Download PDF of This Story

Total Page:16

File Type:pdf, Size:1020Kb

Download PDF of This Story B NY RA DY BARRETT ILLUSTRATION BY MIKE PERRY TE H NEW JANELIA COMPUTING CLUSTER PUTS A PREMIUM ON EXPANDABILITY AND SPEED. ple—it’s pretty obvious to anyone which words are basically the same. That would be like two genes from humans and apes.” But in organisms that are more diver- gent, Eddy needs to understand how DNA sequences tend to change over time. “And it becomes a difficult specialty, with seri- ous statistical analysis,” he says. From a computational standpoint, that means churning through a lot of opera- tions. Comparing two typical-sized protein sequences, to take a simple example, would require a whopping 10200 opera- Computational biologists have a need for to help investigators conduct genome tions. Classic algorithms, available since speed. The computing cluster at HHMI’s searches and catalog the inner workings the 1960s, can trim that search to 160,000 Janelia Farm Research Campus delivers and structures of the brain. computations—a task that would take the performance they require—at a mind- only a millisecond or so on any modern boggling 36 trillion operations per second. F ASTER Answers processor. But in the genome business, In the course of their work, Janelia A group leader at Janelia Farm, Eddy deals people routinely do enormous numbers researchers generate millions of digitized in the realm of millions of computations of these sequence comparisons—trillions images and gigabytes of data files, and they daily as he compares sequences of DNA. and trillions of them. These “routine” cal- run algorithms daily that demand robust He is a rare breed, both biologist and code culations could take years if they had to be computational horsepower. Geneticists, jockey. “I’m asking biological questions, done on a single computer. molecular biologists, biophysicists, physi- and designing technologies for other peo- That’s where the Janelia cluster comes ologists, and even electrical engineers ple to ask biological questions,” he says. in. Because a different part of the work- pursue some of the most challenging Eddy writes algorithms to help re- load can easily be doled out to each of problems in neuroscience, chief among searchers extract information from DNA its 4,000 processors, researchers can get them how individual neuronal circuits sequences. It’s a gargantuan matching their answers 4,000 times faster—in hours process information. Their discoveries game where a biological sequence— instead of years. The solutions don’t depend, now more than ever, on the seam- DNA, RNA, or protein—is treated as a tend to lead to eureka moments; rather, less interplay of scientists and computers. string of letters and compared with other they provide reference data for genome Humming nonstop in Janelia’s compact sequences. “From a computer science researchers as they delve into the com- computing center are 4,000 processors, standpoint, it’s similar to voice recognition plexities of different organisms. “These 500 servers, and storage machines holding and data mining,” he says. “You’re compar- computational tools are infrastructural, a half a petabyte of data—about 50 Libraries ing one piece against another. We look for foundation for many things,” Eddy says. of Congress worth of information. a signal in what looks like random noise.” While that may not sound dramatic, Though there are many larger clus- Eddy looks for the hand of evolution in Eddy’s protein-matching algorithms are ters around the world, this particular DNA by comparing different organisms’ an industry standard, used by researchers one is just right for Janelia Farm. “Beau- genomes. He’s searching for strings of as the search tool for a reference library tifully conceived, ruthlessly efficient, DNA sequences that match—more than called the Protein Families database, and extraordinarily well run by the high- random chance would dictate. or Pfam. There are roughly 10 million performance computing team,” according “It’s a lot like recognizing words from proteins in the database. Luckily about to Janelia researcher Sean Eddy, the sys- different languages that have a common 80 percent of those sequences fall into tem is designed to make digital images ancestry, thus probably the same mean- a much smaller set of families and Eddy available lightning fast while muscling ing,” he explains. “In two closely related has designed the analysis software to query through the monster calculations required languages—Italian and Spanish, for exam- for matches in this data set. “When a new 30 HHMI BULLETIN | May 2o1o sequence comes in, [Pfam] is like a dic- tionary—it’s always being added to,” he says. The database currently identifies 12,000 protein families. There is also an RNA database called Rfam for which Eddy and his Janelia team have software design and upkeep responsi- bilities. Eddy has to keep