Sodium Channel Evolution in Electric Fish Data Point
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogeny of a Rapidly Evolving Clade: the Cichlid Fishes of Lake Malawi
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 5107–5110, April 1999 Evolution Phylogeny of a rapidly evolving clade: The cichlid fishes of Lake Malawi, East Africa (adaptive radiationysexual selectionyspeciationyamplified fragment length polymorphismylineage sorting) R. C. ALBERTSON,J.A.MARKERT,P.D.DANLEY, AND T. D. KOCHER† Department of Zoology and Program in Genetics, University of New Hampshire, Durham, NH 03824 Communicated by John C. Avise, University of Georgia, Athens, GA, March 12, 1999 (received for review December 17, 1998) ABSTRACT Lake Malawi contains a flock of >500 spe- sponsible for speciation, then we expect that sister taxa will cies of cichlid fish that have evolved from a common ancestor frequently differ in color pattern but not morphology. within the last million years. The rapid diversification of this Most attempts to determine the relationships among cichlid group has been attributed to morphological adaptation and to species have used morphological characters, which may be sexual selection, but the relative timing and importance of prone to convergence (8). Molecular sequences normally these mechanisms is not known. A phylogeny of the group provide the independent estimate of phylogeny needed to infer would help identify the role each mechanism has played in the evolutionary mechanisms. The Lake Malawi cichlids, however, evolution of the flock. Previous attempts to reconstruct the are speciating faster than alleles can become fixed within a relationships among these taxa using molecular methods have species (9, 10). The coalescence of mtDNA haplotypes found been frustrated by the persistence of ancestral polymorphisms within populations predates the origin of many species (11). In within species. -
REVIEW Electric Fish: New Insights Into Conserved Processes of Adult Tissue Regeneration
2478 The Journal of Experimental Biology 216, 2478-2486 © 2013. Published by The Company of Biologists Ltd doi:10.1242/jeb.082396 REVIEW Electric fish: new insights into conserved processes of adult tissue regeneration Graciela A. Unguez Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA [email protected] Summary Biology is replete with examples of regeneration, the process that allows animals to replace or repair cells, tissues and organs. As on land, vertebrates in aquatic environments experience the occurrence of injury with varying frequency and to different degrees. Studies demonstrate that ray-finned fishes possess a very high capacity to regenerate different tissues and organs when they are adults. Among fishes that exhibit robust regenerative capacities are the neotropical electric fishes of South America (Teleostei: Gymnotiformes). Specifically, adult gymnotiform electric fishes can regenerate injured brain and spinal cord tissues and restore amputated body parts repeatedly. We have begun to identify some aspects of the cellular and molecular mechanisms of tail regeneration in the weakly electric fish Sternopygus macrurus (long-tailed knifefish) with a focus on regeneration of skeletal muscle and the muscle-derived electric organ. Application of in vivo microinjection techniques and generation of myogenic stem cell markers are beginning to overcome some of the challenges owing to the limitations of working with non-genetic animal models with extensive regenerative capacity. This review highlights some aspects of tail regeneration in S. macrurus and discusses the advantages of using gymnotiform electric fishes to investigate the cellular and molecular mechanisms that produce new cells during regeneration in adult vertebrates. -
The Air-Breathing Behaviour of Brevimyrus Niger (Osteoglossomorpha, Mormyridae)
