsia Airy Shaw, Vietnamochloa Veldkamp & Nowack Subtribe Aeluropodinae P. M. Peterson: Trin., Stapf Subtribe Boutelouinae Stapf: Lag. (includes Buchloe Engelm., Buchlomimus Reeder, C. Reeder & Rzed., Cathesticum J. Presl, Chondrosum Desv., Cyclostachya Reeder & C. Reeder, Grifthsochloa G. J. Pierce, Opizia J. Presl, Pentarraphis Kunth, Pringleochloa Scribn., and Soderstromia C. V. Morton) Subtribe Cteniinae P. M. Peterson, Romasch. & Y. Herrera: Ctenium Panz. Subtribe Dactylocteniinae P. M. Peterson, Romasch. & Y. Herrera: Wight & Arn. ex Chiov., Brachychloa S. M. Phillips, Willd., Neobouteloua Gould Subtribe Eleusininae Dumort.: Afrotrichloris Chiov., Apochiton C. E. Hubb., Astrebla F. Muell., Austro- Lazarides, Chloris Sw. (includes Ochthochloa Edgew.), Chrysochloa Swallen, Hochst. & Nees (includes Coelachyropsis Bor), Rich. [includes Brachyachne (Benth.) Stapf], Daknopholis Clayton, Jacq. (includes Drake- Brockmania Stapf, Heterocarpha Stapf & C.E. Hubb., Oxydenia Nutt.), P. Beauv., Disakisperma Steud. (includes Cypholepis Chiov.), Gaertn., Enteropogon Nees, Eustachys Desv., Harpochloa Kunth, P. Beauv. (includes Trichloris E. Fourn. ex Benth.), Lepturus R. Br., Lintonia Stapf, Micrachne P. M. Peterson, Romasch. & Y. Herrera, Microchloa R. Br. (includes Rendlia Chiov.), Neostapella A. Camus, Oxychloris Lazarides, Pommereulla L.f., Rheochloa Filg., P. M. Peterson & Y. Herrera, Schoenefeldia Kunth, Sclerodactylon Stapf, Stapfochloa H. Scholz, Tetrapogon Desf. (includes Saugetia Hitchc. & Chase)

(continued) 2017] PETERSON ET AL.: SPOROBOLINAE, CHLORIDOIDEAE (POACEAE) 143

T . (continued)

Subtribe Farragininae P. M. Peterson Romasch. & Y. Herrera: Craspedorhachis Benth., Farrago Clayton Subtribe Gouiniinae P. M. Peterson & Columbus: Gouinia E. Fourn. ex Benth. & Hook, Schenckochloa J. J. Ortiz, Tridentopsis P. M. Peterson, Triplasiella P. M. Peterson & Romasch., Triplasis P. Beauv., Vaseyochloa Hitchc. Subtribe Hilariinae P. M. Peterson & Columbus: Hilaria Kunth (includes Pleuraphis Torr.) Subtribe Hubbardochloinae Auquier (syn. Gymnopogoninae P. M. Peterson Romasch. & Y. Herrera): Bewsia Goossens, Dignathia Stapf, Gymnopogon P. Beauv., Hubbardochloa Auquier, Leptocarydion Stapf, Leptothrium Kunth (includes Latipes Kunth), Lophacme Stapf Subtribe Monanthochloinae Pilg. ex Potztal: Raf. (includes Monanthochloe Engelm., Reederochloa Soderst. & H. F. Decker) Subtribe Muhlenbergiinae Pilg.: Schreb. (includes Aegopogon Humb. & Bonpl. ex Willd., Bealia Scribn., Nash, Chaboissaea E. Fourn, Lycurus Kunth, Pereilema J. Presl, Redeldia Vasey, Schaffnerella Nash, Schedonnardus Steud.) Subtribe Orcuttiinae P. M. Peterson & Columbus: Neostapa Burtt Davy, Orcuttia Vasey (includes Tuctoria Reeder) Subtribe Orininae P. M. Peterson, Romasch. & Y. Herrera: Cleistogenes Keng, Orinus Hitchc. Subtribe Pappophorinae Dumort. [syn. Tridentinae Keng & Keng f.]: Neesiochloa Pilg., Schreb., Tridens Roem. & Schult. Subtribe Perotidinae P. M. Peterson, Romasch. & Y. Herrera: Mosdenia Stent, Perotis Aiton (includes Lopholepis Decne., Toliara Judz.), Trigonochloa P. M. Peterson & Snow Subtribe Traginae P. M. Peterson & Columbus: Monelytrum Hack., Orthacanthus P. M. Peterson & Romasch., Pogononeura Napper, Polevansia De Winter, Haller, Willkommia Hack. (includes Willbleibia Herter) Subtribe Trichoneurinae P. M. Peterson, Romasch. Y. Herrera: Trichoneura Andersson Subtribe Benth.: Triodia R. Br. (includes Monodia S.W.L. Jacobs, Plectrachne Henrard, Symplectrodia Lazarides) Subtribe Tripogoninae Stapf: (Stapf) Stapf, Eragrostiella Bor, Stapf, Melano- cenchris Nees, Oropetium Trin., Tripogon Roem. & Schult., Tripogonella P. M. Peterson & Romasch. Subtribe Scleropogoninae Pilg. (syn. Munroinae Parodi ex P. M. Peterson): Blepharidachne Hack., Dasyochloa Rydb., Erioneuron Nash, Munroa Torr., Scleropogon Phil., Swallenia Soderstr. & H. F. Decker Subtribe Zaqiqahinae P. M. Peterson, Romasch. & Y. Herrera: Zaqiqah P. M. Peterson & Romasch. Tribe Eragrostideae Stapf Subtribe Cotteinae Reeder: Cottea Kunth, Enneapogon P. Beauv., Kaokochloa De Winter, Schmidtia Steud. ex J. A. Schmidt Subtribe Eragrostidinae J. Presl: Catalepis Stapf, Franch., Eragrostis Wolf [includes Acamptoclados Nash, Diandrochloa De Winter, R. Br., Ectrosiopsis (Ohwi) Ohwi ex Jansen see Nightingale and Weiller, 2005, A. Rich., Neeragrostis Bush, Planichloa B. K. Simon, Stapf, Psammagrostis C. A. Gardner & C. E. Hubb., Stiburus Stapf.], Heterachne Benth., Richardsiella Elffers & Kenn.- O’Byrne, Steirachne Ekman Subtribe Uniolinae Clayton: Entoplocamia Stapf, Fingerhuthia Nees ex Lehm., Tetrachaete Chiov., Tetrachne Nees, L. Tribe Triraphideae P. M. Peterson: Habrochloa C.E. Hubb., Neyraudia Hook. f., Triraphis R. Br. Tribe Zoysieae Benth. Subtribe Sporobolinae Benth: Psilolemma S. M. Phillips, Sporobolus R. Br. [includes Calamovilfa (A. Gray) Scribn., Crypsis Aiton, Heleochloa Host ex Roem., Spartina Schreb., Thellungia Stapf] Subtribe Zoysiinae Benth.: Urochondra C. E. Hubb., Zoysia Willd. 1 Letters in boldface correspond to the clades in Fig. 1. 2 The proposed assignments are based on plastid and nuclear DNA analyses and/or morphology. 144 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN [VOL. 118