one step ahead of his users, which means stressing his analysis tools to the failure point so he can improve them. “We set up experiments and try to break the software and push the enve- lope,” he says. A Mosaic OF FLY NEURONS The Janelia computing system is referred to as a “cluster” of processors by both its overseers and its users. The cluster serves 350 researchers and support staff and can scale up to serve many more if requirements demand it. Its design puts a premium on expandability, flexibility, and fast response, particularly since the scien- tific needs may change and evolve rapidly. The computer cluster was recently upgraded as part of a regular four-year technology refresh. Made up of com- mercially available hardware components built by Intel, Dell, and Arista Networks, Eddy calls the system a “working class supercomputer.” Janelia is the first cus- tomer for this particular design—in fact, some of the components have serial num- ber 1 or 2 and are signed by the engineers who built them. The new system is up to 10 times faster than the old one and has six times more memory. “Janelia’s new computing cluster pro- vides a platform that is an order of mag- nitude more responsive than the previous system and can be grown easily to accom- TOP: Roian Egnor MIDDLE: Sean Eddy Paul Fetters BOTTOM: Elena Rivas, Lou Sheffer May 2o1o | HHMI BULLETIN 31 modate changing requirements,” says Vijay But Scheffer’s matching is just the first processors. Those familiar with office net- Samalam, Janelia’s director of information step in the image-manipulation process. works know it well: Ethernet, the popular technology and scientific computing. Janelia software engineer Philip Winston standard for moving electronic data from That expanded capacity is a big help to takes the processed pictures and does the point A to B. While it has been a long- Janelia fellow Louis Scheffer, an electrical unthinkable—he chops them up again. standing protocol for slower connections, engineer and chip designer by training. He creates smaller “tiles” of the photos, 10-gigabit Ethernet has not traditionally He uses the cluster to help researchers which can be more easily added and been the choice of makers and engineers map the brain wiring of the common fruit subtracted from a computer screen as a of top supercomputers who until recently, fly Drosophila melanogaster. Essentially, researcher pans across an image. “To open when best performance was a must, used it’s a massive three-dimensional image- a single image would take five minutes if specialized networking technology called manipulation challenge. First, slices of you didn’t tile them,” says Winston. Only InfiniBand. brain 1/1,000th the thickness of a human 20 tiles are required on the screen at any “Now Ethernet switches are as effi- hair are digitally photographed with an one time. Currently, Winston is working cient as, or very close to, InfiniBand and electron microscope and stored. In each with four million tiles as part of the Janelia you don’t need a different [networking] layer, the computer assigns colors to the Fly Electron Microscope project to map skill set,” says Spartaco Cicerchia, man- neurons so researchers can trace their the entire brain of the fruit fly. ager of network infrastructure at Janelia path. As an example, the medulla of the Humans proofread the final fly-brain Farm. The bottom-line advantage is that fly, part of the brain responsible for vision, image for accuracy, to trace the neural Ethernet is easier to work with, familiar requires more than 150,000 individual paths and make sure the computer has to more networking engineers, and tends images to create the full mosaic, which is identified structures correctly. “[People] to be cheaper to use. 1,700 layers (slices) deep. are an important step,” says Winston. Lower latency—the time it takes to But all these pictures must be knitted “Without them, the computer segmen- move data across a network connection— together so scientists can follow neural tation would be 95 percent right and we is now possible via Ethernet due to a paths and see where they lead. Think wouldn’t know about the other 5 percent.” relatively new networking standard called Google Earth. As you pan across the Scheffer and Winston’s ultimate goal iWarp. Traditionally, computers’ proces- globe, data are fed onto the screen so you is to completely automate the mapping sors must manage the flow of information can “fly” from one location to another, process and to teach the computer to packets as they pass between them. In the and more images are required as you drill identify the inner structures of the fruit new systems, those packets are handled by down to examine surface topography. fly brain, in particular the different types a separate piece of hardware made by the Making the transitions smooth in between of neurons, and the axons and dendrites chip manufacturer Intel.
