The Bermuda Triangle: the Pragmatics, Policies, and Principles for Data Sharing in the History of the Human Genome Project
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RDA COVID-19 Recommendations and Guidelines on Data Sharing
RDA COVID-19 Recommendations and Guidelines on Data Sharing DOI: 10.15497/RDA00052 Authors: RDA COVID-19 Working Group Published: 30th June 2020 Abstract: This is the final version of the Recommendations and Guidelines from the RDA COVID19 Working Group, and has been endorsed through the official RDA process. Keywords: RDA; Recommendations; COVID-19. Language: English License: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication RDA webpage: https://www.rd-alliance.org/group/rda-covid19-rda-covid19-omics-rda-covid19- epidemiology-rda-covid19-clinical-rda-covid19-1 Related resources: - RDA COVID-19 Guidelines and Recommendations – preliminary version, https://doi.org/10.15497/RDA00046 - Data Sharing in Epidemiology, https://doi.org/10.15497/RDA00049 - RDA COVID-19 Zotero Library, https://doi.org/10.15497/RDA00051 Citation and Download: RDA COVID-19 Working Group. Recommendations and Guidelines on data sharing. Research Data Alliance. 2020. DOI: https://doi.org/10.15497/RDA00052 RDA COVID-19 Recommendations and Guidelines on Data Sharing RDA Recommendation (FINAL Release) Produced by: RDA COVID-19 Working Group, 2020 Document Metadata Identifier DOI: https://doi.org/10.15497/rda00052 Citation To cite this document please use: RDA COVID-19 Working Group. Recommendations and Guidelines on data sharing. Research Data Alliance. 2020. DOI: https://doi.org/10.15497/rda00052 Title RDA COVID-19; Recommendations and Guidelines on Data Sharing, Final release 30 June 2020 Description This is the final version of the Recommendations and Guidelines -
Francis Crick in Molecular Biology
2019 Asia-Pacific Conference on Emerging Technologies and Engineering (ACETE 2019) Francis Crick in Molecular Biology Sun Yongping College of Physic and Electronic Information, Inner Mongolia Normal University, Hohhot, China Keywords: Crick, DNA, Protein, Genetic Codes, Molecular Biology Abstract: This article is a tribute to Francis crick, a biophysicist who passed away on July 28, 2004. Francis crick, James Watson and Maurice Wilkins were jointly awarded the 1962 Nobel Prize for physiology or medicine for discovering the molecular structure of nucleic acids and its significance for information transfer in living material. It is pointed out that the diverse background and unique sensitivity of crick to science enabled him to have great insights into frontier research. He had a special capacity for prudent and logical thinking, which contributed so much to the development of molecular biology. Based on Francis crick’s academic achievements in molecular biology and by virtue of internal history approaches such as concept analysis and literature research, this paper is aimed at revealing the historical contributions of crick in a condensed way and to commemorate his work. 1. Introduction Francis crick (figure 1) was born on June 8, 1916 as an English citizen, and he left the world, aged 88. With lifelong devotion to scientific research, crick is credited as one of the central figures in the molecular revolution that swept through biology in the latter half of the twentieth century [1]. Keen on seeking after and tackling the profound problems, he developed a passion for biology although crick did research in physics at the beginning of his scientific life [2,3]. -
Autumn 2010 (Pdf)
The Genome Scientist UW Genome Sciences | www.gs.washington.edu | Volume 5 No 1 | Autumn 2010 Genome Sciences Welcomes Five New Faculty Members Dr. Elhanan Borenstein Dr. James Bruce Dr. Su-In Lee Dr. Judit Villen Dr. Alejandro Wolf-Yadlin The Genome Scientist is published by the Department of Genome Sciences at the University of Washington. For more information, please see our website, www.gs.washington.edu. NOTES FROM THE CHAIR What a time to be in Genome Sciences! The Along with our research, education continues to thrive at past two years have been an exciting, yet all levels. Our graduate program is exceptional. Incoming challenging