L    C C , T. 1999. Gramineae. Pp. 1–261 in: G. V. P , E. Flora Zambesiaca, Vol. 10, part 2. Marston Book Ser- A , D., K. Z, C. S  D. S . 2008. vices, Didcot, U.K. Sexual reproduction of cordgrass hybrids (Spartina D, S. S.  S. S. A. 2010. Species delim- foliosa x alterni ora) invading tidal marshes in itation in the Sporobolus aeneus complex (Zoysieae, San Francisco Bay. Diversity and Distributions 14: Chloridoideae, Poaceae) using the phyloge ne tic spe- 187−195. cies concept. Taxon 59: 1765−1782. https://doi.org/10.1111/j.1472-4642.2007.00414.x D, A. J., B. A  S. B   . 2011. B, G. J.  J. F. V . 1991. Sporobolus Geneious v5.3; http:// geneious . com [accessed 11 (Gramineae) in Malesia. Blumea 35: 393–458. January 2014]. B, A., M. L. A, R. J. B , A. K. A- E , R. C. 2004. MUSCLE: multiple sequence align-   M. T. M. 2002. Molecular phylogeny ment with high accuracy and high throughput. Nu- of hybridizing species from the genus Spartina cleic Acids Research 32: 1792–1797. Schreb. (Poaceae). Molecular Phyloge ne tics and Evo- https://doi.org/10.1093/nar/gkh340 lution 22: 303 314. − E  S, A., A. R. L  - F  J. V- https://doi.org/10.1006/mpev.2001.1064 R . 2000. Poaceae Barnhart. Pp. 8–236 in: A. B, S. C.  H. M. L - W . 1995. O E  S  A. R. L - F, E. Las gênero Sporobolus (Poaceae: Chloridoideae) no Bra- Monocotyledóneas Mexicanus: una Synopsis Flo- sil. Acta Botanica Brasiliensis 9: 21–86. rística, Partes IX−XI. Consejo Nacional de la Flora de https://doi.org/10.1590/s0102-33061995000100002 México, A.C., Universidad Autónoma Metropolitana- B, N. L. 1960. The Grasses of Burma, Ceylon, India, Izpalapa, and Comisíon Nacional para el cono- and . Pergamon Press, New York, NY. cimiento y uso de la Biodiversidad, México, D.F. B, A. 2006. The austral cordgrass Spartina den- F, P., K. S, A. A, J. J- si ora Brong.: its , biogeography and natu- , J. W  M. A. 2007. Evolu- ral history. Journal of Biogeography 33: 158 168. − tionary dynamics of Waxy and the origin of hexaploid https://doi.org/10.1111/j.1365-2699.2005.01380.x Spartina species (Poaceae). Molecular Phyloge ne tics B- K, Y., N. S, V. S, and Evolution 43: 1040−1055. F. F, M. V  B, M. W. C  https://doi.org/10.1016/j.ympev.2006.11.018 T. R. H. 2008. Large multi- gene phyloge ne- — — — , — — — , D. A , A. B, O. C, tic trees of the grasses (Poaceae): pro gress towards S. B  M. L. A. 2008. The enigmatic complete tribal and generic level sampling. Molecular invasive Spartina densi ora: a history of hybridiza- Phyloge ne tics and Evolution 47: 488–505. tions in a polyploidy context. Molecular Ecol ogy 17: https://doi.org/10.1016/j.ympev.2008.01.035 4304−4316. B , D. M. 2003. Notes on free pericarps in https://doi.org/10.1111/j.1365-294x.2008.03916.x grasses (Poaceae). Journal of the Kentucky Acad emy G R, G. E., L. W, M. K, of Sciences 64: 114 120. − L. S, N. P. B, H. M. A  B, A. 1841. Flora. 24: 712. M. J. D. 1991. Grasses of southern Africa. C , W. D. 1965. Studies in the Gramineae: VI. Memoirs of the Botanical Survey of 58: Kew Bulletin 19: 287−296. 1−437. https://doi.org/10.2307/4108070 G- C, D.  P. M. P. 2009. Revisión — — —. 1974. 89. Sporobolus. Pp. 353–388 in: R. M. de las species del género Sporobolus (Poaceae: Chlo- P, E. Gramineae (part 2), Flora of Tropical ridoideae: Sporobolinae) del noroeste de Sudamer- East Africa. Crown Agents for Oversea Governments ica: Perú, Ec ua dor, Colombia y . Caldasia and Administrations, London, U.K. 31: 41−76. — — —  S. A. R. 1986. Genera graminum: G , A. 1848. Manual of the Botany of the Northern grasses of the World. Kew Bulletin Additional Series United States. Ivison & Phinney, Chicago, IL. 13: 1–389. H, E. 1890. The True Grasses. Henry Holt and — — — , M. S. V, K. T. H  H. W- Com pany, New York, NY. . 2006 onward. GrassBase— The online H , P. W. 1987. Variations in photosyn- world grass ora. Kew: The Board of Trustees, Royal thetic pathway. Pp. 49 −64 in: T. R. S, Botanic Gardens. http:// kew . org / data / grasses - db . html K. W. H, C. S. C   M. E. B, [accessed March 14, 2013]. E. Grass Systematics and Evolution. Smithsonian C, J. T., R. C- T , M. S. K , Institution Press, Washington DC. M. S- D , H. L. B, M. P. G H, K. W.  L. A. A. 2001. A phylogeny of Chlo-  N. F. R- R . 2007. Phyloge ne tics of ridoideae (Poaceae) based on matK sequences. Sys- Chloridoideae (Gramineae): a preliminary study tematic Botany 26: 386–405. based on nuclear ribosomal internal transcribed spacer H, C. E. 1947. Urochondra setulosa (Trin) C. E. and chloroplast trnL- F sequences. Aliso 23: 565–579. Hubbard. Hooker’s Icones Plantarum 35: 1−11, Ta- https://doi.org/10.5642/aliso.20072301.42 bula 3457. 2017] PETERSON ET AL.: SPOROBOLINAE, CHLORIDOIDEAE (POACEAE) 145