Recommended publications
  • RDA COVID-19 Recommendations and Guidelines on Data Sharing
    RDA COVID-19 Recommendations and Guidelines on Data Sharing DOI: 10.15497/RDA00052 Authors: RDA COVID-19 Working Group Published: 30th June 2020 Abstract: This is the final version of the Recommendations and Guidelines from the RDA COVID19 Working Group, and has been endorsed through the official RDA process. Keywords: RDA; Recommendations; COVID-19. Language: English License: CC0 1.0 Universal (CC0 1.0) Public Domain Dedication RDA webpage: https://www.rd-alliance.org/group/rda-covid19-rda-covid19-omics-rda-covid19- epidemiology-rda-covid19-clinical-rda-covid19-1 Related resources: - RDA COVID-19 Guidelines and Recommendations – preliminary version, https://doi.org/10.15497/RDA00046 - Data Sharing in Epidemiology, https://doi.org/10.15497/RDA00049 - RDA COVID-19 Zotero Library, https://doi.org/10.15497/RDA00051 Citation and Download: RDA COVID-19 Working Group. Recommendations and Guidelines on data sharing. Research Data Alliance. 2020. DOI: https://doi.org/10.15497/RDA00052 RDA COVID-19 Recommendations and Guidelines on Data Sharing RDA Recommendation (FINAL Release) Produced by: RDA COVID-19 Working Group, 2020 Document Metadata Identifier DOI: https://doi.org/10.15497/rda00052 Citation To cite this document please use: RDA COVID-19 Working Group. Recommendations and Guidelines on data sharing. Research Data Alliance. 2020. DOI: https://doi.org/10.15497/rda00052 Title RDA COVID-19; Recommendations and Guidelines on Data Sharing, Final release 30 June 2020 Description This is the final version of the Recommendations and Guidelines
    [Show full text]
  • Downloaded Were Considered to Be True Positive While Those from the from UCSC Databases on 14Th September 2011 [70,71]
    Basu et al. BMC Bioinformatics 2013, 14(Suppl 7):S14 http://www.biomedcentral.com/1471-2105/14/S7/S14 RESEARCH Open Access Examples of sequence conservation analyses capture a subset of mouse long non-coding RNAs sharing homology with fish conserved genomic elements Swaraj Basu1, Ferenc Müller2, Remo Sanges1* From Ninth Annual Meeting of the Italian Society of Bioinformatics (BITS) Catania, Sicily. 2-4 May 2012 Abstract Background: Long non-coding RNAs (lncRNA) are a major class of non-coding RNAs. They are involved in diverse intra-cellular mechanisms like molecular scaffolding, splicing and DNA methylation. Through these mechanisms they are reported to play a role in cellular differentiation and development. They show an enriched expression in the brain where they are implicated in maintaining cellular identity, homeostasis, stress responses and plasticity. Low sequence conservation and lack of functional annotations make it difficult to identify homologs of mammalian lncRNAs in other vertebrates. A computational evaluation of the lncRNAs through systematic conservation analyses of both sequences as well as their genomic architecture is required. Results: Our results show that a subset of mouse candidate lncRNAs could be distinguished from random sequences based on their alignment with zebrafish phastCons elements. Using ROC analyses we were able to define a measure to select significantly conserved lncRNAs. Indeed, starting from ~2,800 mouse lncRNAs we could predict that between 4 and 11% present conserved sequence fragments in fish genomes. Gene ontology (GO) enrichment analyses of protein coding genes, proximal to the region of conservation, in both organisms highlighted similar GO classes like regulation of transcription and central nervous system development.
