Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service

Total Page:16

File Type:pdf, Size:1020Kb

Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service Responses of Plant Communities to Grazing in the Southwestern United States Department of Agriculture United States Forest Service Rocky Mountain Research Station Daniel G. Milchunas General Technical Report RMRS-GTR-169 April 2006 Milchunas, Daniel G. 2006. Responses of plant communities to grazing in the southwestern United States. Gen. Tech. Rep. RMRS-GTR-169. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 126 p. Abstract Grazing by wild and domestic mammals can have small to large effects on plant communities, depend- ing on characteristics of the particular community and of the type and intensity of grazing. The broad objective of this report was to extensively review literature on the effects of grazing on 25 plant commu- nities of the southwestern U.S. in terms of plant species composition, aboveground primary productiv- ity, and root and soil attributes. Livestock grazing management and grazing systems are assessed, as are effects of small and large native mammals and feral species, when data are available. Emphasis is placed on the evolutionary history of grazing and productivity of the particular communities as deter- minants of response. After reviewing available studies for each community type, we compare changes in species composition with grazing among community types. Comparisons are also made between southwestern communities with a relatively short history of grazing and communities of the adjacent Great Plains with a long evolutionary history of grazing. Evidence for grazing as a factor in shifts from grasslands to shrublands is considered. An appendix outlines a new community classification system, which is followed in describing grazing impacts in prior sections. The Author Daniel G. Milchunas is Research Scientist, Forest, Range, and Watershed Stewardship Department, Colorado State University, Fort Collins. Acknowledgments Primary funding was provided by the USFS Rocky Mountain Research Station, with additional support from the Shortgrass Steppe Long-Term Ecological Research project. Curt Flather of the USDA Forest Service coordinated the overall project. Curt Flather, Pat Zwartjes, Charlie McDonald, and Deborah Finch of the Forest Service provided reviews of an early draft. Jane Bock and Rex Pieper gave construc- tive and useful review comments that improved the final version of the manuscript. I thank Lane Eskew for technical editing and Joyce Vandewater for help with graphics. Norman Ambos of the Forest Service provided unpublished data for Dutchwoman butte. Cover photo: On the 300-square-mile Jornada Experimental Range near Las Cruces, New Mexico, technicians Rob Dunlap (left) and John Smith round up cattle. Photo by Scott Bauer. You may order additional copies of this publication by sending your mail- ing information in label form through one of the following media. Please specify the publication title and series number. Fort Collins Service Center Telephone (970) 498-1392 FAX (970) 498-1122 E-mail [email protected] Web site http://www.fs.fed.us/rm Mailing address Publications Distribution Rocky Mountain Research Station 240 West Prospect Road Fort Collins, CO 80526 Rocky Mountain Research Station Natural Resources Research Center 2150 Centre Avenue, Building A Fort Collins, CO 80526 Executive Summary Two primary factors determine a plant community’s relative response to livestock grazing: the evolutionary history of large-herbivore grazing and the plant community’s aboveground primary productivity. Bison were generally not part of the evolutionary history in the southwest, except for the edge of their range (less intense grazing) in far eastern New Mexico where a smaller bodied (more selective) grazer exerted possibly different pressure than that occurring in the central Great Plains. Because aridity (low productivity) and grazing are convergent selection pressures, communities of the southwestern United States may be intermediate in their response to livestock grazing. However, grazing by domestic livestock is controversial in the southwest, and grazing has been considered a reason for shrub encroachment in many communities. This report assesses the effects of grazing on 25 plant communities of the southwestern United States, in terms of plant species composition, aboveground primary productivity, and root and soil attributes. All possible studies were considered in an attempt to 1) determine the state of knowledge for each community and suggest where research is lacking, 2) assess the relative responses among communities, 3) present an unbiased, literature-based overview of grazing and the shrub encroachment issue, and 4) broadly view grazing responses in the southwest relative to responses observed in adjacent semiarid to subhumid Great Plains communities that have a long evolutionary history of grazing by bison. Responses of individ- ual communities are summarized at the end of each section. Community response to grazing increased, following theoretical predictions, as such: unproductive/long history < unproduc- tive/short history < productive/short history < productive/long history. However, variables such as precipitation, grazing intensity, and years of protection from grazing could much better predict community response on the Great Plains than the southwestern United States. This degree of unpredictability for the southwest, together with a large difference between never- grazed geologic refuges and human-made exclosure comparisons with grazed treatments in the southwest, raises questions as to whether some livestock effects may have been historic, or whether southwestern communities