Journal of Fish Biology (2007) 71, 279–283 doi:10.1111/j.1095-8649.2007.01473.x, available onlineathttp://www.blackwell-synergy.com The air-breathing behaviour of Brevimyrus niger (Osteoglossomorpha, Mormyridae) T. MORITZ* AND K. E. LINSENMAIR Lehrstuhl fur¨ Tiero¨kologie und Tropenbiologie, Theodor-Boveri-Institut, Universita¨t Wurzburg,¨ Am Hubland, 97074 Wurzburg,¨ Germany (Received 2 May 2006, Accepted 6 February 2007) Brevimyrus niger is reported to breathe atmospheric air, confirming previous documenta- tion of air breathing in this species. Air is taken up by rising to the water surface and gulping, or permanently resting just below the surface, depending on the environmental conditions. # 2007 The Authors Journal compilation # 2007 The Fisheries Society of the British Isles Key words: elephantfishes; Osteoglossomorpha; weakly electric fish. The Mormyridae consists of 201 weakly electric fishes endemic to Africa (Nelson, 2006). They belong to the Osteoglossomorpha among which air-breathing behaviour is known from several families. All genera of the Osteoglossidae are able to breathe atmospheric air utilizing their swimbladder as a respiratory organ, i.e. Heterotis niloticus (Cuvier) (Luling,¨ 1977), Arapaima gigas (Schinz) (Luling,¨ 1964, 1977). Similarly, Pantodon buchholzi Peters (Schwarz, 1969), which is the only member of the Pantodontidae, and the members of the Notopteridae (Graham, 1997) are air-breathers. A close relative to the mormyrids, Gymnarchus niloticus Cuvier, the only member of the Gymnarchidae, is also well known to breathe air (Hyrtl, 1856; Bertyl, 1958). In the remaining two families within the Osteoglossomorpha air breathing has never been reported from the Hiodontidae (Graham, 1997) and only for a single species, Brevimyrus niger (Gunther),¨ within the Mormyridae (Benech & Lek, 1981; Bigorne, 2003). -
Biology of Chordates Video Guide
Branches on the Tree of Life DVD – CHORDATES Written and photographed by David Denning and Bruce Russell ©2005, BioMEDIA ASSOCIATES (THUMBNAIL IMAGES IN THIS GUIDE ARE FROM THE DVD PROGRAM) .. .. To many students, the phylum Chordata doesn’t seem to make much sense. It contains such apparently disparate animals as tunicates (sea squirts), lancelets, fish and humans. This program explores the evolution, structure and classification of chordates with the main goal to clarify the unity of Phylum Chordata. All chordates possess four characteristics that define the phylum, although in most species, these characteristics can only be seen during a relatively small portion of the life cycle (and this is often an embryonic or larval stage, when the animal is difficult to observe). These defining characteristics are: the notochord (dorsal stiffening rod), a hollow dorsal nerve cord; pharyngeal gills; and a post anal tail that includes the notochord and nerve cord. Subphylum Urochordata The most primitive chordates are the tunicates or sea squirts, and closely related groups such as the larvaceans (Appendicularians). In tunicates, the chordate characteristics can be observed only by examining the entire life cycle. The adult feeds using a ‘pharyngeal basket’, a type of pharyngeal gill formed into a mesh-like basket. Cilia on the gill draw water into the mouth, through the basket mesh and out the excurrent siphon. Tunicates have an unusual heart which pumps by ‘wringing out’. It also reverses direction periodically. Tunicates are usually hermaphroditic, often casting eggs and sperm directly into the sea. After fertilization, the zygote develops into a ‘tadpole larva’. This swimming larva shows the remaining three chordate characters - notochord, dorsal nerve cord and post-anal tail. -
Fish Brains: Evolution and Environmental Relationships
Reviews in Fish Biology and Fisheries 8, 373±408 (1998) Fish brains: evolution and environmental relationships K. KOTRSCHAL1,Ã, M.J. VAN STAADEN2,3 and R. HUBER2,3 1Institute of Zoology, Department of Ethology, The University of Vienna and Konrad Lorenz Forschungsstelle, A±4645 GruÈnau 11, Austria 2Institute of Zoology, Department of Physiology, The University of Graz, UniversitaÈtsplatz 2, A±8010 Graz, Austria 3Department of Biological Sciences, Bowling Green State University, Life Science Bldg, Bowling Green, OH 43403, USA Contents Abstract page 373 Fish brains re¯ect an enormous evolutionary radiation 374 Based on morphology: how conclusions on sensory orientation are reached 376 Structure of ®sh brains 378 Large-scale evolutionary patterns of ®sh brains 384 Functional diversi®cation 386 Cyprinidae Gadidae Flat®shes Cichlidae and other modern perciforms How environments shape brains: turbidity, benthos and the pelagic realms 393 Variation of brain and senses with depth 395 Ontogenetic variation: a means of adaptation? 