H, J. P.  F. R. R. 2001. MRBAYES: Eragrostideae (Poaceae: Chloridoideae). Sida 16: Bayesian inference of phyloge ne tic trees. Bioinfor- 529−544. matics 17: 754–755. https://doi.org/10.5962/bhl.part.3478 https://doi.org/10.1093/bioinformatics/17.8.754 — — — , — — —  — — — . 1997 Genera of New World I , A. L.  J. J. D . 2004. Is Eragrostis (Po- Eragrostideae (Poaceae: Chloridoideae). Smithsonian aceae) monophyletic? Insights from nuclear and Contributions to Botany 87: 1−50. plastid sequence data. Systematic Botany 29: https://doi.org/10.5479/si.0081024x.87 545−552. — — — , S. L. H  A. S. W . 2003. 17.30 https://doi.org/10.1600/0363644041744392 Sporobolus R. Br. Pp. 115−139 in: M. E. B- — — —  — — —. 2007. Eragrostis (Poaceae): Mono- , K. M. C , S. L  M. B. P , E. phyly and infrageneric classication. Aliso 23: 595– Magnoliophyta: Commelinidae (in part): Poaceae, 604. part 2. Flora of North Amer i ca North of Mexico, https://doi.org/10.5642/aliso.20072301.44 Vol. 25. Oxford University Press, New York, NY. K , E. A. 2015. Pp. 1–416 in: K. K, E. — — — , J. V- R   J. J. O- D. 2004. The Families and Genera of Vascular Plants, vol. Sporobolus (Poaceae: Chloridoideae: Cynodonteae: XIII, Flowering Plants - Monocots. Springer Inter- Zoysieae: Sporobolinae) from northeastern Mexico. national, Switzerland. Sida 21: 553−589. K, V. 2012. Spartina Schreb. Pp. 204−208 in: — — — , J. T. C  S. J. P . 2007. F. O. Z , Z. E. R   A. M. A, E. Classication and biogeography of New World Flora Vascular de la Republica , Vol. 3, grasses: Chloridoideae. Aliso 23: 580−594. tomo 1. Gracamente Ediciones, Cordoba. https://doi.org/10.5642/aliso.20072301.43 L, M. 1994. 119. Sporobolus. Pp. 419−429 in: — — — , S. L. H  A. S. W . 2009. 10.14 M. D. D , E. A Revised Handbook of Sporobolus R. Br. Pp. 190−195, 421−425, 507 in: the Flora of Ceylon, vol. VIII, Poaceae. Amerind L. K. A  M. E. B, E. Grasses Publishing Co., New Delhi, India. of the Intermountain Region. Intermountain Herbar- — — — . 1997. A revision of Eragrostis (Eragrostideae, ium and State University Press, Logan, Utah. Eleusininae, Poaceae) in Australia. Australian Sys- — — — , K. R  G. J. 2010a. A tematic Botany 10: 77−187. classication of the Chloridoideae (Poaceae) based on L, J. 1962. A revision of Crypsis Ait. S.l. (Gra- multi- gene phyloge ne tics trees. Molecular Phyloge ne- mineae). The Bulletin of the Research Council of tics and Evolution 55: 580−598. Israel 11D: 91−116. https://doi.org/10.1016/j.ympev.2010.01.018 M , D. G. 1956. Taxonomy and distribution of — — — , — — —  — — — . 2010b. A phylogeny and the genus Spartina. Iowa State College Journal of Sci- classication of the Muhlenbergiinae (Poaceae: Chlo- ence 30: 471−574. ridoideae: Cynodonteae) based on plastid and nu- N , D. M. 1963. Notes on east African grasses. clear DNA sequences. American Journal of Botany Kirkia 3: 112−131. 97: 1532–1554. N  , M. E., B. K. S  C. M. W. https://doi.org/10.3732/ajb.0900359 2005. Zoysia. Pp. 263−265 in: K. M, E. Flora — — — , — — — , N. P. B  H. P. L. 2011. of Australia, vol. 44B, Poaceae 3. Commonwealth Centropodieae and Ellisochloa, a new tribe and genus Scientic and Research Organ ization [CSIRO] Pub- in the Chloridoideae (Poaceae). Taxon 60: 1113−1122. lishing, Melbourne, Australia. — — — , — — — , N. S,  G. J. 2012. A mo- O- D, J. J.  A. C. 2000. Phyloge ne tic lecular phylogeny and classication of Leptochloa relationships of the genus Sporobolus (Poaceae: (Poaceae: Chloridoideae: Chlorideae) sensu lato and Eragrostideae) based on nuclear ribosomal DNA ITS related genera. Annals of Botany 109: 1317−1329. sequences. Pp. 184−188 in: S. W. L. J  J. E- https://doi.org/10.1093/aob/mcs077 , E. Grasses: Systematics and Evolution. — — — , — — —,  Y. H A. 2014a. A mo- CSIRO Publishing, Melbourne, Australia. lecular phylogeny and classication of the Cteniinae, P  B, A. M. F. J. 1812. Essai d’une Farragininae, Gouiniinae, Gymnopogoninae, Pe- nouvelle Agrostographie; ou nouveaux genres des rotidinae, and Trichoneurinae (Poaceae: Chloridoi- Graminées; avec gures représentant les caractères deae: Cynodonteae). Taxon 63: 275−286. de tous les genres 24. Imprimerie de Fain, Paris, https://doi.org/10.12705/632.35 France. — — — , —— — , & — — — . 2016. A molecular phylog- https://doi.org/10.5962/bhl.title.474 eny and classication of the Cynodonteae (Poaceae: P, J., M. L, A. MC  C. M. Chloridoideae) with four new genera: Orthacanthus, W. 2005. Eragrostis. Pp. 346−409 in: Triplasiella, Tripogonella, and Zagigah; three new K. M (E.). , vol. 44B, subtribes: Dactylocteniinae, Orininae, and Zagiga- Poaceae 3. CSIRO Publishing, Melbourne. hinae; and a subgeneric classication of Distichlis. P, P. M., R. D. W  J. VR -  . Taxon 65: 1263–1287. 1995. Subtribal classication of the New World https://doi.org/10.12705/656.4 146 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN [VOL. 118