require temporally rare and unpredictable environmen- tal events for change to occur. Riparian communities were particularly responsive to grazing. The response of a plant species common to both Great Plains and some southwestern com- munities was not the same in the two locations. In general, southwestern communities were more sensitive to grazing than the adjacent shortgrass steppe, but were similar in response to other semiarid/arid and subhumid communities with a short evolutionary history of grazing. Further, the temporal variability in plant community species composition due to weather ap- pears to be much greater in southwestern than in Great Plains communities. The majority of evidence from experimental literature indicates that shrub encroachment occurs into ungrazed sites as well as grazed sites. There are four possibilities that could still invoke livestock grazing as a factor in this conversion of communities: 1) previous very heavy grazing during the 1800s resulted in an alternate stable state, 2) grazing interacts with fire, 3) there are highly erodible areas where long-term studies have not been in place, where current grazing could initiate alternate stable states, and 4) grazing interacts with some other factor such as climate or rodents. The evidence for these are reviewed and found to be either weak or experimentally untestable under current conditions but having factors that weaken a supporting argument. There is an increasing amount of evidence implicating changes in the seasonal proportions of precipitation as a primary cause of community change in the south- west. However, no one factor alone appears to adequately explain the complex spatial pattern of community change through parts of this region. Intense non-selective grazing is an exogenous disturbance in most southwestern commu- nities. From a conservation standpoint, there are places where grazing by livestock should be encouraged in the absence of the native grazer, and other places where livestock grazing should be discouraged or at least cautiously managed because similar grazers were not pres- ent historically. From a production standpoint, light to moderate grazing can be sustainable in the southwest in many situations. For some communities there are little data to base conclu- sions, and for other communities there are contradictory findings. However, the fate of private lands will often closely be coupled to use of public lands. Alternatives to ranching such as development and subdivision for ranchettes or agriculture may potentially be a greater threat to the integrity of southwestern ecosystems than ranching of native communities. Contents Executive Summary ............................................................................................................ i Introduction ......................................................................................................................... 1 History of Grazing by Native and Domestic Large Herbivores ...................................... 3 The Importance of Evolutionary History and Environmental Conditions in Grazing Responses .................................................................................................. 3 Evolutionary History of Grazing in Southwestern U.S. Plant Communities ................. 4 History of Grazing by Domestic, Feral, and Exotic Animals in the Southwest United States .......................................................................................... 7 Grazing Effects on Plant Communities ............................................................................ 9 Alpine Tundra ............................................................................................................... 9 Boreal Forest ............................................................................................................. 10 Mixed Conifer Forest ................................................................................................
Recommended publications
  • Calochortus Flexuosus S. Watson (Winding Mariposa Lily): a Technical Conservation Assessment
    Calochortus flexuosus S. Watson (winding mariposa lily): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project July 24, 2006 Susan Spackman Panjabi and David G. Anderson Colorado Natural Heritage Program Colorado State University Fort Collins, CO Peer Review Administered by Center for Plant Conservation Panjabi, S.S. and D.G. Anderson. (2006, July 24). Calochortus flexuosus S. Watson (winding mariposa lily): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/projects/scp/assessments/calochortusflexuosus.pdf [date of access]. ACKNOWLEDGMENTS This research was facilitated by the helpfulness and generosity of many experts, particularly Leslie Stewart, Peggy Fiedler, Marilyn Colyer, Peggy Lyon, Lynn Moore, and William Jennings. Their interest in the project and time spent answering questions were extremely valuable, and their insights into the distribution, habitat, and ecology of Calochortus flexuosus were crucial to this project. Thanks also to Greg Hayward, Gary Patton, Jim Maxwell, Andy Kratz, and Joy Bartlett for assisting with questions and project management. Thanks to Kimberly Nguyen for her work on the layout and for bringing this assessment to Web publication. Jane Nusbaum and Barbara Brayfield provided crucial financial oversight. Peggy Lyon and Marilyn Colyer provided valuable insights based on their experiences with C. flexuosus. Leslie Stewart provided information specific to the San Juan Resource Area of the Bureau of Land Management, including the Canyons of the Ancients National Monument. Annette Miller provided information on C. flexuosusseed storage status. Drs. Ron Hartman and Ernie Nelson provided access to specimens of C.