398 Intraspeci®c variation between `adult' age classes Intraspeci®c variation within age classes Conclusions: where to go from here? 400 Acknowledgements 401 References 402 Abstract Fish brains and sensory organs may vary greatly between species. With an estimated total of 25 000 species, ®sh represent the largest radiation of vertebrates. From the agnathans to the teleosts, they span an enormous taxonomic range and occupy virtually all aquatic habitats. This diversity offers ample opportunity to relate ecology with brains and sensory systems. In a broadly comparative approach emphasizing teleosts, we surveyed `classical' and more recent contributions on ®sh brains in search of evolutionary and ecological conditions of central nervous system diversi®cation. -
Effect of Electric Fish Barriers on Corrosion and Cathodic Protection
Effect of Electric Fish Barriers on Corrosion and Cathodic Protection Research and Development Office Science and Technology Program ST-2015-9757-1 U.S. Department of the Interior Bureau of Reclamation Research and Development Office January 2016 Mission Statements The U.S. Department of the Interior protects America’s natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future. The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 T1. REPORT DATE T2. REPORT TYPE T3. DATES COVERED December 2015 Scoping Study Dec 2014-Sep 2015 T4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Effect of Electric Fish Barriers on Corrosion and Cathodic Protection 15XR0680A1-RY1541EN201529757 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 1541 (S&T) 6. AUTHOR(S) 5d. PROJECT NUMBER Daryl Little 9757 Bureau of Reclamation 5e. TASK NUMBER Denver Federal Center PO Box 25007 Denver, CO 80225-0007 5f. WORK UNIT NUMBER 86-68540 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Bureau of Reclamation REPORT NUMBER Materials & Corrosion Laboratory MERL-2015-070 PO Box 25007 (86-68540) Denver, Colorado 80225 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S Research and Development Office ACRONYM(S) U.S. Department of the Interior, Bureau of Reclamation, R&D: Research and Development PO Box 25007, Denver CO 80225-0007 Office BOR/USBR: Bureau of Reclamation DOI: Department of the Interior 11. -
Sensory Hyperacuity in the Jamming Avoidance Response of Weakly Electric Fish Masashi Kawasaki
473 Sensory hyperacuity in the jamming avoidance response of weakly electric fish Masashi Kawasaki Sensory systems often show remarkable sensitivities to The jamming avoidance response small stimulus parameters. Weakly electric; fish are able to The South American weakly electric fish Eigenmannia resolve intensity differences of the order of 0.1% and timing and the African weakly electric fish Cymnanhus perform differences of the order of nanoseconds during an electrical electrolocation by generating constant wave-type electric behavior, the jamming avoidance response. The neuronal organ discharges (EODs) at individually fixed frequencies origin of this extraordinary sensitivity is being studied within (250-600Hz) using the electric organ in their tails. Each the exceptionally well understood central mechanisms of this cycle of an EOD is triggered by coherent action potentials behavior. originating from a coupled oscillator, the pacemaker nucleus in the medulla. An alternating current (AC) electric field is thus established around the body, and its Addresses distortion by objects is detected by electroreceptors on the Department of Biology, University of Virginia, Gilmer Hall, Charlottesville, Virginia 22903, USA; e-mail: [email protected] body surface [5,6] (Figure 1). Current Opinion in Neurobiology 1997, 7:473-479 When two fish with similar EOD frequencies meet, http://biomednet.com/elelecref~0959438800700473 their electrolocation systems jam each other, impairing 0 Current Biology Ltd ISSN 0959-4388 their ability to electrolocate. To avoid this jamming, they shift their EOD frequencies away from each other in Abbreviations a jamming avoidance response in order to increase the ELL electrosensory lateral line lobe difference in their frequencies [7-91. -
Life History Patterns and Biogeography: An