    [Show full text]
  • Biological Sequence Analysis Probabilistic Models of Proteins and Nucleic Acids
    This page intentionally left blank Biological sequence analysis Probabilistic models of proteins and nucleic acids The face of biology has been changed by the emergence of modern molecular genetics. Among the most exciting advances are large-scale DNA sequencing efforts such as the Human Genome Project which are producing an immense amount of data. The need to understand the data is becoming ever more pressing. Demands for sophisticated analyses of biological sequences are driving forward the newly-created and explosively expanding research area of computational molecular biology, or bioinformatics. Many of the most powerful sequence analysis methods are now based on principles of probabilistic modelling. Examples of such methods include the use of probabilistically derived score matrices to determine the significance of sequence alignments, the use of hidden Markov models as the basis for profile searches to identify distant members of sequence families, and the inference of phylogenetic trees using maximum likelihood approaches. This book provides the first unified, up-to-date, and tutorial-level overview of sequence analysis methods, with particular emphasis on probabilistic modelling. Pairwise alignment, hidden Markov models, multiple alignment, profile searches, RNA secondary structure analysis, and phylogenetic inference are treated at length. Written by an interdisciplinary team of authors, the book is accessible to molecular biologists, computer scientists and mathematicians with no formal knowledge of each others’ fields. It presents the state-of-the-art in this important, new and rapidly developing discipline. Richard Durbin is Head of the Informatics Division at the Sanger Centre in Cambridge, England. Sean Eddy is Assistant Professor at Washington University’s School of Medicine and also one of the Principle Investigators at the Washington University Genome Sequencing Center.
    [Show full text]
  • Genomic and Transcriptomic Surveys for the Study of Ncrnas with a Focus on Tropical Parasites
    PhD Thesis PROGRAMA DE PÓS-GRADUAÇÃO EM BIOINFORMÁTICA UNIVERSIDADE FEDERAL DE MINAS GERAIS Genomic and transcriptomic surveys for the study of ncRNAs with a focus on tropical parasites Mainá Bitar Belo Horizonte February 2015 Universidade Federal de Minas Gerais PhD Thesis PROGRAMA DE PÓS-GRADUAÇÃO EM BIOINFORMÁTICA Genomic and transcriptomic surveys for the study of ncRNAs with a focus on tropical parasites PhD candidate: Mainá Bitar Advisor: Glória Regina Franco Co-advisor: Martin Alexander Smith Mainá Bitar Lourenço Genomic and transcriptomic surveys for the study of ncRNAs with a focus on tropical parasites Versão final Tese apresentada ao Programa Interunidades de Pós-Graduação em Bioinformática do Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais como requisito parcial para a obtenção do título de Doutor em Bioinformática. Orientador: Profa. Dra. Glória Regina Franco BELO HORIZONTE 2015 043 Bitar, Mainá. Genomic and transcriptomic surveys for the study of ncRNAs with a focus on tropical parasites [manuscrito] / Mainá Bitar. – 2015. 134 f. : il. ; 29,5 cm. Orientador: Glória Regina Franco. Coorientador: Martin Alexander Smith. Tese (doutorado) – Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas. Programa de Pós-Graduação em Bioinformática. 1. Bioinformática - Teses. 2. Trypanosoma cruzi. 3. Schistosoma mansoni. 4. Genômica. 5. Transcriptoma. 6. Trans-Splicing. I. Franco, Glória Regina. II. Smith, Martin Alexander. III. Universidade Federal de Minas Gerais. Instituto de Ciências Biológicas. IV. Título. CDU: 573:004 Ficha catalográfica elaborada por Fabiane C. M. Reis – CRB 6/2680 Esta tese é dedicada à minha mãe, que me deu a liberdade para sonhar e a força para viver a realidade.
    [Show full text]
  • On the Necessity of Dissecting Sequence Similarity Scores Into
    Wong et al. BMC Bioinformatics 2014, 15:166 http://www.biomedcentral.com/1471-2105/15/166 METHODOLOGY ARTICLE Open Access On the necessity of dissecting sequence similarity scores into segment-specific contributions for inferring protein homology, function prediction and annotation Wing-Cheong Wong1*, Sebastian Maurer-Stroh1,2, Birgit Eisenhaber1 and Frank Eisenhaber1,3,4* Abstract Background: Protein sequence similarities to any types of non-globular segments (coiled coils, low complexity regions, transmembrane regions, long loops, etc. where either positional sequence conservation is the result of a very simple, physically induced pattern or rather integral sequence properties are critical) are pertinent sources for mistaken homologies. Regretfully, these considerations regularly escape attention in large-scale annotation studies since, often, there is no substitute to manual handling of these cases. Quantitative criteria are required to suppress events of function annotation transfer as a result of false homology assignments. Results: The sequence homology concept is based on the similarity comparison between the structural elements, the basic building blocks for conferring the overall fold of a protein. We propose to dissect the total similarity score into fold-critical and other, remaining contributions and suggest that, for a valid homology statement, the fold-relevant score contribution should at least be significant on its own. As part of the article, we provide the DissectHMMER software program for dissecting HMMER2/3 scores into segment-specific contributions. We show that DissectHMMER reproduces HMMER2/3 scores with sufficient accuracy and that it is useful in automated decisions about homology for instructive sequence examples. To generalize the dissection concept for cases without 3D structural information, we find that a dissection based on alignment quality is an appropriate surrogate.