    [Show full text]
  • Summary of Offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019
    Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 3841 Number of items in BX 301 thru BX 463 1815 Number of unique text strings used as taxa 990 Taxa offered as bulbs 1056 Taxa offered as seeds 308 Number of genera This does not include the SXs. Top 20 Most Oft Listed: BULBS Times listed SEEDS Times listed Oxalis obtusa 53 Zephyranthes primulina 20 Oxalis flava 36 Rhodophiala bifida 14 Oxalis hirta 25 Habranthus tubispathus 13 Oxalis bowiei 22 Moraea villosa 13 Ferraria crispa 20 Veltheimia bracteata 13 Oxalis sp. 20 Clivia miniata 12 Oxalis purpurea 18 Zephyranthes drummondii 12 Lachenalia mutabilis 17 Zephyranthes reginae 11 Moraea sp. 17 Amaryllis belladonna 10 Amaryllis belladonna 14 Calochortus venustus 10 Oxalis luteola 14 Zephyranthes fosteri 10 Albuca sp. 13 Calochortus luteus 9 Moraea villosa 13 Crinum bulbispermum 9 Oxalis caprina 13 Habranthus robustus 9 Oxalis imbricata 12 Haemanthus albiflos 9 Oxalis namaquana 12 Nerine bowdenii 9 Oxalis engleriana 11 Cyclamen graecum 8 Oxalis melanosticta 'Ken Aslet'11 Fritillaria affinis 8 Moraea ciliata 10 Habranthus brachyandrus 8 Oxalis commutata 10 Zephyranthes 'Pink Beauty' 8 Summary of offerings in the PBS Bulb Exchange, Dec 2012- Nov 2019 Most taxa specify to species level. 34 taxa were listed as Genus sp. for bulbs 23 taxa were listed as Genus sp. for seeds 141 taxa were listed with quoted 'Variety' Top 20 Most often listed Genera BULBS SEEDS Genus N items BXs Genus N items BXs Oxalis 450 64 Zephyranthes 202 35 Lachenalia 125 47 Calochortus 94 15 Moraea 99 31 Moraea
    [Show full text]
  • Biological Technical Report for the Nichols Mine Project
    Biological Technical Report for the Nichols Mine Project June 8, 2016 Prepared for: Nichols Road Partners, LLC P.O. Box 77850 Corona, CA 92877 Prepared by: Alden Environmental, Inc. 3245 University Avenue, #1188 San Diego, CA 92104 Nichols Road Mine Project Biological Technical Report TABLE OF CONTENTS Section Title Page 1.0 INTRODUCTION ......................................................................................................1 1.1 Project Location ..................................................................................................1 1.2 Project Description ..............................................................................................1 2.0 METHODS & SURVEY LIMITATIONS .................................................................1 2.1 Literature Review ................................................................................................1 2.2 Biological Surveys ..............................................................................................2 2.2.1 Vegetation Mapping..................................................................................3 2.2.2 Jurisdictional Delineations of Waters of U.S. and Waters of the State ....4 2.2.3 Sensitive Species Surveys .........................................................................4 2.2.4 Survey Limitations ....................................................................................5 2.2.5 Nomenclature ............................................................................................5 3.0 REGULATORY
    [Show full text]
  • Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument
    Schmidt, Drost, Halvorson In Cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument Plant and Vertebrate Vascular U.S. Geological Survey Southwest Biological Science Center 2255 N. Gemini Drive Flagstaff, AZ 86001 Open-File Report 2006-1163 Southwest Biological Science Center Open-File Report 2006-1163 November 2006 U.S. Department of the Interior U.S. Geological Survey National Park Service In cooperation with the University of Arizona, School of Natural Resources Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument By Cecilia A. Schmidt, Charles A. Drost, and William L. Halvorson Open-File Report 2006-1163 November, 2006 USGS Southwest Biological Science Center Sonoran Desert Research Station University of Arizona U.S. Department of the Interior School of Natural Resources U.S. Geological Survey 125 Biological Sciences East National Park Service Tucson, Arizona 85721 U.S. Department of the Interior Dirk Kempthorne, Secretary U.S. Geological Survey Mark Myers, Director U.S. Geological Survey, Reston, Virginia: 2006 Note: This document contains information of a preliminary nature and was prepared primarily for internal use in the U.S. Geological Survey. This information is NOT intended for use in open literature prior to publication by the investigators named unless permission is obtained in writing from the investigators named and from the Station Leader. Suggested Citation Schmidt, C. A., C. A. Drost, and W. L. Halvorson 2006. Vascular Plant and Vertebrate Inventory of Montezuma Castle National Monument. USGS Open-File Report 2006-1163.
