1. Adaptation and the Evolution of Physiological Characters
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
History and Philosophy of Systematic Biology
History and Philosophy of Systematic Biology Bock, W. J. (1973) Philosophical foundations of classical evolutionary classification Systematic Zoology 22: 375-392 Part of a general symposium on "Contemporary Systematic Philosophies," there are some other interesting papers here. Brower, A. V. Z. (2000) Evolution Is Not a Necessary Assumption of Cladistics Cladistics 16: 143- 154 Dayrat, Benoit (2005) Ancestor-descendant relationships and the reconstruction of the Tree of Lif Paleobiology 31: 347-353 Donoghue, M.J. and J.W. Kadereit (1992) Walter Zimmermann and the growth of phylogenetic theory Systematic Biology 41: 74-84 Faith, D. P. and J. W. H. Trueman (2001) Towards an inclusive philosophy for phylogenetic inference Systematic Biology 50: 331-350 Gaffney, E. S. (1979) An introduction to the logic of phylogeny reconstruction, pp. 79-111 in Cracraft, J. and N. Eldredge (eds.) Phylogenetic Analysis and Paleontology Columbia University Press, New York. Gilmour, J. S. L. (1940) Taxonomy and philosophy, pp. 461-474 in J. Huxley (ed.) The New Systematics Oxford Hull, D. L. (1978) A matter of individuality Phil. of Science 45: 335-360 Hull, D. L. (1978) The principles of biological classification: the use and abuse of philosophy Hull, D. L. (1984) Cladistic theory: hypotheses that blur and grow, pp. 5-23 in T. Duncan and T. F. Stuessy (eds.) Cladistics: Perspectives on the Reconstruction of Evolutionary History Columbia University Press, New York * Hull, D. L. (1988) Science as a process: an evolutionary account of the social and conceptual development of science University of Chicago Press. An already classic work on the recent, violent history of systematics; used as data for Hull's general theories about scientific change. -
Natural Selection and Adaptation, Part I
Natural Selection and Adaptation, Part I 36-149 The Tree of Life Christopher R. Genovese Department of Statistics 132H Baker Hall x8-7836 http://www.stat.cmu.edu/~genovese/ . Plan • Review of Natural Selection • Detecting Natural Selection (discussion) • Examples of Observed Natural Selection ............................... Next Time: • Adaptive Traits • Methods for Reasoning about and studying adaptations • Explaining Complex Adaptations (discussion) 36-149 The Tree of Life Class #10 -1- Overview The theories of common descent and natural selection play different roles within the theory of evolution. Common Descent explains the unity of life. Natural Selection explains the diversity of life. An adaptation (or adaptive trait) is a feature of an organism that enhances reproductive success, relative to other possible variants, in a given environment. Adaptations become prevalent and are maintained in a population through natural selection. Indeed, natural selection is the only mechanism of evolutionary change that can satisfactorily explain adaptations. 36-149 The Tree of Life Class #10 -2- Darwin's Argument Darwin put forward two main arguments in support of natural selection: An analogical argument: Artificial selection A logical argument: The struggle for existence (As we will see later, we now have more than just argument in support of the theory.) 36-149 The Tree of Life Class #10 -3- The Analogical Argument: Artificial Selection 36-149 The Tree of Life Class #10 -4- The Analogical Argument: Artificial Selection 36-149 The Tree of Life Class #10 -5- The Analogical Argument: Artificial Selection Teosinte to Corn 36-149 The Tree of Life Class #10 -6- The Analogical Argument: Artificial Selection • Darwin was intimately familiar with the efforts of breeders in his day to produce novel varieties. -
Evolutionary and Historical Biogeography of Animal Diversity Learning Objectives