time. students these past couple years have been simply outstand- ing; current students are publishing exciting papers; graduat- As you can see from the cover, we have ing students are securing excellent post-docs. Time to degree welcomed fi ve outstanding new faculty into is falling. In the undergraduate arena we are revamping our the Department – Elhanan Borestein, Jim basic genetics course. As part of this we have recruited Mi- Bob Waterston Bruce, Su-In Lee, Judit Villen, and Alejandro chelle Smith to join the faculty as a Lecturer. She comes from Wolf-Yadlin. They bring real strengths in a post-doctoral NSF sponsored teaching program at the Uni- computational biology and proteomics to what are already versity of Colorado and will help organize the revised genetics strong programs. The diversity of their backgrounds is strik- course. Celeste Berg and Bonnie Brewer have also created a ing, and they connect us with new areas intellectually, on “CSI-Seattle” course for a small group of incoming freshmen. -
Ethical Principles in Ethical Principles in Scientific Research Scientific Research and Publications
Hacettepe University Institute of Oncology Library ETHICAL PRINCIPLES IN SCIENTIFIC LectureRESEARCH author AND PUBLICATIONSOnlineby © Emin Kansu,M.D.,FACP ESCMID ekansu@ada. net. tr Library Lecture author Onlineby © ESCMID HACETTEPE UNIVERSITY MEDICAL CENTER Library Lecture author Onlineby © ESCMID INSTITUTE OF ONCOLOGY - HACETTEPE UNIVERSITY Ankara PRESENTATION • UNIVERSITY and RESEARCHLibrary • ETHICS – DEFINITION • RESEARCH ETHICS • PUBLICATIONLecture ETHICS • SCIENTIFIC MISCONDUCTauthor • SCIENTIFIC FRAUD AND TYPES Onlineby • HOW TO PREVENT© UNETHICAL ISSUES • WHAT TO DO FOR SCIENTIFIC ESCMIDMISCONDUCTS Library Lecture author Onlineby © ESCMID IMPACT OF TURKISH SCIENTISTS 85 % University – Based 1.78% 0.2 % 19. 300 18th ‘ACADEMIA’ UNIVERSITY Library AN INSTITUTION PRODUCING and DISSEMINATING SCIENCE Lecture BASIC FUNCTIONS author Online-- EDUCATIONby © -- RESEARCH ESCMID - SERVICESERVICE UNIVERSITY Library • HAS TO BE OBJECTIVE • HAS TO BE HONESTLecture AND ETHICAL • HAS TO PERFORM THEauthor “STATE-OF-THE ART” • HAS TO PLAYOnline THEby “ROLE MODEL” , TO BE GENUINE AND ©DISCOVER THE “NEW” • HAS TO COMMUNICATE FREELY AND HONESTLY WITH ALL THE PARTIES INVOLVED IN ESCMIDPUBLIC WHY WE DO RESEARCH ? Library PRIMARY AIM - ORIGINAL CONTRIBUTIONS TO SCIENCE Lecture SECONDARY AIM author - TOOnline PRODUCEby A PAPER - ACADEMIC© PROMOTION - TO OBTAIN AN OUTSIDE SUPPORT ESCMID SCIENTIFIC RESEARCH Library A Practice aimed to contribute to knowledge or theoryLecture , performed in disciplined methodologyauthor and Onlineby systematic approach© -
Sborník Konferenčních Příspěvků Byl Vydán Pod ISBN 978-80-7305-117-4 a Poskytnut Všem 170 Registrovaným Účastníkům Konference
111 let Nobelových cen MENDEL FORUM 2011 Projekt „Od fyziologie k medicíně“ CZ.1.07/2.3.00/09.0219, který je prezentován v rámci konference Mendel Forum 2011, je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Mendelianum MZM, Brno Ústav fyziologie FVL VFU Brno ÚŽFG AV ČR, v.v.i., Brno ISBN 978-80-7305-132-7 MENDEL FORUM 2011 25. - 26. října 2011 Dietrichsteinský palác Zelný trh, Brno PROGRAM úterý 25. října 2011 8:30 – 9:00 registrace, zahájení Sekce: OD FYZIOLOGIE K MEDICÍNĚ 9:00 – 9:30 Od fyziologie k medicíně: vzdělávací projekty (I. Fellnerová) 9:30 – 10:00 Fyziologie/medicína v Nobelových cenách (J. Doubek) Sekce: GENETIKA-MENDEL 9:30 – 10:00 Mendel Memorial Medal Mendel Lecture (S. Zadražil) 10:30 – 11:00 diskuse, přestávka s občerstvením 2 11:00 - 11:30 Mendel – neustálá výzva (J. Sekerák) 11:30 – 12:00 Mendel, Biskupský dvůr a počátky vědy na Moravě (J. Mitáček) s navazující odpolední prohlídkou Biskupského dvora středa 26. října 2011 Sekce: NOBELOVY CENY 21. STOLETÍ 9:00 – 9:30 Nobelovy ceny v novém tisícíletí (E. Matalová) 9:30 – 10:00 Helicobacter pylori (M. Heroldová) 10:00 – 10:30 Umlčování genů (M. Buchtová) 10:30 – 11:00 přestávka 3 11:00 – 11:30 Telomery a nesmrtelnost (L. Dubská) 11:30 – 12:00 In vitro fertilizace (B. Kuřecová) s navazující diskusí a občerstvením ************************************** 111 let Nobelových cen http://nobelprize.org/nobel_prizes/about/ 4 Seznam přednášejících, kontakty doc. RNDr. Marcela Buchtová, Ph.D Ústav živočišné fyziologie a genetiky AV ČR, v.v.i., Brno, Fakulta veterinárního lékařství, VFU Brno [email protected], www.iapg.cas.cz prof. -