    [Show full text]
  • Clawhmmer: a Streaming Hmmer-Search Implementation
    ClawHMMER: A Streaming HMMer-Search Implementation Daniel Reiter Horn Mike Houston Pat Hanrahan Stanford University Abstract To mitigate the problem of choosing an ad-hoc gap penalty for a given BLAST search, Krogh et al. [1994] The proliferation of biological sequence data has motivated proposed bringing the probabilistic techniques of hidden the need for an extremely fast probabilistic sequence search. Markov models(HMMs) to bear on the problem of fuzzy pro- One method for performing this search involves evaluating tein sequence matching. HMMer [Eddy 2003a] is an open the Viterbi probability of a hidden Markov model (HMM) source implementation of hidden Markov algorithms for use of a desired sequence family for each sequence in a protein with protein databases. One of the more widely used algo- database. However, one of the difficulties with current im- rithms, hmmsearch, works as follows: a user provides an plementations is the time required to search large databases. HMM modeling a desired protein family and hmmsearch Many current and upcoming architectures offering large processes each protein sequence in a large database, eval- amounts of compute power are designed with data-parallel uating the probability that the most likely path through the execution and streaming in mind. We present a streaming query HMM could generate that database protein sequence. algorithm for evaluating an HMM’s Viterbi probability and This search requires a computationally intensive procedure, refine it for the specific HMM used in biological sequence known as the Viterbi [1967; 1973] algorithm. The search search. We implement our streaming algorithm in the Brook could take hours or even days depending on the size of the language, allowing us to execute the algorithm on graphics database, query model, and the processor used.
    [Show full text]
  • HMMER User's Guide
    HMMER User’s Guide Biological sequence analysis using profile hidden Markov models http://hmmer.wustl.edu/ Version 2.2; August 2001 Sean Eddy Howard Hughes Medical Institute and Dept. of Genetics Washington University School of Medicine 660 South Euclid Avenue, Box 8232 Saint Louis, Missouri 63110, USA [email protected] With contributions by Ewan Birney ([email protected]) Copyright (C) 1992-2001, Washington University in St. Louis. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are retained on all copies. The HMMER software package is a copyrighted work that may be freely distributed and modified under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Some versions of HMMER may have been obtained under specialized commercial licenses from Washington University; for details, see the files COPYING and LICENSE that came with your copy of the HMMER software. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Appendix for a copy of the full text of the GNU General Public License. 1 Contents 1 Tutorial 6 1.1 The programs in HMMER . 6 1.2 Files used in the tutorial . 7 1.3 Searching a sequence database with a single profile HMM . 7 HMM construction with hmmbuild ............................. 7 HMM calibration with hmmcalibrate ........................... 8 Sequence database search with hmmsearch ........................
