Physiological Differentiation of Vertebrate Populations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1. Adaptation and the Evolution of Physiological Characters
Bennett, A. F. 1997. Adaptation and the evolution of physiological characters, pp. 3-16. In: Handbook of Physiology, Sect. 13: Comparative Physiology. W. H. Dantzler, ed. Oxford Univ. Press, New York. 1. Adaptation and the evolution of physiological characters Department of Ecology and Evolutionary Biology, University of California, ALBERT F. BENNETT 1 Irvine, California among the biological sciences (for example, behavioral CHAPTER CONTENTS science [I241). The Many meanings of "Adaptationn In general, comparative physiologists have been Criticisms of Adaptive Interpretations much more successful in, and have devoted much more Alternatives to Adaptive Explanations energy to, pursuing the former rather than the latter Historical inheritance goal (37). Most of this Handbook is devoted to an Developmentai pattern and constraint Physical and biomechanical correlation examination of mechanism-how various physiologi- Phenotypic size correlation cal systems function in various animals. Such compara- Genetic correlations tive studies are usually interpreted within a specific Chance fixation evolutionary context, that of adaptation. That is, or- Studying the Evolution of Physiological Characters ganisms are asserted to be designed in the ways they Macroevolutionary studies Microevolutionary studies are and to function in the ways they do because of Incorporating an Evolutionary Perspective into Physiological Studies natural selection which results in evolutionary change. The principal textbooks in the field (for example, refs. 33, 52, 102, 115) make explicit reference in their titles to the importance of adaptation to comparative COMPARATIVE PHYSIOLOGISTS HAVE TWO GOALS. The physiology, as did the last comparative section of this first is to explain mechanism, the study of how organ- Handbook (32). Adaptive evolutionary explanations isms are built functionally, "how animals work" (113). -
Phylogeny of a Rapidly Evolving Clade: the Cichlid Fishes of Lake Malawi
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 5107–5110, April 1999 Evolution Phylogeny of a rapidly evolving clade: The cichlid fishes of Lake Malawi, East Africa (adaptive radiationysexual selectionyspeciationyamplified fragment length polymorphismylineage sorting) R. C. ALBERTSON,J.A.MARKERT,P.D.DANLEY, AND T. D. KOCHER† Department of Zoology and Program in Genetics, University of New Hampshire, Durham, NH 03824 Communicated by John C. Avise, University of Georgia, Athens, GA, March 12, 1999 (received for review December 17, 1998) ABSTRACT Lake Malawi contains a flock of >500 spe- sponsible for speciation, then we expect that sister taxa will cies of cichlid fish that have evolved from a common ancestor frequently differ in color pattern but not morphology. within the last million years. The rapid diversification of this Most attempts to determine the relationships among cichlid group has been attributed to morphological adaptation and to species have used morphological characters, which may be sexual selection, but the relative timing and importance of prone to convergence (8). Molecular sequences normally these mechanisms is not known. A phylogeny of the group provide the independent estimate of phylogeny needed to infer would help identify the role each mechanism has played in the evolutionary mechanisms. The Lake Malawi cichlids, however, evolution of the flock. Previous attempts to reconstruct the are speciating faster than alleles can become fixed within a relationships among these taxa using molecular methods have species (9, 10). The coalescence of mtDNA haplotypes found been frustrated by the persistence of ancestral polymorphisms within populations predates the origin of many species (11). In within species. -
Grand Challenges in Comparative Physiology
GrandChallengesinComparative Physiology: Integration Across Disciplines and Across Levels of Biological Organization Donald L. Mykles,1,* Cameron K. Ghalambor,* Jonathon H. Stillman†,‡ and Lars Tomanekx *Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; †Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA; ‡Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94703, USA; xCenter for Coastal Marine Sciences and Environmental Proteomics Laboratory, Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA Introduction the sixth paper in the ‘‘Grand understanding of the molecular mech- Challenges’’ series, which offers the anisms of cellular processes. The induc- Schwenk et al. (2009) provided an over view from comparative physiology. tive approach depends on observation view of five major challenges in organ- In this article, we expand upon three to develop universal principles. Charles ismal biology: (1) understanding the major challenges facing comparative Darwin, after all, used this approach to organism’s role in organism–environ physiology in the 21st century: vertical develop the theory of natural selection. ment linkages; (2) utilizing the func integration of physiological processes All too often these approaches are tional diversity of organisms; (3) across organizational levels within or- integrating living and physical systems viewed as mutually exclusive, when, in ganisms, horizontal integration of analysis; (4) understanding how fact, they are complementary and are genomes produce organisms; and (5) physiological processes across organ- used, to varying extents, by most biol understanding how organisms walk isms within ecosystems, and temporal ogists working today. Yet, we have the tightrope between stability and integration of physiological pro- fallen short of full integration across change. -
Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx
Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx Gregory M. Erickson1,6*, Oliver W. M. Rauhut2, Zhonghe Zhou3, Alan H. Turner4,6, Brian D. Inouye1, Dongyu Hu5, Mark A. Norell6 1 Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America, 2 Bayerische Staatssammlung fu¨r Pala¨ontologie und Geologie and Department of Earth and Environmental Sciences, LMU Munich, Mu¨nchen, Germany, 3 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Science, Beijing, China, 4 Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, United States of America, 5 Paleontological Institute, Shenyang Normal University, Shenyang, China, 6 Division of Paleontology, American Museum of Natural History, New York, New York, United States of America Abstract Background: Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs. This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue typical of non-avialan dinosaurs. Methodology/Principal Findings: We report that Archaeopteryx long bones are composed of nearly avascular parallel- fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds. Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and other basalmost birds follow. -
Biology of Chordates Video Guide
Branches on the Tree of Life DVD – CHORDATES Written and photographed by David Denning and Bruce Russell ©2005, BioMEDIA ASSOCIATES (THUMBNAIL IMAGES IN THIS GUIDE ARE FROM THE DVD PROGRAM) .. .. To many students, the phylum Chordata doesn’t seem to make much sense. It contains such apparently disparate animals as tunicates (sea squirts), lancelets, fish and humans. This program explores the evolution, structure and classification of chordates with the main goal to clarify the unity of Phylum Chordata. All chordates possess four characteristics that define the phylum, although in most species, these characteristics can only be seen during a relatively small portion of the life cycle (and this is often an embryonic or larval stage, when the animal is difficult to observe). These defining characteristics are: the notochord (dorsal stiffening rod), a hollow dorsal nerve cord; pharyngeal gills; and a post anal tail that includes the notochord and nerve cord. Subphylum Urochordata The most primitive chordates are the tunicates or sea squirts, and closely related groups such as the larvaceans (Appendicularians). In tunicates, the chordate characteristics can be observed only by examining the entire life cycle. The adult feeds using a ‘pharyngeal basket’, a type of pharyngeal gill formed into a mesh-like basket. Cilia on the gill draw water into the mouth, through the basket mesh and out the excurrent siphon. Tunicates have an unusual heart which pumps by ‘wringing out’. It also reverses direction periodically. Tunicates are usually hermaphroditic, often casting eggs and sperm directly into the sea. After fertilization, the zygote develops into a ‘tadpole larva’. This swimming larva shows the remaining three chordate characters - notochord, dorsal nerve cord and post-anal tail. -
Fish Brains: Evolution and Environmental Relationships
Reviews in Fish Biology and Fisheries 8, 373±408 (1998) Fish brains: evolution and environmental relationships K. KOTRSCHAL1,Ã, M.J. VAN STAADEN2,3 and R. HUBER2,3 1Institute of Zoology, Department of Ethology, The University of Vienna and Konrad Lorenz Forschungsstelle, A±4645 GruÈnau 11, Austria 2Institute of Zoology, Department of Physiology, The University of Graz, UniversitaÈtsplatz 2, A±8010 Graz, Austria 3Department of Biological Sciences, Bowling Green State University, Life Science Bldg, Bowling Green, OH 43403, USA Contents Abstract page 373 Fish brains re¯ect an enormous evolutionary radiation 374 Based on morphology: how conclusions on sensory orientation are reached 376 Structure of ®sh brains 378 Large-scale evolutionary patterns of ®sh brains 384 Functional diversi®cation 386 Cyprinidae Gadidae Flat®shes Cichlidae and other modern perciforms How environments shape brains: turbidity, benthos and the pelagic realms 393 Variation of brain and senses with depth 395 Ontogenetic variation: a means of adaptation? 398 Intraspeci®c variation between `adult' age classes Intraspeci®c variation within age classes Conclusions: where to go from here? 400 Acknowledgements 401 References 402 Abstract Fish brains and sensory organs may vary greatly between species. With an estimated total of 25 000 species, ®sh represent the largest radiation of vertebrates. From the agnathans to the teleosts, they span an enormous taxonomic range and occupy virtually all aquatic habitats. This diversity offers ample opportunity to relate ecology with brains and sensory systems. In a broadly comparative approach emphasizing teleosts, we surveyed `classical' and more recent contributions on ®sh brains in search of evolutionary and ecological conditions of central nervous system diversi®cation. -
Life History Patterns and Biogeography: An