Annual Report Fy 2018 Human Frontier Science Program Organization
APRIL 2017 APRIL 2018 — MARCH 2019 ANNUAL REPORT FY 2018 HUMAN FRONTIER SCIENCE PROGRAM ORGANIZATION The Human Frontier Science Program Organization (HFSPO) is unique, supporting international collaboration to undertake innovative, risky, basic research at the frontier of the life sciences. Special emphasis is given to the support and training of independent young investigators, beginning at the postdoctoral level. The Program is implemented by an international organisation, supported financially by Australia, Canada, France, Germany, India, Italy, Japan, the Republic of Korea, New Zealand, Norway, Singapore, Switzerland, the United Kingdom of Great Britain and Nothern Ireland, the United States of America, and the European Commission. Since 1990, over 7000 researchers from more than 70 countries have been supported. Of these, 28 HFSP awardees have gone on to receive the Nobel Prize. 2 The following documents are available on the HFSP website www.hfsp.org: Joint Communiqués (Tokyo 1992, Washington 1997, Berlin 2002, Bern 2004, Ottawa 2007, Canberra 2010, Brussels 2013, London 2016): https://www.hfsp.org/about/governance/membership Statutes of the International Human Frontier Science Program Organization: https://www.hfsp.org/about/governance/hfspo-statutes Guidelines for the participation of new members in HFSPO: https://www.hfsp.org/about/governance/membership General reviews of the HFSP (1996, 2001, 2006-2007, 2010, 2018): https://www.hfsp.org/about/strategy/reviews Updated and previous lists of awards, including titles and abstracts: -
HUMAN GENE MAPPING WORKSHOPS C.1973–C.1991
HUMAN GENE MAPPING WORKSHOPS c.1973–c.1991 The transcript of a Witness Seminar held by the History of Modern Biomedicine Research Group, Queen Mary University of London, on 25 March 2014 Edited by E M Jones and E M Tansey Volume 54 2015 ©The Trustee of the Wellcome Trust, London, 2015 First published by Queen Mary University of London, 2015 The History of Modern Biomedicine Research Group is funded by the Wellcome Trust, which is a registered charity, no. 210183. ISBN 978 1 91019 5031 All volumes are freely available online at www.histmodbiomed.org Please cite as: Jones E M, Tansey E M. (eds) (2015) Human Gene Mapping Workshops c.1973–c.1991. Wellcome Witnesses to Contemporary Medicine, vol. 54. London: Queen Mary University of London. CONTENTS What is a Witness Seminar? v Acknowledgements E M Tansey and E M Jones vii Illustrations and credits ix Abbreviations and ancillary guides xi Introduction Professor Peter Goodfellow xiii Transcript Edited by E M Jones and E M Tansey 1 Appendix 1 Photographs of participants at HGM1, Yale; ‘New Haven Conference 1973: First International Workshop on Human Gene Mapping’ 90 Appendix 2 Photograph of (EMBO) workshop on ‘Cell Hybridization and Somatic Cell Genetics’, 1973 96 Biographical notes 99 References 109 Index 129 Witness Seminars: Meetings and publications 141 WHAT IS A WITNESS SEMINAR? The Witness Seminar is a specialized form of oral history, where several individuals associated with a particular set of circumstances or events are invited to meet together to discuss, debate, and agree or disagree about their memories. The meeting is recorded, transcribed, and edited for publication. -
Downloaded Were Considered to Be True Positive While Those from the from UCSC Databases on 14Th September 2011 [70,71]