    [Show full text]
  • A Vegetation Map of the Valles Caldera National Preserve, New
    ______________________________________________________________________________ A Vegetation Map of the Valles Caldera National Preserve, New Mexico ______________________________________________________________________________ A Vegetation Map of Valles Caldera National Preserve, New Mexico 1 Esteban Muldavin, Paul Neville, Charlie Jackson, and Teri Neville2 2006 ______________________________________________________________________________ SUMMARY To support the management and sustainability of the ecosystems of the Valles Caldera National Preserve (VCNP), a map of current vegetation was developed. The map was based on aerial photography from 2000 and Landsat satellite imagery from 1999 and 2001, and was designed to serve natural resources management planning activities at an operational scale of 1:24,000. There are 20 map units distributed among forest, shrubland, grassland, and wetland ecosystems. Each map unit is defined in terms of a vegetation classification that was developed for the preserve based on 348 ground plots. An annotated legend is provided with details of vegetation composition, environment, and distribution of each unit in the preserve. Map sheets at 1:32,000 scale were produced, and a stand-alone geographic information system was constructed to house the digital version of the map. In addition, all supporting field data was compiled into a relational database for use by preserve managers. Cerro La Jarra in Valle Grande of the Valles Caldera National Preserve (Photo: E. Muldavin) 1 Final report submitted in April 4, 2006 in partial fulfillment of National Prak Service Award No. 1443-CA-1248- 01-001 and Valles Caldrea Trust Contract No. VCT-TO 0401. 2 Esteban Muldavin (Senior Ecologist), Charlie Jackson (Mapping Specialist), and Teri Neville (GIS Specialist) are with Natural Heritage New Mexico of the Museum of Southwestern Biology at the University of New Mexico (UNM); Paul Neville is with the Earth Data Analysis Center (EDAC) at UNM.
    [Show full text]
  • Diversidad Y Distribución De La Familia Asteraceae En México
    Taxonomía y florística Diversidad y distribución de la familia Asteraceae en México JOSÉ LUIS VILLASEÑOR Botanical Sciences 96 (2): 332-358, 2018 Resumen Antecedentes: La familia Asteraceae (o Compositae) en México ha llamado la atención de prominentes DOI: 10.17129/botsci.1872 botánicos en las últimas décadas, por lo que cuenta con una larga tradición de investigación de su riqueza Received: florística. Se cuenta, por lo tanto, con un gran acervo bibliográfico que permite hacer una síntesis y actua- October 2nd, 2017 lización de su conocimiento florístico a nivel nacional. Accepted: Pregunta: ¿Cuál es la riqueza actualmente conocida de Asteraceae en México? ¿Cómo se distribuye a lo February 18th, 2018 largo del territorio nacional? ¿Qué géneros o regiones requieren de estudios más detallados para mejorar Associated Editor: el conocimiento de la familia en el país? Guillermo Ibarra-Manríquez Área de estudio: México. Métodos: Se llevó a cabo una exhaustiva revisión de literatura florística y taxonómica, así como la revi- sión de unos 200,000 ejemplares de herbario, depositados en más de 20 herbarios, tanto nacionales como del extranjero. Resultados: México registra 26 tribus, 417 géneros y 3,113 especies de Asteraceae, de las cuales 3,050 son especies nativas y 1,988 (63.9 %) son endémicas del territorio nacional. Los géneros más relevantes, tanto por el número de especies como por su componente endémico, son Ageratina (164 y 135, respecti- vamente), Verbesina (164, 138) y Stevia (116, 95). Los estados con mayor número de especies son Oaxa- ca (1,040), Jalisco (956), Durango (909), Guerrero (855) y Michoacán (837). Los biomas con la mayor riqueza de géneros y especies son el bosque templado (1,906) y el matorral xerófilo (1,254).