Evolutionary and historical biogeography of animal diversity Learning objectives • The students can explain the common ancestor of animal kingdom. • The students can explain the historical biogeography of animal. • The students can explain the invasion of animal from aquatic to terrestrial habitat. • The students can explain the basic mechanism of speciation, allopatric and non-allopatric. The Common Ancestor of Animal Kingdom Characteristics of Animals • Animals or “metazoans” are typically heterotrophic, multicellular organisms with diploid, eukaryotic cells. • Trichoplax adhaerens is defined as an animal by the presence of different somatic (i.e., non-reproductive) cell types and by impermeable cell–cell connections. Trichoplax adhaerens Blackstone, 2009 Two Hypotheses for the Branching Order of Groups at the Root of the Metazoan Tree 1 2 The choanoflagellates serve as an outgroup in the Bilaterians are the sister group to the placozoan + analysis, and sponges are the sister group to the sponge + ctenophore + cnidarian clade, while placozoans placozoan + cnidarian + ctenophore + bilaterian are the sister group to the sponge + ctenophore + clade. cnidarian clade. Blackstone, 2009 Ancestry and evolution of animal–bacterial interactions • Choanoflagellates as the last common ancestor of animal kingdom. • Urmetazoan is the group of animal with multicellular and produce differentiated cell types (ex. Egg & sperm) R.A. Alegado & N. King, 2014 Conserved morphology and ultrastructure of Choanoflagellates and Sponge choanocytes The collar complex is conserved in choanoflagellates (A. S. rosetta) and sponge collar cells (B. Sycon coactum) flagellum (fL), microvilli (mv), a nucleus (nu), and a food vacuole (fv) Brunet & King, 2017 The Historical Biogeography of Animal Zoogeographic regions Old New Cox, 2001 Plate tectonic regulation of global marine animal diversity A. -
Grand Challenges in Comparative Physiology
GrandChallengesinComparative Physiology: Integration Across Disciplines and Across Levels of Biological Organization Donald L. Mykles,1,* Cameron K. Ghalambor,* Jonathon H. Stillman†,‡ and Lars Tomanekx *Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; †Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, CA 94920, USA; ‡Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94703, USA; xCenter for Coastal Marine Sciences and Environmental Proteomics Laboratory, Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA Introduction the sixth paper in the ‘‘Grand understanding of the molecular mech- Challenges’’ series, which offers the anisms of cellular processes. The induc- Schwenk et al. (2009) provided an over view from comparative physiology. tive approach depends on observation view of five major challenges in organ- In this article, we expand upon three to develop universal principles. Charles ismal biology: (1) understanding the major challenges facing comparative Darwin, after all, used this approach to organism’s role in organism–environ physiology in the 21st century: vertical develop the theory of natural selection. ment linkages; (2) utilizing the func integration of physiological processes All too often these approaches are tional diversity of organisms; (3) across organizational levels within or- integrating living and physical systems viewed as mutually exclusive, when, in ganisms, horizontal integration of analysis; (4) understanding how fact, they are complementary and are genomes produce organisms; and (5) physiological processes across organ- used, to varying extents, by most biol understanding how organisms walk isms within ecosystems, and temporal ogists working today. Yet, we have the tightrope between stability and integration of physiological pro- fallen short of full integration across change. -
Auditory Experience Controls the Maturation of Song Discrimination and Sexual Response in Drosophila Xiaodong Li, Hiroshi Ishimoto, Azusa Kamikouchi*
RESEARCH ARTICLE Auditory experience controls the maturation of song discrimination and sexual response in Drosophila Xiaodong Li, Hiroshi Ishimoto, Azusa Kamikouchi* Graduate School of Science, Nagoya University, Nagoya, Japan Abstract In birds and higher mammals, auditory experience during development is critical to discriminate sound patterns in adulthood. However, the neural and molecular nature of this acquired ability remains elusive. In fruit flies, acoustic perception has been thought to be innate. Here we report, surprisingly, that auditory experience of a species-specific courtship song in developing Drosophila shapes adult song perception and resultant sexual behavior. Preferences in the song-response behaviors of both males and females were tuned by social acoustic exposure during development. We examined the molecular and cellular determinants of this social acoustic learning and found that GABA signaling acting on the GABAA receptor Rdl in the pC1 neurons, the