LIFE HISTORY PATTERNS AND Lynne R. Parenti2 BIOGEOGRAPHY: AN INTERPRETATION OF DIADROMY IN FISHES1 ABSTRACT Diadromy, broadly defined here as the regular movement between freshwater and marine habitats at some time during their lives, characterizes numerous fish and invertebrate taxa. Explanations for the evolution of diadromy have focused on ecological requirements of individual taxa, rarely reflecting a comparative, phylogenetic component. When incorporated into phylogenetic studies, center of origin hypotheses have been used to infer dispersal routes. The occurrence and distribution of diadromy throughout fish (aquatic non-tetrapod vertebrate) phylogeny are used here to interpret the evolution of this life history pattern and demonstrate the relationship between life history and ecology in cladistic biogeography. Cladistic biogeography has been mischaracterized as rejecting ecology. On the contrary, cladistic biogeography has been explicit in interpreting ecology or life history patterns within the broader framework of phylogenetic patterns. Today, in inferred ancient life history patterns, such as diadromy, we see remnants of previously broader distribution patterns, such as antitropicality or bipolarity, that spanned both marine and freshwater habitats. Biogeographic regions that span ocean basins and incorporate ocean margins better explain the relationship among diadromy, its evolution, and its distribution than do biogeographic regions centered on continents. Key words: Antitropical distributions, biogeography, diadromy, eels, -
The Hydrodynamics of Ribbon-Fin Propulsion During Impulsive Motion
3490 The Journal of Experimental Biology 211, 3490-3503 Published by The Company of Biologists 2008 doi:10.1242/jeb.019224 The hydrodynamics of ribbon-fin propulsion during impulsive motion Anup A. Shirgaonkar1, Oscar M. Curet1, Neelesh A. Patankar1,* and Malcolm A. MacIver1,2,* 1Department of Mechanical Engineering and 2Department of Biomedical Engineering, R. R. McCormick School of Engineering and Applied Science and Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA *Authors for correspondence (e-mail: [email protected], [email protected]) Accepted 14 August 2008 SUMMARY Weakly electric fish are extraordinarily maneuverable swimmers, able to swim as easily forward as backward and rapidly switch swim direction, among other maneuvers. The primary propulsor of gymnotid electric fish is an elongated ribbon-like anal fin. To understand the mechanical basis of their maneuverability, we examine the hydrodynamics of a non-translating ribbon fin in stationary water using computational fluid dynamics and digital particle image velocimetry (DPIV) of the flow fields around a robotic ribbon fin. Computed forces are compared with drag measurements from towing a cast of the fish and with thrust estimates for measured swim-direction reversals. We idealize the movement of the fin as a traveling sinusoidal wave, and derive scaling relationships for how thrust varies with the wavelength, frequency, amplitude of the traveling wave and fin height. We compare these scaling relationships with prior theoretical work. The primary mechanism of thrust production is the generation of a streamwise central jet and the associated attached vortex rings. Under certain traveling wave regimes, the ribbon fin also generates a heave force, which pushes the body up in the body-fixed frame. -
Ráb P.: Ostnojazyčné Ryby Řádu Osteglossiformes 5. Aba a Rypouni (Živa 2018, 6: 326–331)
Ráb P.: Ostnojazyčné ryby řádu Osteglossiformes 5. Aba a rypouni (Živa 2018, 6: 326–331) Použitá a výběr z doporučené literatury: Arnegard, M. E., et al., 2010: Sexual signalevolution outpaces ecological divergence during electric fish species radiation. American Naturalist, 176(3): 335–356. Agnèse, J. F., Bigorne, R., 1992: Premières données sur les relations génétiques entre onze espèces ouest-africaines de Mormyridae (Teleostei, Osteichthyes). Rev Hydrobiol Trop. 25(3): 253–261. Alves-Gomes, J. A., 1999: Systematic biology of gymnotiform and mormyriform electric fishes: phylogenetic relationships, molecular clocks and rates of evolution in the mitochondrial rRNA genes. J Exp Biol. 202(10): 1167–1183. Alves-Gomes, J. A., Hopkins, C. D., 1997: Molecular insights into the phylogeny of mormyriform fishes and the evolution of their electric organ. Brain Behav Evol. 49(6): 