    [Show full text]
  • Santa Rita Experimental Range: 100 Years (1903 to 2003) of Accomplishments and Contributions; Conference Proceedings; 2003 October 30–November 1; Tucson, AZ
    Michael A. Crimmins Theresa M. Mau-Crimmins Climate Variability and Plant Response at the Santa Rita Experimental Range, Arizona Abstract: Climatic variability is reflected in differential establishment, persistence, and spread of plant species. Although studies have investigated these relationships for some species and functional groups, few have attempted to characterize the specific sequences of climatic conditions at various temporal scales (subseasonal, seasonal, and interannual) associated with proliferation of particular species. Research has primarily focused on the climate conditions concurrent with or occurring just prior to a vegetation response. However, the cumulative effect of antecedent conditions taking place for several consecutive seasons may have a greater influence on plant growth. In this study, we tested whether the changes in overall cover of plant species can be explained by antecedent climate conditions. Temperature, precipitation, and Palmer Drought Severity Index (PDSI) values at various lags were correlated with cover. PDSI had the strongest correlations for several drought-intolerant species at lags up to six seasons prior to the sampling date. Precipita- tion, surprisingly, did not correlate with species cover as strongly as PDSI. This is attributed to PDSI capturing soil moisture conditions, which are important to plant growth, better than raw precipi- tation measurements. Temperature correlations were weak and possessed little explanatory power as predictors of species cover. Acknowledgments: Data sets were provided by the Santa Rita Experimental Range Digital Database. Funding for the digitization of these data was provided by the USDA Forest Service Rocky Mountain Research Station and the University of Arizona. Introduction ______________________________________________________ Climatic variability is reflected in differential establishment, persistence, and spread of plant species.
    [Show full text]
  • Zion National Park What's up and Blooming 2003
    Zion National Park - What's Up and Blooming - 2003 Copyright 2000-2004 Margaret Malm I Zion National Park What's Up and Blooming 2003 Table of Contents Foreword 0 Part I Welcome 2 Part II April 4, 2003 2 Part III April 11, 2003 6 Part IV April 24, 2003 10 Part V May 3, 2003 15 Part VI May 18, 2003 19 Part VII May 23, 2003 23 Part VIII Pictures by color 29 1 White flowers... ................................................................................................................................ 29 2 Pink to red/red-violet............... .................................................................................................................... 30 3 Blue or purple.... ............................................................................................................................... 32 4 Yellow or orange........ ........................................................................................................................... 33 5 Variable colors..... .............................................................................................................................. 34 6 Trees/inconspicuous............... .................................................................................................................... 35 Copyright 2000-2004 Margaret Malm Welcome 2 1 Welcome Zion National Park What's up --and Blooming? 2003 We're having a really good flower bloom this year, at least so far. Finally got a little rain at just the right time. We'll need more, though, if the season is to contimue
    [Show full text]
  • Ajo Peak to Tinajas Altas: a Flora of Southwestern Arizona
    Felger, R.S., S. Rutman, and J. Malusa. 2014. Ajo Peak to Tinajas Altas: A flora of southwestern Arizona. Part 6. Poaceae – grass family. Phytoneuron 2014-35: 1–139. Published 17 March 2014. ISSN 2153 733X AJO PEAK TO TINAJAS ALTAS: A FLORA OF SOUTHWESTERN ARIZONA Part 6. POACEAE – GRASS FAMILY RICHARD STEPHEN FELGER Herbarium, University of Arizona Tucson, Arizona 85721 & Sky Island Alliance P.O. Box 41165, Tucson, Arizona 85717 *Author for correspondence: [email protected] SUSAN RUTMAN 90 West 10th Street Ajo, Arizona 85321 JIM MALUSA School of Natural Resources and the Environment University of Arizona Tucson, Arizona 85721 [email protected] ABSTRACT A floristic account is provided for the grass family as part of the vascular plant flora of the contiguous protected areas of Organ Pipe Cactus National Monument, Cabeza Prieta National Wildlife Refuge, and the Tinajas Altas Region in southwestern Arizona. This is the second largest family in the flora area after Asteraceae. A total of 97 taxa in 46 genera of grasses are included in this publication, which includes ones established and reproducing in the modern flora (86 taxa in 43 genera), some occurring at the margins of the flora area or no long known from the area, and ice age fossils. At least 28 taxa are known by fossils recovered from packrat middens, five of which have not been found in the modern flora: little barley ( Hordeum pusillum ), cliff muhly ( Muhlenbergia polycaulis ), Paspalum sp., mutton bluegrass ( Poa fendleriana ), and bulb panic grass ( Zuloagaea bulbosa ). Non-native grasses are represented by 27 species, or 28% of the modern grass flora.