— — — , — — —, — — — ,  J. M. S. 2014b. A S, B. K. 2005. Sporobolus. Pp. 324−346 in: K. M- molecular phylogeny and new subgeneric classica- , E. Flora of Australia, Vol. 44B, Poaceae 3. tion of Sporobolus (Poaceae: Chloridoideae: Spo- CSIRO Publishing, Melbourne. robolinae). Taxon 63: 1212–1243. — — —  S. W. L. J. 1999. Revision of the genus https://doi.org/10.12705/636.19 Sporobolus (Poaceae: Chloridoideae) in Australia. — — — , — — —,  R. J. S . 2014c. A laboratory Australian Systematic Botany 12: 375–448. guide for generating DNA barcodes in grasses: A https://doi.org/10.1071/sb97048 case study of Leptochloa s.l. (Poaceae: Chloridoi- S , R. J., G. D, P. M. P, F. O. Z- deae). Webbia 69: 1–12.  , E. J. J, T. S. F , O. M- https://doi.org/10.1080/00837792.2014.927555   K. R. 2014. A World- wide — —— , — — —,  Y. H A. 2015. A mo- Phyloge ne tic Classication of Poaceae (Gramineae): căo lecular phylogeny and classication of the Ele- (草), capim, çayır, çimen, darbha, ghaas, ghas, gish, usininae with a new genus, Micrachne (Poaceae: gramas, graminius, gräser, grasses, gyokh, he- ben-ke, Chloridoideae: Cynodonteae). Taxon 64: 445–467. hullu, kasa, kusa, nyasi, pastos, pillu, pullu, zlaki, etc. https://doi.org/10.12705/643.5 Available from: R. M. P, E. Flora of tropical east Africa, [accessed July 2014]. Gramineae, part 2. Crown Agents for Oversea Gov- — — — , P. M. P, K. R, G. D- ernments and Administrations, London, U.K. , F. O. Z , E. J. J, T. S. F- — — —. 1982. A numerical analy sis of the Eragrostid- , J. I. D  O. M. 2015. A eae (Gramineae). Kew Bulletin 37: 133−162. worldwide phyloge ne tic classication of the Poaceae https://doi.org/10.2307/4114733 (Gramineae). Journal of Systematics and Evolution — — — . 1995. Poaceae (Gramineae). Pp. 1−420 in: 53: 117–137. I. H  S. E, E. Flora of https://doi.org/10.1111/jse.12150 and , vol. 7. Addis Ababa University, Addis — — — , G. D, P. M. P, F. O. Z- Ababa and Uppsala University, Sweden.  , E. J. J, T. S. F , O. M- P , R. 1956. Gramineae II. Unterfamilien: Micrai-   K. R. 2016. A World- wide oideae, Eragrostideae, , Olyroideae. Phyloge ne tic Classication of Poaceae (Gra- Pp. 1−168 in: H. M  E. W, mineae): căo (草), capim, çayır, çimen, darbha, ghaas, E. Die natürlichen P anzenfamilien, 2nd ed., Vol. ghas, gish, gramas, graminius, gräser, grasses, gyokh, 14d. Duncker and Humblot, Berlin, Germany. he- ben-ke, hullu, kasa, kusa, nyasi, pastos, pillu, P, D. 2008. jModelTest model averaging. Molec- pullu, zlaki, etc.; http://tropicos . org/projectwebportal ular Biology and Evolution 25: 1253–1256. .aspx?pagename=ClassicationNWG&projectid=10 https://doi.org/10.1093/molbev/msn083 [accessed June 2016]. R, J . R.  M. A. E . 1960. Calamovilfa, a S, A. M., R. H  C. R. P. 2000. misplaced genus of Gramineae. Brittonia 12: 71−77. Phylogeny and biogeography of Juglans (Juglanda- https://doi.org/10.2307/2805335 ceae) based on matK and ITS sequence data. Amer- R , R. 1969. The annual cleistogamous species of ican Journal of Botany 87: 872–882. Sporobolus. M.S. thesis, Iowa State University, https://doi.org/10.2307/2656895 Aimes, IA. S , O. 1898. Gramineae. Pp. 315, 578−589 in: — — — . 1977. A biosystematics study of the Sporobolus W. T. T- D  (E.). Flora Capensis, Vol. 7. asper complex (Gramineae). Iowa State Journal of Lovell Reeve and Com pany, London, U.K. Research 51: 287−321. S, G. L. 1985. Polyploidy, hybridization, and the R, F.  J. P. H. 2003. Mr Bayes 3: invasion of new habitats. Annals of the Missouri Bo- Bayesian phyloge ne tic inference under mixed mod- tanical Garden 72: 824−832. els. Bioinformatics 19: 1572−1574. https://doi.org/10.2307/2399224 https://doi.org/10.1093/bioinformatics/btg180 S, D. L. 2000. PAUP*: phyloge ne tic analy sis S, J . M . 2012. Taxonomic synopsis of invasive using parsimony (*and other methods), ver. 4. Sinauer, and native Spartina (Poaceae, Chloridoideae) in the Sunderland, Mas sa chu setts. Pacic Northwest (British Columbia, Washington T, K. 1985. 117. Crypsis Aiton, nom. conserve. and Oregon), including the rst report of Spar- Pp. 582−587 in: P. H. D, R. R. M  K. T, tina ×townsendii for British Columbia, Canada. E. Flora of Turkey and the East Aegean Islands, PhytoKeys 10: 25–82. vol. 9. Edinburgh University Press, Edinburgh, U.K. https://doi.org/10.3897/phytokeys.10.2734 T, J. W. 1966. Synopsis of the genus Calamovilfa S, S., S. W. A, G. C. G  D. S. (Gramineae). Castanea 31: 145−152. L. 2003. Phylogeny of the Sporobolus indicus com- — — — . 2003. 17.32 Calamovilfa Hack. Pp. 140−144 in: plex, based on internal transcribed spacer (ITS) se- M. E. B, K. M. C , S. L  quences. Australian Systematic Botany 16: 165−176. M. B. P , E. Magnoliophyta: Commelinidae (in https://doi.org/10.1071/sb02009 part): Poaceae, part 2. Flora of North Amer i ca North of 2017] PETERSON ET AL.: SPOROBOLINAE, CHLORIDOIDEAE (POACEAE) 147

Mexico, volume 25. Oxford University Press, New ribosomal RNA genes for phyloge ne tics. Pp. 315– York, NY. 32 in: M. I, D. G, J. S  T, B. [continuously updated]. Index Herbariorum: T. W, E. PCR Protocols: A Guide to Meth- A global directory of public herbaria and associated ods and Applications. Academic Press, New York, staff. New York Botanical Garden’s Virtual Herbar- NY. ium. http://sweetgum.nybg.org/science/ih/ https://doi.org/10.1016/b978-0-12-372180-8.50042-1 W , A. S.  P. M. P. 1998. Taxonomy of Z, D. J. 2006. Ge ne tic algorithm approaches for the Sporobolus oridanus complex (Poaceae: Spo- the phyloge ne tic analy sis of large biological se- robolinae). Sida 18: 247–270. quence datasets under the maximum likelihood W, T. J., T. B, S. L  J. T . 1990. criterion. Ph.D. dissertation, University of Texas, Amplication and direct sequencing of fungal Austin, TX.

A  L        (*        ),  (- , ,       ),    ,  GB    DNA ITS   (    ). H    T (C  ).