    [Show full text]
  • Computational Identification of Functional RNA Homologs in Metagenomic Data
    Computational identification of functional RNA homologs in metagenomic data Eric P. Nawrocki and Sean R. Eddy* HHMI Janelia Farm Research Campus Ashburn, VA 20147 Phone: 571-209-3112 (EPN) 571-209-4163 (SRE) Fax: 571-209-4094 E-mail: [email protected] [email protected] * Corresponding author. Send proofs to: Sean Eddy 19700 Janelia Farm Blvd HHMI Janelia Farm Research Campus Ashburn, VA 20147 [email protected] An important step in analyzing a metagenomic sequence dataset is identifying functional sequence elements. This is a prerequisite for determining important properties of the environment the sequence data were sampled from, such as the metabolic processes and organismal diversity present there. At least initially, functional sequence element identification is addressed computationally. One class of elements, functional noncoding RNA elements, are especially difficult to identify because they tend to be short, lack open reading frames, and sometimes evolve rapidly at the sequence level even while conserving structure integral to their function (Eddy, 2001, Szymanski, 2003, Backofen, 2007, Hammann, 2007, Jossinet, 2007, Machado-Lima, 2008). Functional RNA elements include both RNA genes (genes transcribed into functional untranslated RNA) and cis-regulatory mRNA structures. RNA elements play many roles. Ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs) are well known and universally present in all cellular life. Bacteria, archaea, and viruses, the organisms predominantly targeted by current metagenomics studies, also use numerous small RNA (sRNA) genes for translational and posttranslational regulation (Gottesman, 2005), as well as many cis-regulatory RNAs such as riboswitches (structural RNAs that respond to binding small molecule metabolites and control expression of nearby genes (Winkler, 2005, Tucker, 2005)).
    [Show full text]
  • INFERNAL User's Guide
    INFERNAL User’s Guide Sequence analysis using profiles of RNA sequence and secondary structure consensus http://eddylab.org/infernal Version 1.1.4; Dec 2020 Eric Nawrocki and Sean Eddy for the INFERNAL development team https://github.com/EddyRivasLab/infernal/ Copyright (C) 2020 Howard Hughes Medical Institute. Infernal and its documentation are freely distributed under the 3-Clause BSD open source license. For a copy of the license, see http://opensource.org/licenses/BSD-3-Clause. Infernal development is supported by the Intramural Research Program of the National Library of Medicine at the US National Institutes of Health, and also by the National Human Genome Research Institute of the US National Institutes of Health under grant number R01HG009116. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. 1 Contents 1 Introduction 6 How to avoid reading this manual . 6 What covariance models are . 6 Applications of covariance models . 7 Infernal and HMMER, CMs and profile HMMs . 7 What’s new in Infernal 1.1 . 8 How to learn more about CMs and profile HMMs . 8 2 Installation 10 Quick installation instructions . 10 System requirements . 10 Multithreaded parallelization for multicores is the default . 11 MPI parallelization for clusters is optional . 11 Using build directories . 12 Makefile targets . 12 Why is the output of ’make’ so clean? . 12 What gets installed by ’make install’, and where? . 12 Staged installations in a buildroot, for a packaging system . 13 Workarounds for some unusual configure/compilation problems . 13 3 Tutorial 15 The programs in Infernal .
    [Show full text]
  • Reading Genomes Bit by Bit
    Reading genomes bit by bit Sean Eddy HHMI Janelia Farm Ashburn, Virginia Why did we sequence so many different flies? the power of comparative genome sequence analysis Why did we sequence a single-celled pond protozooan? exploiting unusual adaptations and unusual genomes Oxytricha trifallax Symbolic texts can be cracked by statistical analysis “Cryptography has contributed a new weapon to the student of unknown scripts.... the basic principle is the analysis and indexing of coded texts, so that underlying patterns and regularities can be discovered. If a number of instances can be collected, it may appear that a certain group of signs in the coded text has a particular function....” John Chadwick, The Decipherment of Linear B Cambridge University Press, 1958 Linear B, from Mycenae ca. 1500-1200 BC deciphered by Michael Ventris and John Chadwick, 1953 How much data are we talking about, really? STORAGE TIME TO COST/YEAR DOWNLOAD raw images 30 TB $36,000 20 days unassembled reads 100 GB $120 1 hr mapped reads 100 GB $120 1 hr assembled genome 6 GB $7 5 min differences 4 MB $0.005 0.2 sec my coffee coaster selab:/misc/data0/genomes 3 GB 450 GB JFRC computing, available disk ~ 1 petabyte (1000 TB) 1000 Genomes Project pilot 5 TB (30 GB/genome) selab:~eddys/Music/iTunes 128 albums 3 MB 15 GB NCBI Short Read Archive 200 TB + 10-20 TB/mo GAGTTTTATCGCTTCCATGACGCAGAAGTTAACACTTTCGGATATTTCTGATGAGTCGAAAAATTATCTTGATAAAGCAGGAATTACTACTGCTTGTTTACGAATTAAATCGAAGTGGACTGCTGG CGGAAAATGAGAAAATTCGACCTATCCTTGCGCAGCTCGAGAAGCTCTTACTTTGCGACCTTTCGCCATCAACTAACGATTCTGTCAAAAACTGACGCGTTGGATGAGGAGAAGTGGCTTAATATG
    [Show full text]
  • The Janus-Faced E-Values of Hmmer2: Extreme Value Distribution Or Logistic Function?