324–351. Arnegard, M. E., Carlson, B. A., 2005: Electric organ discharge patterns during group hunting by a mormyrids fish. Proceedings of the Royal Society B, 272: 1305–1314. Arnegard, M. E., et al., 2010: Sexual signal evolution outpaces ecological divergence during electric fish species radiation. American Naturalist; 176(3): 335–356. Azeroual, A., et al., 2010: Gymnarchus niloticus. The IUCN Red List of Threatened Species [Internet]; cited 2018 Feb 12]: e.T181688A7706153. Available from: Available from: http://dx.doi.org/10.2305/IUCN.UK.2010-3.RLTS.T181688A7706153.en Baker, Ch. A., et al., 2013: Multiplexed temporal coding of electric communication signals in mormyrids fishes. The Journal of Experimental Biology, 216: 2365–2379. Benveniste, L., 1994: Phylogenetic systematic of Gymnarchus (Notopteroidei) with notes on Petrocephalus (Mormyridae) of the Osteoglossomorpha. -
A Review of the Systematic Biology of Fossil and Living Bony-Tongue Fishes, Osteoglossomorpha (Actinopterygii: Teleostei)" (2018)
W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2018 A review of the systematic biology of fossil and living bony- tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Eric J. Hilton Virginia Institute of Marine Science Sebastien Lavoue Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Hilton, Eric J. and Lavoue, Sebastien, "A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei)" (2018). VIMS Articles. 1297. https://scholarworks.wm.edu/vimsarticles/1297 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Neotropical Ichthyology, 16(3): e180031, 2018 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20180031 Published online: 11 October 2018 (ISSN 1982-0224) Copyright © 2018 Sociedade Brasileira de Ictiologia Printed: 30 September 2018 (ISSN 1679-6225) Review article A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Eric J. Hilton1 and Sébastien Lavoué2,3 The bony-tongue fishes, Osteoglossomorpha, have been the focus of a great deal of morphological, systematic, and evolutio- nary study, due in part to their basal position among extant teleostean fishes. This group includes the mooneyes (Hiodontidae), knifefishes (Notopteridae), the abu (Gymnarchidae), elephantfishes (Mormyridae), arawanas and pirarucu (Osteoglossidae), and the African butterfly fish (Pantodontidae). This morphologically heterogeneous group also has a long and diverse fossil record, including taxa from all continents and both freshwater and marine deposits. -
Life History Trait Diversity of Native Freshwater Fishes in North America
Ecology of Freshwater Fish 2010: 19: 390–400 Ó 2010 John Wiley & Sons A/S Printed in Malaysia Æ All rights reserved ECOLOGY OF FRESHWATER FISH Life history trait diversity of native freshwater fishes in North America Mims MC, Olden JD, Shattuck ZR, Poff NL. Life history trait diversity of M. C. Mims1, J. D. Olden1, native freshwater fishes in North America. Z. R. Shattuck2,N.L.Poff3 Ecology of Freshwater Fish 2010: 19: 390–400. Ó 2010 John Wiley & 1School of Aquatic and Fishery Sciences, Uni- Sons A ⁄ S versity of Washington, Seattle, WA, USA, 2Department of Biology, Aquatic Station, Texas Abstract – Freshwater fish diversity is shaped by phylogenetic constraints State University-San Marcos, 601 University 3 acting on related taxa and biogeographic constraints operating on regional Drive, San Marcos, TX, USA, Graduate Degree Program in Ecology, Department of Biology, species pools. In the present study, we use a trait-based approach to Colorado State University, Fort Collins, CO, USA examine taxonomic and biogeographic patterns of life history diversity of freshwater fishes in North America (exclusive of Mexico). Multivariate analysis revealed strong support for a tri-lateral continuum model with three end-point strategies defining the equilibrium (low fecundity, high juvenile survivorship), opportunistic (early maturation, low juvenile survivorship), and periodic (late maturation, high fecundity, low juvenile survivorship) life histories. Trait composition and diversity varied greatly Key words: life history strategies; traits; func- between and within major families. Finally, we used occurrence data for tional diversity; freshwater fishes; North America large watersheds (n = 350) throughout the United States and Canada to Meryl C.