OUTGROUP: Aristida gypsophila Beetle, Peterson sata Hitchc., Peterson 9342 & Judziewicz (US), Ec ua- 15839 & Valdes- Reyna (US), Mexico, GU359267; dor, GU359191; ZOYSIEAE: Calamovilfa arcuata Chasmanthium latifolium (Michx.) H. O. Yates, Pe- K.E. Rogers, Rogers 42409, Sharp & Delgadillo terson 22463 (US), U.S.A., GU359319; Danthonia (US), U.S.A., KM010315; Calamovilfa brevipilis compressa Austin, Peterson 21986 & Levine (US), (Torr.) Hack. ex Scribn. & Southw., Strong 848, Kell- U.S.A., GU359345; Rytidosperma pallidum (R. Br.) off, Schuyler, Wurdack & Churchill (US), U.S.A., A. M. Humphreys & H. P. Linder, Peterson 19685, KM010316; Calamovilfa gigantea (Nutt.) Scribn. & Saarela & Sears (US), U.S.A., GU359183; CENTRO- Merr., Gates 17021 (US), U.S.A., KM010317; Cal- PODIEAE: *Ellisochloa rangei (Pilg.) P. M. Peterson amovilfa gigantea (Nutt.) Scribn. & Merr., Long 1124 & N. P. Barker, Barker 960 (BOL), , JQ345167; (BRY), U.S.A., KM010318; Calamovilfa gigantea TRIRAPHIDEAE: Neyraudia reynaudiana (Kunth) (Nutt.) Scribn. & Merr., Ungor 1018 (US), U.S.A., Keng ex Hitchcock, Soreng 5318 & Peterson (US), KM010319; Calamovilfa longifolia (Hook.) Hack. ex , GU359124; *Triraphis mollis R. Br., Peterson Scribn. & Southw., Hatch 5738 & Bearden (US), 14344, Soreng & Rosenberg (US), Australia, U.S.A., GU359300; Crypsis aculeata (L.) Aiton, GU359187; ERAGROSTIDEAE: *Cottea pappo- Soreng 5469 & Peterson (US), China, GU359238; phoroides Kunth, Peterson 21463, Soreng, LaTorre *Crypsis aculeata (L.) Aiton, Soreng 7940 (US), & Rojas Fox (US), Peru, GU359237; Ectrosia scab- Rus sia, JQ345163; Crypsis alopecuroides (Piller & rida C. E. Hubb., Lazarides 4772 (US), Australia, Mitterp.) Schrad., Soreng 7941, D. Johnson, P. GU359317; P. Beauv., Peter- Johnson, Dzubenko & Schilnikov (US), Rus sia, son 21999 & Saarela (US) Mexico, GU359339; Ent- KM010320; Crypsis schoenoides (L.) Lam., Peter- oplocamia aristulata (Hack. & Rendle) Stapf, Seydel son 19814, Saarela & Sears (US), U.S.A., GU359239; 187 (US), South Africa, GU359342; Eragrostis deser- Psilolemma jaegeri (Pilg.) S. M. Phillips, Peterson torum Domin, Peterson 14358, Soreng & Rosenberg 24247, Soreng & Romaschenko (US), , (US), Australia, GU359289; Harpachne harpach- KM010326; Psilolemma jaegeri (Pilg.) S. M. Phil- noides (Hack.) B. S. Sun & S. Wang, Soreng 5288, lips, Peterson 24249, Soreng & Romaschenko (US), Peterson & Sun Hang (US), China, GU359113; Pog- Tanzania, KM010327; Spartina ×townsendii H. onarthria squarrosa (Roem. & Schult.) Pilg., Mawi Groves & J. Groves, Saarela 791 & Percy (UBC), 180, Majengo, Salum & Samwe (MO), Tanzania, Canada, KM010329; Spartina alterni ora Loisel., KM010325; *Psammagrostis wiseana C. A. Gardner Lakela 26573 (US), U.S.A., KM010330; Spartina al- & C. E. Hubb., Peterson 14345, Soreng & Rosenberg terni ora Loisel., Naylov 236 (US), U.S.A., (US), Australia, GU359137; Schmidtia pappophoroi- KM010331; Spartina anglica C.E. Hubb., Matthews des Steud. ex J. A. Schmidt, Smook 10558 (MO), South s.n. (CAN), United Kingdom, KM010332; Spartina Africa, KM010328; Tetrachne dregei Nees, Jarman anglica C. E. Hubb., Williams 2004-1 (UBC), Canada, 120 (US), South Africa, GU359218; Uniola conden- KM010333; Spartina anglica C. E. Hubb., Williams 148 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN [VOL. 118