integration node for courtship stimuli, regulated auditory tuning and sexual behavior. These findings demonstrate that maturation of auditory perception in flies is unexpectedly plastic and is acquired socially, providing a model to investigate how song learning regulates mating preference in insects. DOI: https://doi.org/10.7554/eLife.34348.001 Introduction Vocal learning in infants or juvenile birds relies heavily on the early experience of the adult conspe- cific sounds. In humans, early language input is necessary to form the ability of phonetic distinction *For correspondence: and pattern detection in the phase of auditory learning (Doupe and Kuhl, 1999; Kuhl, 2004). [email protected] Because of the strong parallels between speech acquisition of humans and song learning of song- Competing interests: The birds, and the difficulties to investigate the neural mechanisms of human early auditory memory at authors declare that no cellular resolution, songbirds have been used as a predominant model in studying memory formation competing interests exist. -
Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx
Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx Gregory M. Erickson1,6*, Oliver W. M. Rauhut2, Zhonghe Zhou3, Alan H. Turner4,6, Brian D. Inouye1, Dongyu Hu5, Mark A. Norell6 1 Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America, 2 Bayerische Staatssammlung fu¨r Pala¨ontologie und Geologie and Department of Earth and Environmental Sciences, LMU Munich, Mu¨nchen, Germany, 3 Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Science, Beijing, China, 4 Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, United States of America, 5 Paleontological Institute, Shenyang Normal University, Shenyang, China, 6 Division of Paleontology, American Museum of Natural History, New York, New York, United States of America Abstract Background: Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs. This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue typical of non-avialan dinosaurs. Methodology/Principal Findings: We report that Archaeopteryx long bones are composed of nearly avascular parallel- fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds. Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and other basalmost birds follow. -
Reducing Risks Through Adaptation Actions | Fourth National Climate
Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II 28 Reducing Risks Through Adaptation Actions Federal Coordinating Lead Authors Review Editor Jeffrey Arnold Mary Ann Lazarus U.S. Army Corps of Engineers Cameron MacAllister Group Roger Pulwarty National Oceanic and Atmospheric Administration Chapter Lead Robert Lempert RAND Corporation Chapter Authors Kate Gordon Paulson Institute Katherine Greig Wharton Risk Management and Decision Processes Center at University of Pennsylvania (formerly New York City Mayor’s Office of Recovery and Resiliency) Cat Hawkins Hoffman National Park Service Dale Sands Village of Deer Park, Illinois Caitlin Werrell The Center for Climate and Security Technical Contributors are listed at the end of the chapter. Recommended Citation for Chapter Lempert, R., J. Arnold, R. Pulwarty, K. Gordon, K. Greig, C. Hawkins Hoffman, D. Sands, and C. Werrell, 2018: Reducing Risks Through Adaptation Actions. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II [Reidmiller, D.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, K.L.M. Lewis, T.K. Maycock, and B.C. Stewart (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 1309–1345. doi: 10.7930/NCA4.2018.CH28 On the Web: https://nca2018.globalchange.gov/chapter/adaptation Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment, Volume II 28 Reducing Risks Through Adaptation Actions Key Message 1 Seawall surrounding Kivalina, Alaska Adaptation Implementation Is Increasing Adaptation planning and implementation activities are occurring across the United States in the public, private, and nonprofit sectors. Since the Third National Climate Assessment, implementation has increased but is not yet commonplace. -
Download Download