    January 28, 2011 15:38 WSPC/185-JBCB S0219720011005264 Journal of Bioinformatics and Computational Biology Vol. 9, No. 1 (2011) 179–206 c The Authors DOI: 10.1142/S0219720011005264 THE JANUS-FACED E-VALUES OF HMMER2: EXTREME VALUE DISTRIBUTION OR LOGISTIC FUNCTION? WING-CHEONG WONG∗,¶, SEBASTIAN MAURER-STROH∗,†, and FRANK EISENHABER∗,‡,§,∗∗ ∗Bioinformatics Institute (BII) Agency for Science, Technology and Research (A*STAR) 30 Biopolis Street, #07-01, Matrix, Singapore 138671 †School of Biological Sciences (SBS) Nanyang Technological University (NTU) 60 Nanyang Drive, Singapore 63755 ‡Department of Biological Sciences (DBS) National University of Singapore (NUS) 8 Medical Drive, Singapore 117597 §School of Computer Engineering (SCE) Nanyang Technological University (NTU) 50 Nanyang Drive, Singapore 637553 ¶[email protected] [email protected] ∗∗[email protected] Received 16 July 2010 Revised 11 October 2010 Accepted 11 October 2010 E-value guided extrapolation of protein domain annotation from libraries such as Pfam with the HMMER suite is indispensable for hypothesizing about the function of exper- imentally uncharacterized protein sequences. Since the recent release of HMMER3 does not supersede all functions of HMMER2, the latter will remain relevant for ongoing research as well as for the evaluation of annotations that reside in databases and in the literature. In HMMER2, the E-value is computed from the score via a logistic function or via a domain model-specific extreme value distribution (EVD); the lower of the two is returned as E-value for the domain hit in the query sequence. We find that, for thousands of domain models, this treatment results in switching from the EVD to the statistical model with the logistic function when scores grow (for Pfam release 23, 99% in the global mode and 75% in the fragment mode).
    [Show full text]
  • Enhanced Protein Domain Discovery by Using Language Modeling Techniques from Speech Recognition
    Enhanced protein domain discovery by using language modeling techniques from speech recognition Lachlan Coin, Alex Bateman, and Richard Durbin* Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom Edited by Michael Levitt, Stanford University School of Medicine, Stanford, CA, and approved February 12, 2003 (received for review December 10, 2002) Most modern speech recognition uses probabilistic models to equation and introduce the terms P(Di) to represent the prior interpret a sequence of sounds. Hidden Markov models, in partic- probability of the ith domain: ular, are used to recognize words. The same techniques have been P͑A ͉D ͒ adapted to find domains in protein sequences of amino acids. To ͑ ͉ ͒ϰ ͹ i i ͑ ͒ P D A, M ͩ ͑ ͉ ͒ P Di ͪ increase word accuracy in speech recognition, language models are P Ai R used to capture the information that certain word combinations i are more likely than others, thus improving detection based on P͑D ͉D Ϫ ...D , M͒ ϫ ͹ i i 1 1 context. However, to date, these context techniques have not been ͩ ͑ ͒ ͪ. [2] P Di applied to protein domain discovery. Here we show that the i application of statistical language modeling methods can signifi- cantly enhance domain recognition in protein sequences. As an Note that we have replaced P(AԽM), which is a constant given the example, we discover an unannotated Tf࿝Otx Pfam domain on the signal, independent of our interpretation of the sequence, by cone rod homeobox protein, which suggests a possible mechanism another constant, P(AԽR): the probability of the sequence being for how the V242M mutation on this protein causes cone-rod generated independently residue by residue according to a dystrophy.
    [Show full text]