2004-2 (UBC), Canada, KM010334; Spartina bakeri des subsp. airoides, Peterson 24587 & Romaschenko Merr., Killip 44361 (US), U.S.A., KM010335; Spar- (US), Mexico, KM010365; Sporobolus airoides tina x caespitosa A. A. Eaton, Eaton 587 (US), U.S.A., subsp. airoides, Peterson 24853 & Romaschenko KM010336; Spartina ciliata Brongn., Rambo 56450 (US), Mexico, KM010366; Sporobolus airoides (US), Brazil, KM010337; Spartina cynosuroides (L.) (Torr.) Torr., Peterson 24895 & Romaschenko (US), Roth, Fisher 33123 (US), U.S.A., KM010338; Spar- Mexico, KM010367; Sporobolus airoides (Torr.) tina cynosuroides (L.) Roth, Hill 15630 (US), U.S.A., Torr., Peterson 24956 & Romaschenko (US), Mexico, KM010339; Spartina densi ora Brongn., Lomer KM010368; Sporobolus albicans Nees, Smook 2459 5723 (UBC), Canada, KM010340; Spartina densi- & Russell (US), South Africa, KM010369; Spo- ora Brongn., Peterson 19154, Soreng, Salariado & robolus apiculatus Boechat & Longhi- Wagner, Irwin Panizza (US), Argentina, GU359206; Spartina foli- 8041, Souza & Reis des Santos (US), Brazil, osa Trin., Reeder 6652& Reeder (US), Mexico, KM010370; Sporobolus arabicus Boiss., Rawi 10781, KM010341; Spartina gracilis Trin., Hendrickson 41 Jalili & Armer (US), Kuwait, KM010371; Sporobolus (USZ), U.S.A., KM010342; Spartina gracilis Trin., atrovirens (Kunth) Kunth, Peterson 22342 & Saarela Lewis 78-1013 (CAN), Canada, KM010343; Spar- (US), Mexico, GU359207; Sporobolus atrovirens tina gracilis Trin., Scoggan 15626 (CAN), Canada, (Kunth) Kunth, Peterson 24661 & Romaschenko KM010344; Spartina maritima (Curtis) Fernald, (US), Mexico, KM010373; Sporobolus atrovirens Fernández Casas 5537, Castroviejo, Muñoz Garmen- (Kunth) Kunth, Peterson 24729 & Romaschenko dia & Susanna (US), Morocco, KM010345; Spartina (US), Mexico, KM010374; Sporobolus atrovirens montevidensis Arechav., Clayton 4723 & Eiten (US), (Kunth) Kunth, Rosalen 3381 & Herrera (CIIDIR), Brazil, KM010346; (Aiton) Muhl., Mexico, KM010375; Sporobolus australasicus Do- Dutton 2536 (CAN), U.S.A., KM010347; Spartina min, Peterson 14404, Soreng & Rosenberg (US), Aus- patens (Aiton) Muhl., Peterson 24435 & Ro- tralia, KM010376; Sporobolus australasicus Domin, maschenko (US), U.S.A., KM010348; Spartina pat- Walsh 4237 (MEL), Australia, KM010377; Spo- ens (Aiton) Muhl., Shchepanek 6426 & Dugal (CAN), robolus berteroanus (Trin.) Hitchc. & Chase, Peter- Canada, KM010349; Spartina pectinata Link, son 8753, Annable & Poston (US), Ec uador, Cooperrider s.n. (US), U.S.A., KM010350; Spartina KM010378; Sporobolus blakei De Nardi ex B. K. Si- pectinata Link, Dirig 2812 (US), U.S.A., KM010351; mon, Latz 10662 (MEL), Australia, KM010379; Spo- Spartina spartinae (Trin.) Merr. ex Hitchc., Reeder robolus bogotensis Swallen & García- Barr., Peterson 4568 & C. Reeder (US), Mexico, KM010352; Spar- 14970 & Refulio Rodriguez (US), Peru, KM010380; tina spartinae (Trin.) Merr. ex Hitchc., Villarreal Sporobolus brockmanii Stapf, Gillet 4016 (US), So- 3201 (US), Mexico, KM010353; Sporobolus acini- malia, KM010381; Sporobolus buckleyi Vasey, Lira folius Stapf, Smook 3530 (US), South Africa, 546, Martinez, Alvarez, Ramirez, Medrod & Gamboa KM010354; Sporobolus actinocladus (F.Muell.) F. (CIIDIR), Mexico, KM010382; Sporobolus buckleyi Muell., Batianoff 04111164 (MEL), Australia, Vasey, Piedra s.n. (CIIDIR), Mexico, KM010383; KM010355; Sporobolus actinocladus (F.Muell.) F. Sporobolus buckleyi Vasey, Rodriguez 94 & Villareal Muell., Saarela 1625 (US), Australia, KM010356; (CIIDIR), Mexico, KM010384; Sporobolus actinocladus (F. Muell.) F. Muell., Saa- Mez, Saarela 1626, Peterson & Soreng (US), Austra- rela 1670 (US), Australia, KM010357; Sporobolus lia, KM010386; Sporobolus caroli Mez, Speak 1915 actinocladus (F. Muell.) F. Muell., Senaratne (US), Australia, KM010387; Sporobolus centrifugus E6082-5 (US), Australia, KM010358; Sporobolus (Trin.) Nees, Hoener 2133 (US), South Africa, acuminatus (Trin.) Hack., Guala 1372 & Filgueiras KM010388; Sporobolus clandestinus (Biehler) (US), Brazil, KM010359; Sporobolus acuminatus Hitchc., Freeman 6687 (US), U.S.A., KM010389; (Trin.) Hack., Irwin 11586, Souza & Reis dos Santos Sporobolus clandestinus (Biehler) Hitchc., Schuster (US), Brazil, KM010360; Sporobolus aeneus (Trin.) 197 (US), U.S.A., KM010390; Sporobolus clandesti- Kunth, Irwin 25327, Onishi, da Fonseca, Souza, Reis nus (Biehler) Hitchc., Waterfall 5881 (US), U.S.A., dos Santos & Ramos (US), Brazil, KM010361; Spo- KM010385; Sporobolus clandestinus (Biehler) robolus africanus (Poir.) Robyns & Tournay, Peter- Hitchc., Waterfall 12309 (US), U.S.A., KM010391; son 24024, Soreng & Romaschenko (US), Tanzania, Sporobolus coahuilensis Valdés- Reyna, Gonzales KM010362; Sporobolus africanus (Poir.) Robyns & 3600 (CIIDIR), Mexico, KM010392; Sporobolus co- Tournay, Peterson 24121, Soreng & Romaschenko ahuilensis Valdés- Reyna, Peterson 10000 & Annable (US), Tanzania, KM010363; Sporobolus airoides (US), Mexico, KM010393; (Torr.) Torr., Peterson 10002, Annable & Valdes- (Poir.) Merr., Brodowich 1305 (US), U.S.A., Reyna (US), Mexico, KM010364; Sporobolus airoi- KM010372; Sporobolus connis (Steud.) Chiov., Pe- 2017] PETERSON ET AL.: SPOROBOLINAE, CHLORIDOIDEAE (POACEAE) 149 terson 24303, Soreng & Romaschenko (US), Tanza- Schinz, Laegaard 17063 & Traore (US), Senegal, nia, KM010394; Sporobolus consimilis Fresen., KM010424; Sporobolus helvolus (Trin.) T. Durand & Collenette 17 (US), Somalia, KM010395; Sporobolus Schinz, Peterson 24217, Soreng & Romaschenko consimilis Fresen., Peterson 24252, Soreng & Ro- (US), Tanzania, KM010425; Sporobolus heterolepis maschenko (US), Tanzania, KM010396; Sporobolus (A. Gray) A. Gray, Davidse 19101 (US), U.S.A., contractus Hitchc., Perez 196 (US), Mexico, KM010426; Sporobolus humilis subsp. humilis Veld- KM010397; Sporobolus cordofanus (Hochst. ex kamp, Clayton 5879 (US), , KM010427; Steud.) Coss., Greenway 10191 (US), Tanzania, Sporobolus indicus (L.) R. Br., Peterson 22025 & KM010398; Sporobolus cordofanus (Hochst. ex Saarela (US), Mexico, GU359209; Sporobolus indi- Steud.) Coss., Laegaard 15973 (US), , cus (L.) R. Br., Peterson 7337 (US), Panama, KM010399; Sporobolus cordofanus (Hochst. ex KM010428; Sporobolus inrmus Mez, Haines 332 Steud.) Coss., Peterson 24232, Soreng & Ro- (US), Nigeria, KM010429; Sporobolus ioclados maschenko (US), Tanzania, KM010400; Spo- (Nees ex Trin.) Nees, Smook 5920 (US), South Af- robolus coromandelianus (Retz.) Kunth, Fosberg rica, KM010430; Kunth, 51193, Mueller- Dombois, Wirawan, Cooray & Bal- Estrada 18964 (CIIDIR), Mexico, KM010431; Spo- akrishnan (US), Sri Lanka, KM010401; Sporobolus robolus jacquemontii Kunth, Peterson 15902 & coromandelianus (Retz.) Kunth, Peterson 24269, Valdes- Reyna (US), Mexico, KM010432; Sporobolus Soreng & Romaschenko (US), Tanzania, KM010402; junceus (P. Beauv.) Kunth, Strong 2332 (US), U.S.A., Sporobolus coromandelianus (Retz.) Kunth, Schwein- KM010433; (P. Beauv.) Kunth, furth 896 & Nil (US), Ethiopia, KM010403; Thieret 25181 (US), U.S.A., KM010434; Sporobolus Sporobolus creber De Nardi, Brown 498 (MEL), Aus- kentrophyllus (K.Schum. ex Engl.) Clayton, Bogdan tralia, KM010403; Sporobolus cryptandrus (Torr.) A. 3306 (US), Kenya, KM010435; Sporobolus kentro- Gray, Peterson 24454 & Romaschenko (US), Mexico, phyllus (K.Schum. ex Engl.) Clayton, Mwasumbi KM010405; Sporobolus cryptandrus (Torr.) A. Gray, 13049 (DSM), Tanzania, KM010436; Sporobolus Peterson 24485 & Romaschenko (US), Mexico, lasiophyllus Pilg., Peterson 21820 & Soreng (US), KM010406; Sporobolus diandrus (Retz.) P. Beauv., Peru, KM010437; Sporobolus lasiophyllus Pilg., Peterson 14389, Soreng & Rosenberg (US), Australia, Peterson 21879, Soreng & Sanchez Vega (US), Peru, KM010407; Sporobolus diffusus Clayton, Lovett GU359210; Sporobolus laxus B. K. Simon, Simon 2179, Handy & Bygott (DSM), Tanzania, KM010408; 4166 (MEL), Australia, KM010438; Sporobolus lin- Sporobolus dinklagei Mez, Hale 11 (US), Liberia, earifolius Nicora, Reitz 5292 (US), Brazil, KM010409; Sporobolus domingensis (Trin.) Kunth, KM010439; Sporobolus ludwigii Hochst., Smook Swallen 10669 (US), U.S.A., KM010410; Sporobolus 2857 (US), South Africa, KM010440; Sporobolus eylesii Stent & J.M. Rattray, Wiche 717 (US), Malawi, marginatus Hochst. ex A. Rich., Leippert 5101 (US), KM010411; Sporobolus farinosus Hosok., Wood Uganda, KM010441; Sporobolus marginatus Hochst. 3275 & Perlman (US), Guam, KM010412; Spo- ex A. Rich., Rattray 664 (US), Zimbabwe, KM010442; robolus fertilis (Steud.) Clayton, Gould 13535 (US), Sporobolus microprotus Stapf, Laegaard 17894 & Sri Lanka, KM010413; (Steud.) Traore (US), Senegal, KM010443; Sporobolus mitch- Clayton, Raulerson 775 (US), Guam, KM010414; ellii (Trin.) C. E. Hubb. ex S. T. Blake, Forster 22301 Sporobolus festivus Hochst. ex A. Rich., Peterson (MEL), Australia, KM010444; Sporobolus molleri 23853, Soreng & Romaschenko (US), Tanzania, Hack., Gereau 5790, Mbago & Kayombo (DSM), KM010415; Sporobolus mbriatus (Trin.) Nees, Pe- Tanzania, KM010445; Sporobolus molleri Hack., terson 24206, Soreng & Romaschenko (US), Tanza- Rwaburindore 2183 (US), Uganda, KM010446; Spo- nia, KM010416; Sporobolus mbriatus (Trin.) Nees, robolus montanus (Hook. f.) Engl., Dusen 420 (US), Peterson 24241, Soreng & Romaschenko (US), Tan- Cameroon, KM010447; Sporobolus myrianthus zania, KM010417; Sporobolus mbriatus (Trin.) Benth., Gereau 3491, Lovett & Kayombo (DSM), Tan- Nees, Peterson 24280, Soeng & Romaschenko (US), zania, KM010448; Sporobolus natalensis (Steud.) T. Tanzania, KM010418; Sporobolus exuosus (Thurb. Durand & Schinz, Eddie 1141 (MEL), Australia, ex Vasey) Rydb., Reeder 5477 & Reeder (US), U.S.A., KM010449; Sporobolus nealleyi Vasey, Peterson KM010419; Sporobolus exuosus (Thurb. ex Vasey) 17839, Valdes- Reyna & Hinton (US), Mexico, Rydb., Valdes- Reyna 2014 & Peterson (CIIDIR), KM010450; Sporobolus nealleyi Vasey, Villarreal Mexico, KM010420; Sporobolus giganteus Nash, 1991, Carranza & Valdez (CIIDIR), Mexico, Page 2628 (US), U.S.A., KM010422; Sporobolus KM010451; Sporobolus neglectus Nash, Theodore greenwayi Napper, Greenway 12526 (US), Tanzania, 5890 & Cochrane (US), U.S.A., KM010452; Spo- KM010423; Sporobolus helvolus (Trin.) T. Durand & robolus nervosus Hochst., Wood 2021 (US), , 150 MEMOIRS OF THE NEW YORK BOTANICAL GARDEN [VOL. 118