THEORETICAL COMMUNICATIONS EVO/DEVO From archebiosis to evolution of organisms and informational systems Yuri Natochin1 and Tatiana Chernigovskaya2 EVO/DEVO 1Faculty of Medicine, Saint Petersburg State University, Universutetskaya nab., 7–9, Saint Petersburg, 199106, Russian Federation 2Department of the Problems of Convergence in Natural Sciences and Humanities, Laboratory for Cognitive Studies, Faculty of Liberal Arts and Sciences, Saint Petersburg State University, Universitetskaya nab., 7–9, Saint Petersburg, 190000, Russian Federation Address correspondence and requests for materials to Tatiana Chernigovskaya, [email protected] Abstract Laws of evolution seem to be relevant not only for biological domains, but for informational systems. This paper provides a sketch of a comparison of two systems — that of homeostatic systems, and that of language evolution. We argue that the patterns of evolution of functions are hierarchically organized according to four main levels: I — the primary level: a cell in biology, a phoneme in language; II — functional units: a nephron, a morpheme; III — organs: a kid- ney (a lung, a heart, etc.), a word; IV — systems: physico-chemical constancy, a sentence or a phrase. There is a set of restrictions for each domain: the linguis- tic changes have not occurred in all languages, in many cases they are still un- derway, there are ‘old’ and ‘young’ languages, etc. Such comparisons appear to be relevant and can be applied to objects as far removed as these. This allows us to speak of certain evolutionary universals. Keywords: laws of physiological evolution, history of evolutional physiology in Russia, origins of life, language evolution. Introduction: A glimpse of history Citation: Natochin, Y. -
The Evolution of Bird Song: Male and Female Response to Song Innovation in Swamp Sparrows
ANIMAL BEHAVIOUR, 2001, 62, 1189–1195 doi:10.1006/anbe.2001.1854, available online at http://www.idealibrary.com on The evolution of bird song: male and female response to song innovation in swamp sparrows STEPHEN NOWICKI*, WILLIAM A. SEARCY†, MELISSA HUGHES‡ & JEFFREY PODOS§ *Evolution, Ecology & Organismal Biology Group, Department of Biology, Duke University †Department of Biology, University of Miami ‡Department of Ecology and Evolutionary Biology, Princeton University §Department of Biology, University of Massachusetts at Amherst (Received 27 April 2000; initial acceptance 24 July 2000; final acceptance 19 April 2001; MS. number: A8776) Closely related species of songbirds often show large differences in song syntax, suggesting that major innovations in syntax must sometimes arise and spread. Here we examine the response of male and female swamp sparrows, Melospiza georgiana, to an innovation in song syntax produced by males of this species. Young male swamp sparrows that have been exposed to tutor songs with experimentally increased trill rates reproduce these songs with periodic silent gaps (Podos 1996, Animal Behaviour, 51, 1061–1070). This novel temporal pattern, termed ‘broken syntax’, has been demonstrated to transmit across generations (Podos et al. 1999, Animal Behaviour, 58, 93–103). We show here that adult male swamp sparrows respond more strongly in territorial playback tests to songs with broken syntax than to heterospecific songs, and equally strongly to conspecific songs with normal and broken syntax. In tests using the solicitation display assay, adult female swamp sparrows respond more to broken syntax than to heterospecific songs, although they respond significantly less to conspecific songs with broken syntax than to those with normal syntax. -
The Unique Skeleton of Siliceous Sponges (Porifera; Hexactinellida and Demospongiae) That Evolved first from the Urmetazoa During the Proterozoic: a Review
Biogeosciences, 4, 219–232, 2007 www.biogeosciences.net/4/219/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review W. E. G. Muller¨ 1, Jinhe Li2, H. C. Schroder¨ 1, Li Qiao3, and Xiaohong Wang4 1Institut fur¨ Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Duesbergweg 6, 55099 Mainz, Germany 2Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, P. R. China 3Department of Materials Science and Technology, Tsinghua University, 100084 Beijing, P. R. China 4National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, 100037 Beijing, P. R. China Received: 8 January 2007 – Published in Biogeosciences Discuss.: 6 February 2007 Revised: 10 April 2007 – Accepted: 20 April 2007 – Published: 3 May 2007 Abstract. Sponges (phylum Porifera) had been considered an axial filament which harbors the silicatein. After intracel- as an enigmatic phylum, prior to the analysis of their genetic lular formation of the first lamella around the channel and repertoire/tool kit. Already with the isolation of the first ad- the subsequent extracellular apposition of further lamellae hesion molecule, galectin, it became clear that the sequences the spicules are completed in a net formed of collagen fibers. of sponge cell surface receptors and of molecules forming the The data summarized here substantiate that with the find- intracellular signal transduction pathways triggered by them, ing of silicatein a new aera in the field of bio/inorganic chem- share high similarity with those identified in other metazoan istry started. -