LIFE HISTORY PATTERNS AND Lynne R. Parenti2 BIOGEOGRAPHY: AN INTERPRETATION OF DIADROMY IN FISHES1 ABSTRACT Diadromy, broadly defined here as the regular movement between freshwater and marine habitats at some time during their lives, characterizes numerous fish and invertebrate taxa. Explanations for the evolution of diadromy have focused on ecological requirements of individual taxa, rarely reflecting a comparative, phylogenetic component. When incorporated into phylogenetic studies, center of origin hypotheses have been used to infer dispersal routes. The occurrence and distribution of diadromy throughout fish (aquatic non-tetrapod vertebrate) phylogeny are used here to interpret the evolution of this life history pattern and demonstrate the relationship between life history and ecology in cladistic biogeography. Cladistic biogeography has been mischaracterized as rejecting ecology. On the contrary, cladistic biogeography has been explicit in interpreting ecology or life history patterns within the broader framework of phylogenetic patterns. Today, in inferred ancient life history patterns, such as diadromy, we see remnants of previously broader distribution patterns, such as antitropicality or bipolarity, that spanned both marine and freshwater habitats. Biogeographic regions that span ocean basins and incorporate ocean margins better explain the relationship among diadromy, its evolution, and its distribution than do biogeographic regions centered on continents. Key words: Antitropical distributions, biogeography, diadromy, eels, -
Study Guide for Human Anatomy & Physiology 10Th
STUDY GUIDE FOR HUMAN ANATOMY & PHYSIOLOGY 10TH EDITION PDF, EPUB, EBOOK Elaine N Marieb | 9780133999310 | | | | | Study Guide for Human Anatomy & Physiology 10th edition PDF Book An Illustrated Guide. This area of the backbone curves slightly inward and connects to the lower part of the rib cage. The vertebrae of the spinal column are held together by a series of ligaments and muscles. Anatomy is the study of the structure of living organisms. Helmenstine holds a Ph. Studying anatomy involves lots of memorization. Physiology may be either comparative physiology or human physiology. Explore resources and articles related to the human body's shape and form, including organs, skeleton, muscles, blood vessels, and more. This is a flexible part of the spine that is more mobile than the rest of the backbone. ThoughtCo uses cookies to provide you with a great user experience. Anatomy Epithelial Tissue: Beyond Skin. Anatomy Male and Female Reproductive Systems. To really make sure you comprehend the material, you must constantly review what you have learned. Anatomy 3 Types of Respiration. Blame Your Amygdala in Your Brain. Anatomy Heart Valves and Heart Sounds. Organ systems are formed from groups of organs and tissues working in conjunction to perform necessary functions for the survival of the organism. The lower part of the back is known as the lumbar section. Anatomy Osteology: Definition and Applications. What you'll learn Skip What you'll learn. This anatomy portion of the course is typically comparative, where students examine homologous and analogous structures in a variety of organisms e. Anatomy Explore the Anatomy of the Stomach. -
New Insights Into the Biology of Theropod Dinosaurs
AN ABSTRACT OF THE DISSERTATION OF Devon E. Quick for the degree of Doctor of Philosophy in Zoology presented on December 1, 2008. Title: New Insights into the Biology of Theropod Dinosaurs. Abstract approved: __________________________________________________________ John A. Ruben There is little, if any, direct fossil evidence of the cardiovascular, respiratory, reproductive or digestive biology of dinosaurs. However, a variety of data can be used to draw reasonable inferences about the physiology of the carnivorous theropod dinosaurs (Archosauria: Theropoda). Extant archosaurs, birds and crocodilians, possess regionally differentiated, vascularized and avascular lungs, although the crocodilian lung is less specialized than the avian lung air-sac system. Essential components of avian lungs include the voluminous, thin-walled abdominal air-sacs which are ventilated by an expansive sternum and specialized ribs. Inhalatory, paradoxical collapse of these air-sacs in birds is prevented by the synsacrum, pubes and femoral-thigh complex. The present work examines the theropod abdomen and reveals that it lacked sufficient space to have housed similarly enlarged abdominal air-sacs as well as the skeleto-muscular modifications requisite to have ventilated them. There is little evidence to indicate that theropod dinosaurs possessed a specialized bird-like, air-sac lung and, by extension, that theropod cardiovascular function was any more sophisticated than that of crocodilians. Conventional wisdom holds that theropod visceral anatomy was similar to that in birds. However, exceptional soft tissue preservation in Scipionyx samnitcus (Theropoda) offers rare evidence of in situ theropod visceral anatomy. Using computed tomography, close comparison of Scipionyx with gastrointestinal morphology in crocodilians, birds and lizards indicates that theropod visceral structure and “geography” was strikingly similar only to that in Alligator. -
Redalyc.How General Are Current Comparative Physiology Studies? A