KM010453; Sporobolus nitens Stent, Laegaard Chiov., Bally 15581 & Melville (DSM), Somalia, 15893 (US), Zimbabwe, KM010454; Sporobolus KM010482; Sporobolus ruspolianus Chiov., Flem- oxylepsis Mez, Schlieben 6158 (US), Tanzania, ming 2136 (US), Somalia, KM010483; Sporobolus KM010455; Sporobolus palmeri Scribn., Peterson ruspolianus Chiov., McKinnon s.n. (US), Somalia, 24862 & Romaschenko (US), Mexico, KM010457; KM010421; Sporobolus sanguineus Rendle, Gereau Sporobolus palmeri Scribn., Peterson 24918 & Ro- 6014, Mbago, Kayonbo & Lyanga (DSM), Tanzania, maschenko (US), Mexico, KM010458; Sporobolus KM010485; Sporobolus scabridus S. T. Blake, Forster palmeri Scribn., Peterson 24955a & Romaschenko 20462 (MEL), Australia, KM010486; Sporobolus (US), Mexico, KM010459; Sporobolus palmeri scabri orus Stapf ex Massey, Troupin 1319 (US), Scribn., Peterson 24955b & Romaschenko (US), Congo (Kinshasa) Dem. Rep., KM010487; Spo- Mexico, KM010460; Sporobolus panicoides A. robolus sessilis B. K. Simon, Senaratne E6095-1 (US), Rich., Smook 9865 (US), South Africa, KM010461; Australia, KM010488; Sporobolus silveanus Swallen, Sporobolus pectinellus Mez, Fay 7131 (US), Central Waller 3128 & Bauml (US), U.S.A., KM010489; Spo- African Republic, KM010462; Sporobolus pectinellus robolus smutsii Stent, Oakes 1454 (US), South Africa, Mez, Peterson 23978, Soreng & Romaschenko (US), KM010490; Sporobolus somalensis Chiov., Boalev Tanzania, KM010463; Sporobolus pellucidus Hochst., 317 (US), Somalia, KM010491; Sporobolus somalen- Fitzgerald 5226 (US), Tanzania, KM010463; sis Chiov., Hemming 2022 (US), Somalia, KM010492; Sporobolus phleoides Hack., Venturi 2039 (US), Ar- (Vahl) Kunth, Baldini s.n. (US), gentina, KM010465; Sporobolus phyllotrichus , KM010493; Sporobolus spicatus (Vahl) Hochst., Greenway 11844 & Kanuri (US), Tanzania, Kunth, Laegaard 17790 & Traore (US), Senegal, KM010466; Sporobolus pilifer (Trin.) Kunth, Peter- KM010494; Sporobolus spicatus (Vahl) Kunth, Pe- son 24012, Soreng & Romaschenko (US), Tanzania, terson 24055, Soreng & Romaschenko (US), Tanza- KM010467; Sporobolus pinetorum Weakley & P.M. nia, KM010495; Sporobolus spicatus (Vahl) Kunth, Peterson, Peterson 14233, Weakley & LeBlond (US), Peterson 24230, Soreng & Romaschenko (US), Tan- U.S.A., GU359211; Sporobolus pseudairoides Parodi, zania, KM010496; Sporobolus spiciformis Swallen, Wasum 2670 (US), Brazil, KM010468; Sporobolus Garcia 2638 (CIIDIR), Mexico, KM010497; Spo- pungens (Schreb.) Kunth, Durandi s.n. (US), Spain, robolus spiciformis Swallen, Garcia 2814 (CIIDIR), KM010469; Sporobolus pungens (Schreb.) Kunth, Zo- Mexico, KM010497; Sporobolus splendens Swallen, hary 489 & Amdursky (US), Israel, KM010470; Spo- King 1687 (US), Mexico, KM010499; Sporobolus robolus purpurascens (Sw.) Ham., Peterson 9453 & stapanus Gand., Laegaard 15939 (US), Zimbabwe, Judziewicz (US), Ec uador, KM010471; Sporobolus KM010500; Sporobolus stolzii Mez, Peterson 23946, purpurascens (Sw.) Ham., Swallen 10179 (US), U.S.A., Soreng & Romaschenko (US), Tanzania, KM010501; KM010472; Sporobolus purpurascens (Sw.) Ham., Sporobolus stolzii Mez, Peterson 24133, Soreng & Trouart 25 (US), U.S.A., KM010473; Sporobolus py- Romaschenko (US), Tanzania, KM010502; Spo- ramidalis P. Beauv., Peterson 24150, Soreng & Ro- robolus stolzii Mez, Richards 21377 (US), , maschenko (US), Tanzania, KM010474; Sporobolus KM010503; Sporobolus subglobosus Stapf ex C.E. pyramidalis P. Beauv., Senaratne E6082-11 (US), Aus- Hubb., Gambaga 581 (US), Ghana, KM010504; Spo- tralia, KM010475; Sporobolus pyramidatus (Lam.) robolus subulatus Hack., Peterson 24317, Soreng & Hitchc., Garcia 3757 (CIIDIR), Mexico, KM010476; Romaschenko (US), Tanzania, KM010505; Spo- Sporobolus pyramidatus (Lam.) Hitchc., Goodding robolus tenacissimus (L. f.) P. Beauv., Rusby 55 (US), 191-45 (US), U.S.A., KM010477; Sporobolus py- , KM010506; Sporobolus tenellus (Spreng.) ramidatus (Lam.) Hitchc., Peterson 18994, Gonzales, Kunth, Smook 2874 (US), South Africa, KM010507; Car ter, Rosen & Guaglianone (US), Mexico, Sporobolus tenuissimus (Mart. ex Schrank) Kuntze, KM010478; Sporobolus pyramidatus (Lam.) Hitchc, Peterson 9523 & Judziewicz (US), Ec ua dor, Peterson 21163, Saarela, Rosen & Reid (US), Mex- KM010508; Sporobolus teretifolius R.M. Harper, ico, GU359228; Sporobolus pyramidatus (Lam.) McDonald 9988 (US), U.S.A., KM010509; Spo- Hitchc., Peterson 24868 & Romaschenko (US), Mex- robolus teretifolius R.M. Harper, Peterson 14232, ico, KM010479; Sporobolus pyramidatus (Lam.) Weakley & LeBlond (US), U.S.A., GU359199; Spo- Hitchc., Peterson 8920, Annable & Poston (US), Ec- robolus texanus Vasey, Churchill 2645 & Kaul (US), uador, KM010480; Sporobolus rigens (Trin.) Desv., U.S.A., KM010509; Sporobolus tourneuxii Coss., Peterson 19224, Soreng, Salariado & Panizza (US), Adam 19416 (US), Mauritania, KM010511; Spo- Argentina, GU359213; Sporobolus robustus Kunth, robolus trichodes Hitchc., Rzedowski 39901 (CII- Laegaard 17398, Goudiaby, Madesn, Samba & Traore DIR), Mexico, KM010512; Sporobolus uniglumis (US), Senegal, KM010481; Sporobolus ruspolianus Stent & J.M. Rattray, Robinson 48 (US), Zambia, 2017] PETERSON ET AL.: SPOROBOLINAE, CHLORIDOIDEAE (POACEAE) 151