Basu et al. BMC Bioinformatics 2013, 14(Suppl 7):S14 http://www.biomedcentral.com/1471-2105/14/S7/S14 RESEARCH Open Access Examples of sequence conservation analyses capture a subset of mouse long non-coding RNAs sharing homology with fish conserved genomic elements Swaraj Basu1, Ferenc Müller2, Remo Sanges1* From Ninth Annual Meeting of the Italian Society of Bioinformatics (BITS) Catania, Sicily. 2-4 May 2012 Abstract Background: Long non-coding RNAs (lncRNA) are a major class of non-coding RNAs. They are involved in diverse intra-cellular mechanisms like molecular scaffolding, splicing and DNA methylation. Through these mechanisms they are reported to play a role in cellular differentiation and development. They show an enriched expression in the brain where they are implicated in maintaining cellular identity, homeostasis, stress responses and plasticity. Low sequence conservation and lack of functional annotations make it difficult to identify homologs of mammalian lncRNAs in other vertebrates. A computational evaluation of the lncRNAs through systematic conservation analyses of both sequences as well as their genomic architecture is required. Results: Our results show that a subset of mouse candidate lncRNAs could be distinguished from random sequences based on their alignment with zebrafish phastCons elements. Using ROC analyses we were able to define a measure to select significantly conserved lncRNAs. Indeed, starting from ~2,800 mouse lncRNAs we could predict that between 4 and 11% present conserved sequence fragments in fish genomes. Gene ontology (GO) enrichment analyses of protein coding genes, proximal to the region of conservation, in both organisms highlighted similar GO classes like regulation of transcription and central nervous system development. -
Biological Sequence Analysis Probabilistic Models of Proteins and Nucleic Acids
This page intentionally left blank Biological sequence analysis Probabilistic models of proteins and nucleic acids The face of biology has been changed by the emergence of modern molecular genetics. Among the most exciting advances are large-scale DNA sequencing efforts such as the Human Genome Project which are producing an immense amount of data. The need to understand the data is becoming ever more pressing. Demands for sophisticated analyses of biological sequences are driving forward the newly-created and explosively expanding research area of computational molecular biology, or bioinformatics. Many of the most powerful sequence analysis methods are now based on principles of probabilistic modelling. Examples of such methods include the use of probabilistically derived score matrices to determine the significance of sequence alignments, the use of hidden Markov models as the basis for profile searches to identify distant members of sequence families, and the inference of phylogenetic trees using maximum likelihood approaches. This book provides the first unified, up-to-date, and tutorial-level overview of sequence analysis methods, with particular emphasis on probabilistic modelling. Pairwise alignment, hidden Markov models, multiple alignment, profile searches, RNA secondary structure analysis, and phylogenetic inference are treated at length. Written by an interdisciplinary team of authors, the book is accessible to molecular biologists, computer scientists and mathematicians with no formal knowledge of each others’ fields. It presents the state-of-the-art in this important, new and rapidly developing discipline. Richard Durbin is Head of the Informatics Division at the Sanger Centre in Cambridge, England. Sean Eddy is Assistant Professor at Washington University’s School of Medicine and also one of the Principle Investigators at the Washington University Genome Sequencing Center. -
The Phaeodactylum Genome Reveals the Dynamic Nature and MultiLineage Evolutionary History of Diatom Genomes
The Phaeodactylum genome reveals the dynamic nature and multilineage evolutionary history of diatom genomes Chris Bowler1,2, Andrew E. Allen1,3*, Jonathan H. Badger3*, Jane Grimwood4*, Kamel Jabbari1*, Alan Kuo5*, Uma Maheswari1*, Cindy Martens6*, Florian Maumus1*, Robert P. Otillar5*, Edda Rayko1*, Asaf Salamov5*, Klaas Vandepoele6*, Bank Beszteri7, Ansgar Gruber8, Marc Heijde1, Michael Katinka9, Thomas Mock10, Klaus Valentin7, Fréderic Vérret11, John A. Berges12, Colin Brownlee11, Jean-Paul Cadoret13, Anthony Chiovitti14, Chang Jae Choi12, Sacha Coesel2$, Alessandra De Martino1, J. Chris Detter5, Colleen Durkin10, Angela Falciatore2, Jérome Fournet15, Miyoshi Haruta16, Marie Huysman17, Bethany D. Jenkins18, Katerina Jiroutova19, Richard E. Jorgensen20, Yolaine Joubert15, Aaron