Evolutionary Environmental Physiology (IB 150, 3 Units, Spring 2016)
Evolutionary Environmental Physiology (IB 150, 3 units, Spring 2016) Department of Integrative Biology, University of California, Berkeley COURSE INFORMATION COURSE FORMAT Two lectures (1.5h/lecture, 9:30 – 11am Tue/Thu, 110 Wheeler) and one discussion per week (2h, room and time TBA). INSTRUCTOR Caroline Williams Office: 5120 VLSB, (510) 643-9775, office hours to be advised Email: [email protected] Webpage: cmwilliamslab.com bCourses site: to be advised GSI To be advised (1 requested) PREREQUISITES Bio1A and Bio1B or equivalent ENROLLMENT Capped at 50 students for first year (8 Teams of 6-7 students), aiming to expand in future years COURSE Evolutionary physiology studies how physiological traits arise and OVERVIEW are modified during adaptation to the environment. An integrative understanding of the origin and maintenance of physiological traits, encompassing levels of biological hierarchy from molecular to ecological and biogeographic, is essential for improving human health and stewarding the natural world through the current era of rapid environmental change. This course consists of three parts: 1) big questions in evolutionary physiology and how they are addressed; 2) a student-led exploration of how environmental factors have shaped physiological evolution; and 3) predicting responses to global change using evolutionary physiology. This course will be taxonomically broad and will encompass aquatic and terrestrial systems. LEARNING This course aims to foster both content-specific knowledge and OBJECTIVES scientific enquiry and reasoning skills. As a result, this course will stimulate interest in the field of evolutionary physiology, and will also provide a solid preparation for the new (2015) MCAT examination. The specific learning objectives are listed below. -
General Adaptation Guidance: a Guide to Adapting Evidence-Based Sexual Health Curricula
General Adaptation Guidance: A Guide to Adapting Evidence-Based Sexual Health Curricula Adaptation Kit Tools and Resources for Making Informed Adaptations s Evidence-Based ProgramAn ed A An Evidence-BasedAn Program Evidence Based Program Adaptation Kit Tools and Resources for Making InformedAdaptation Adaptations Kit Tools and Resources for Making Informed Adaptations - Nicole Lezin Lori Rolleri For more information, contact: Julie Taylor More information about adaptation guidelines is available at ReCAPP, www.etr.org/recapp Regina Firpo-Triplett, MPH, CHES ETR [email protected], www.etr.org/recapp Taleria R. Fuller, PhD CDC Division of Reproductive Health [email protected], www.cdc.gov/teenpregnancy/ Spring 2012 Funding was made possible by Contract #GS10F0171T from the Centers for Disease Control and Prevention (CDC). About this Guide and the Adaptation Project Using an evidence-based intervention or EBI (a program that has been shown through rigorous evaluation to be effective at changing risk-taking behavior) assures that intervention efforts are devoted to what has been proven to work. Most practitioners make adaptations to EBIs to meet the unique characteristics of their local populations or projects. However, while this is a common practice, making changes to an EBI without a clear understanding of its core components can compromise the program’s effectiveness. ETR Associates, with funding from and in collaboration with the CDC Division of Reproductive Health (DRH), has developed guidelines on how to make appropriate adaptations to sexual health EBIs without sacrificing their core components. This guide provides general green (safe), yellow (proceed with caution) and red (unsafe) light adaptation guidance for practitioners considering making adaptations to sexual health EBIs.