KM010513; Sporobolus vagini orus (Torr. ex A. setulosa (Trin.) C. E. Hubb., Inckennon 181 (US), So- Gray) Alph. Wood, Rogers 40059 (US), U.S.A., malia, KM010526; Urochondra setulosa (Trin.) C.E. KM010514; Sporobolus vagini orus (Torr. ex A. Hubb., Rechinger 27496 (US), Pakistan, KM010527; Gray) Alph. Wood, Wherry s.n. (US), U.S.A., Zoysia japonica Steud., Kuragadake s.n. (US), , KM010515; Sporobolus verdcourtii Napper, Vesey- GU359196; Zoysia macrantha subsp. walshii M.E. Fitzgerald 5336 (US), Kenya, KM010516; Sporobolus Nightingale, Loch 435 (US), Australia, GU359197; virginicus (L.) Kunth, Peterson 14311, Soreng, Rosen- Zoysia macrantha Desv., Soreng 5913 & Peterson berg & Macfarlane (US), Australia, KM010517; Spo- (US), Australia, GU359142; CYNODONTEAE: Ele- robolus virginicus (L.) Kunth, Peterson 15683 & usininae: Chloris barbata Sw., Peterson 22255 & Soreng (US), , GU359215; Sporobolus virginicus Saarela (US), Mexico, GU359320; Cynodon plecto- (L.) Kunth, Peterson 23820, Soreng & Romaschenko stachyus (K. Schum.) Pilg., Troupin 11610 (US), (US), Tanzania, KM010518; Sporobolus virginicus Rwanda, GU359247; Eleusine indica (L.) Gaetrn., Pe- (L.) Kunth, Whistler 6132 (US), Polynesia, terson 21362, Saarela & Flores Villegas (US), Mex- KM010519; Munro ex Scribn., ico, GU359338; Gymnopogoninae: Gymnopogon Peterson 10638 & Annable (US), Mexico, KM010520; grandi orus Roseng., B. R. Arill. & Izag., Peterson Sporobolus wrightii Munro ex Scribn., Peterson 16642 & Refulio- Rodriguez (US), Peru, GU359200; 19841 & Lara- Contreras (US), Mexico, GU359216; *Leptothrium rigidum Kunth, Davidse 3281 (MO), Sporobolus wrightii Munro ex Scribn., Peterson , KF827541; Tripogoninae: Eragrostiella 24841 & Romaschenko (US), Mexico, KM010521; leioptera (Stapf) Bor, Chand 7961 (US), India, Thellungia advena Stapf, Belson 1930 (US), Austra- GU359305; Melanocenchris abyssinica (R.Br. ex Fre- lia, KM010522; Thellungia advena Stapf, Lazarides sen.) Hochst., DeWilde 6912 (MO), Ethiopia, 4185 (US), Australia, KM010523; Urochondra setu- JQ345198; Oropetium capense Stapf, Venter 9939 & losa (Trin.) C.E. Hubb., Bailey 10868 (US), Somalia, Venter (MO), South Africa, KM010324; Tripogon KM010524; Urochondra setulosa (Trin.) C. E. Hubb., multi orus Miré & H. Gillet, Spellenberg 7441 (MO), Baldini s.n. (US), Oman, KM010525; Urochondra Yemen, JQ345204.

Printed from NYBG Press Website. Published by NYBG Press, 2900 Southern Boulevard, Bronx, NY 10458-5126

This paper, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be in- vented, without prior written permission from the Publisher.

Published Online: 23 June 2017