    [Show full text]
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • IP Athos Renewable Energy Project, Plan of Development, Appendix D.2
    APPENDIX D.2 Plant Survey Memorandum Athos Memo Report To: Aspen Environmental Group From: Lehong Chow, Ironwood Consulting, Inc. Date: April 3, 2019 Re: Athos Supplemental Spring 2019 Botanical Surveys This memo report presents the methods and results for supplemental botanical surveys conducted for the Athos Solar Energy Project in March 2019 and supplements the Biological Resources Technical Report (BRTR; Ironwood 2019) which reported on field surveys conducted in 2018. BACKGROUND Botanical surveys were previously conducted in the spring and fall of 2018 for the entirety of the project site for the Athos Solar Energy Project (Athos). However, due to insufficient rain, many plant species did not germinate for proper identification during 2018 spring surveys. Fall surveys in 2018 were conducted only on a reconnaissance-level due to low levels of rain. Regional winter rainfall from the two nearest weather stations showed rainfall averaging at 0.1 inches during botanical surveys conducted in 2018 (Ironwood, 2019). In addition, gen-tie alignments have changed slightly and alternatives, access roads and spur roads have been added. PURPOSE The purpose of this survey was to survey all new additions and re-survey areas of interest including public lands (limited to portions of the gen-tie segments), parcels supporting native vegetation and habitat, and windblown sandy areas where sensitive plant species may occur. The private land parcels in current or former agricultural use were not surveyed (parcel groups A, B, C, E, and part of G). METHODS Survey Areas: The area surveyed for biological resources included the entirety of gen-tie routes (including alternates), spur roads, access roads on public land, parcels supporting native vegetation (parcel groups D and F), and areas covered by windblown sand where sensitive species may occur (portion of parcel group G).
    [Show full text]
  • This Dissertation Has Been Microfilmed Exactly As Received
    CHARACTERIZATION OF RANGE SITES IN THE EMPIRE VALLEY, ARIZONA Item Type text; Dissertation-Reproduction (electronic) Authors Araújo Filho, João Ambrósio de Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 09:54:07 Link to Item http://hdl.handle.net/10150/289319 76-8672 DE ARAUJO FILHO, Joao Ambrosio, 1941- CHARACTERIZATION OF RANGE SITES IN THE EMPIRE VALLEY, ARIZONA. The University of Arizona, Ph.D., 1975 Agriculture, range management Xerox University Microfilms, Ann Arbor, Michigan 48io6 THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED. CHARACTERIZATION OF RANGE SITES IN THE EMPIRE VALLEY, ARIZONA by Joao Ambrosio de Araujo Filho A Dissertation Submitted to the Faculty of the SCHOOL OF RENEWABLE NATURAL RESOURCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN RANGE MANAGEMENT In the Graduate College THE UNIVERSITY OF ARIZONA 19 7 5 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by Joao Ambrosio de Araujo Filho entitled Characterization of Range Sites in the Empire Valley, Arizona be accepted as fulfilling the dissertation requirement of the degree of Doctor of Philosophy Dissertation Director Date After inspection of the final copy of the dissertation, the following members of the Final Examination Committee concur in its approval and recommend its acceptance:"" f/jjiN-tt* % $e/A /?7.f 9- JW /9T4- X^/ ^75- This approval and acceptance is contingent on the candidate's adequate performance and defense of this dissertation at the final oral examination.
    [Show full text]