Kaplan21, Nils Kroeger22, Peter Kroth8, Julie La Roche23, Erica Lindquist5, Markus Lommer23,Véronique Martin-Jézéquel15, Pascal J. Lopez1, Susan Lucas5, Manuela Mangogna2, KarenMcGinnis20, Linda K. Medlin7, Anton Montsant1,2, Marie-Pierre Oudot- Le Secq24, CarolynNapoli20, Miroslav Obornik19, Jean-Louis Petit9, Betina M. Porcel9, Nicole Poulsen25, Matthew Robison16, Leszek Rychlewski26, Tatiana A. Rynearson27, Jeremy Schmutz4, Micaela Schnitzler Parker10, Harris Shapiro5, Magali Siaut2§, Michele Stanley28, Michael J., Sussman16, Alison Taylor11,29, Assaf Vardi1,30, Peter von Dassow31, Wim Vyverman17, Anusuya Willis14, Lucjan S. Wyrwicz26, Daniel S. Rokhsar5, Jean Weissenbach9, E. Virginia Armbrust10, Beverley R. Green24, Yves Van de Peer6, and Igor V. Grigoriev5 -
The Genome Sequence of the Malaria of the Most Efficient Malaria Vectors in the World
R ESEARCH A RTICLES Anopheles gambiae is the major vector of Plasmodium falciparum in Africa and is one The Genome Sequence of the Malaria of the most efficient malaria vectors in the world. Its blood meals come almost exclu- Mosquito Anopheles gambiae sively from humans, its larvae develop in temporary bodies of water produced by hu- 1 1 1 Robert A. Holt, *† G. Mani Subramanian, Aaron Halpern, man activities (e.g., agricultural irrigation or Granger G. Sutton,1 Rosane Charlab,1 Deborah R. Nusskern,1 flooded human or domestic animal foot- Patrick Wincker,2 Andrew G. Clark,3 Jose´M. C. Ribeiro,4 Ron Wides,5 prints), and adults rest primarily in human Steven L. Salzberg,6 Brendan Loftus,6 Mark Yandell,1 William H. Majoros,1,6 dwellings. During the 1950s and early 1960s, Douglas B. Rusch,1 Zhongwu Lai,1 Cheryl L. Kraft,1 Josep F. Abril,7 the World Health Organization ( WHO) ma- laria eradication campaign succeeded in erad- Veronique Anthouard,2 Peter Arensburger,8 Peter W. Atkinson,8 1 2 1 9 icating malaria from Europe and sharply re- Holly Baden, Veronique de Berardinis, Danita Baldwin, Vladimir Benes, duced its prevalence in many other parts of 10 9 1 2 Jim Biedler, Claudia Blass, Randall Bolanos, Didier Boscus, the world, primarily through programs that Mary Barnstead,1 Shuang Cai,1 Angela Center,1 Kabir Chatuverdi,1 combined mosquito control with antimalarial George K. Christophides,9 Mathew A. Chrystal,11 Michele Clamp,12 drugs such as chloroquine. Sub-Saharan Af- Anibal Cravchik,1 Val Curwen,12 Ali Dana,11 Art Delcher,1 Ian Dew,1 Cheryl A. -
GWG Dec 2012 Nominee Bios2
Agenda Item #12 ICOC Meeting December 12, 2012 CIRM Scientific and Medical Research Funding Working Group Biographical information of candidates nominated to serve as Scientific Members of the Working Group Stephen Friend, MD, PhD Dr. Friend is the President of Sage Bionetworks. He received his BA in philosophy, his PhD in biochemistry, and his MD from Indiana University. He is an authority in the field of cancer biology and a leader in efforts to make large scale, data-intensive biology broadly accessible to the entire research community. Dr. Friend has been a senior advisor to the National Cancer Institute (NCI), several biotech companies, a Trustee of the American Association for Cancer Research (AACR), and is an American Association for the Advancement of Science (AAAS) and Ashoka Fellow as well as an editorial board member of Open Network Biology. Dr. Friend was previously Senior Vice President and Franchise Head for Oncology Research at Merck & Co., Inc. where he led Merck’s Basic Cancer Research efforts. Prior to joining Merck, Dr. Friend was recruited by Dr. Leland Hartwell to join the Fred Hutchinson Cancer Research Center’s Seattle Project, an advanced institute for drug discovery. While there Drs. Friend and Hartwell developed a method for examining large patterns of genes that led them to co-found Rosetta Inpharmatics in 2001. Dr. Friend has also held faculty positions at Harvard Medical School from 1987 to 1995 and at Massachusetts General Hospital from 1990 to 1995. Christie Gunter, PhD Dr. Gunter is the HudsonAlpha director of research affairs. She earned her BS degree in both genetics and biochemistry from the University of Georgia in 1992, and a PhD in genetics from Emory University in 1998.