Revista Chilena de Historia Natural ISSN: 0716-078X [email protected] Sociedad de Biología de Chile Chile NESPOLO, ROBERTO F.; ARTACHO, PAULINA How general are current comparative physiology studies? A quantitative review Revista Chilena de Historia Natural, vol. 78, núm. 2, 2005, pp. 313-321 Sociedad de Biología de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=369944274015 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative QUANTITATIVE REVIEW OF COMPARATIVE PHYSIOLOGYRevista Chilena de Historia Natural313 78: 313-321, 2005 How general are current comparative physiology studies? A quantitative review ¿Cuán general son los estudios en fisiología comparada actualmente? Una revisión cuantitativa ROBERTO F. NESPOLO* & PAULINA ARTACHO Instituto de Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile * Corresponding author: e-mail: [email protected] ABSTRACT Comparative animal physiology and related fields (named here “ecological physiology”) are entering a time of synthesis in the form of a quest for large scales patterns. However, these new approaches need to be supplied by great amounts of data, representative of existing animal forms. We tested whether this is the case by performing a quantitative survey in the most important media for ecological physiologists. We found that ecological physiologists have clear biases toward some taxonomic classes, which represent one third of existing animal phyla. Non–taxonomic characterization of animals (endothermy/ectothermy, aquatic/ terrestrial), however, produced a more balanced picture. -
Life History Trait Diversity of Native Freshwater Fishes in North America
Ecology of Freshwater Fish 2010: 19: 390–400 Ó 2010 John Wiley & Sons A/S Printed in Malaysia Æ All rights reserved ECOLOGY OF FRESHWATER FISH Life history trait diversity of native freshwater fishes in North America Mims MC, Olden JD, Shattuck ZR, Poff NL. Life history trait diversity of M. C. Mims1, J. D. Olden1, native freshwater fishes in North America. Z. R. Shattuck2,N.L.Poff3 Ecology of Freshwater Fish 2010: 19: 390–400. Ó 2010 John Wiley & 1School of Aquatic and Fishery Sciences, Uni- Sons A ⁄ S versity of Washington, Seattle, WA, USA, 2Department of Biology, Aquatic Station, Texas Abstract – Freshwater fish diversity is shaped by phylogenetic constraints State University-San Marcos, 601 University 3 acting on related taxa and biogeographic constraints operating on regional Drive, San Marcos, TX, USA, Graduate Degree Program in Ecology, Department of Biology, species pools. In the present study, we use a trait-based approach to Colorado State University, Fort Collins, CO, USA examine taxonomic and biogeographic patterns of life history diversity of freshwater fishes in North America (exclusive of Mexico). Multivariate analysis revealed strong support for a tri-lateral continuum model with three end-point strategies defining the equilibrium (low fecundity, high juvenile survivorship), opportunistic (early maturation, low juvenile survivorship), and periodic (late maturation, high fecundity, low juvenile survivorship) life histories. Trait composition and diversity varied greatly Key words: life history strategies; traits; func- between and within major families. Finally, we used occurrence data for tional diversity; freshwater fishes; North America large watersheds (n = 350) throughout the United States and Canada to Meryl C. -
Phylogenetic Perspectives in the Evolution of Parental Care in Ray-Finned Fishes
Evolution, 59(7), 2005, pp. 1570±1578 PHYLOGENETIC PERSPECTIVES IN THE EVOLUTION OF PARENTAL CARE IN RAY-FINNED FISHES JUDITH E. MANK,1,2 DANIEL E. L. PROMISLOW,1 AND JOHN C. AVISE1 1Department of Genetics, University of Georgia, Athens, Georgia 30602 2E-mail: [email protected] Abstract. Among major vertebrate groups, ray-®nned ®shes (Actinopterygii) collectively display a nearly unrivaled diversity of parental care activities. This fact, coupled with a growing body of phylogenetic data for Actinopterygii, makes these ®shes a logical model system for analyzing the evolutionary histories of alternative parental care modes and associated reproductive behaviors. From an extensive literature review, we constructed a supertree for ray-®nned ®shes and used its phylogenetic topology to investigate the evolution of several key reproductive states including type of parental care (maternal, paternal, or biparental), internal versus external fertilization, internal versus external gestation, nest construction behavior, and presence versus absence of sexual dichromatism (as an indicator of sexual selection). Using a comparative phylogenetic approach, we critically evaluate several hypotheses regarding evolutionary pathways toward parental care. Results from maximum parsimony reconstructions indicate that all forms of parental care, including paternal, biparental, and maternal (both external and internal to the female reproductive tract) have arisen repeatedly and independently during ray-®nned ®sh evolution. The most common evolutionary transitions were from external fertilization directly to paternal care and from external fertilization to maternal care via the intermediate step of internal fertilization. We also used maximum likelihood phylogenetic methods to test for statistical correlations and contingencies in the evolution of pairs of reproductive traits.