Inferior Hypogastric Plexus

Total Page:16

File Type:pdf, Size:1020Kb

Inferior Hypogastric Plexus 9-4 Pain Localization and Control Wagih W. Gobrial The female pelvis contains diverse, multiple, and intricately thetically mediated pain.Patients with malignancy,who get innervated structures that are potential sources of pain. As good relief although short-lived, might benefit from neu- an example, when the etiologic process is gynecologic rolytic blocks. cancer, which tends to spread locally either by direct inva- Neurolytic blocks are done using the same technique. sion or by spread of metastases to regional lymph notes, However, instead of using a local anesthetic, a neurolytic pain can be present at multiple sites simultaneously. agent is used, such as alcohol (because it is hypobaric and Pelvic pain is particularly difficult to manage because it the patient is in a prone position) or 6% phenol (occa- is often vague, poorly localized, and tends to be bilateral or sionally used, if a hyperbaric solution is needed). The to cross the midline. Thus, a systematic approach to pelvic patient must be made aware of the risks and side effects of pain is the best approach. A careful review of history and the neurolytic block before proceeding. physical examination may give a clue about the source and type of pain. Cooperation with a specialist in gynecology, urology, or colorectal surgery is helpful in identifying the Differential Spinal Block most likely location of the painful stimulus during a directed pelvic examination. There are two ways to accomplish this block: Two types of diagnostic blocks are typically performed to try to ascertain the source of the pain and hence devise 1. Standard differential block. This is done by intrathecally a treatment plan: injecting several solutions. Injections are spaced 5 to 10 minutes apart and the patient is evaluated after each 1. Differential spinal block – to differentiate between injection. psychological, central, sympathetically medicated, or A. The first solution is 5mL of preservative-free normal somatic pain saline. If the patient gets pain relief from the saline 2. Sympathetic block – to impact nerves directly supply- injection, this might be attributed to: ing the pelvic structures 1. Placebo effect (reported in up to 30% of patients), A. Superior hypogastric plexus block: Specifically which is usually short-lived and the pain usually useful for pelvic pain arising from the uterus and comes back in a few minutes. upper vagina, bladder, prostate, urethra, seminal 2. Psychological pain, in which case the patient gets vesicles, testes, and ovaries; pelvic pain secondary an extended pain relief, which may last for days to radiation; sympathetically maintained pain (e.g., or even permanently. after rectal anastomosis, abdominoperineal resec- B. If no relief is achieved, the second solution will be 4 tion, etc.); and chronic pelvic inflammatory to 5mL of 0.5% procaine,with 5mL of normal saline. processes.1 This will block the sympathetic fibers without B. Inferior hypogastric block: Primarily useful for sensory or motor effects. If the patient gets pain perineal pain either malignant or sympathetically relief with this injection, the pain is probably sym- mediated, and superficial hyperesthesia including pathetically mediated and the patient will benefit sensation of severe burning and urgency. from a sympathetic block. C. The third solution is 1mL of 5% procaine added to Both blocks are done initially with a local anesthetic, as 9mL of normal saline – somatic blockade. If the diagnostic/therapeutic blocks. Local anesthetic blocks are patient gets pain relief, the pain is somatic in origin therapeutic if done multiple times in patients with sympa- and treatment should be focused on this direction. 259 260 Pain and Irritative Syndromes Therapy D. The fourth solution is 2mL of 5% procaine added to 2mL of saline. This would cause a complete motor block. If the patient continues to have the pain after complete motor and sensory spinal block, the patient’s pain is considered central. This might be caused by a true organic lesion above the level of the spinal block (that is why spinal differential block is done above the suspected pain level), encephaliza- tion of the pain because of the intensity and direc- tion, psychologically mediated pain, or the patient may be malingering. 2. Retrograde differential spinal block (more frequently used). This is done by using two solutions. A. The first solution is 2mL of normal saline, same interpretations as in the standard differential spinal block. B. The second solution is 1mL of 10% procaine and 1mL of cerebral spinal fluid. This will give complete motor and sensory spinal blockade. If the patient’s pain continues, it is central. If the patient’s pain resolves,pain assessment should be performed every 10 minutes until there is a return of motor and then sensory function. If the pain returns with the return of the sensory function,the pain is somatic in origin. If the pain returns a few hours after the return of the sensory function, it is sympathetically mediated pain. Sympathetic Blocks Anatomic Considerations Figure 9-4.1. Anatomy of superior and inferior hypogastric plexuses.(Reprinted from Raj Sometimes referred to as presacral nerve, the superior PP,Lou L,Erdine S,et al.Radiographic Imaging for Regional Anesthesia and Pain Management,p 231, hypogastric plexus is formed by the confluence of the Copyright 2003, with permission from Elsevier.) lumbar sympathetic chains and branches of the aortic plexus, which contain fibers that traverse the celiac and inferior mesenteric plexuses (Figure 9-4.1). In addition, it usually contains parasympathetic fibers that originate in Technique of Superior Hypogastric Plexus Block the ventral roots of S2-S4 and travel along pelvic splanch- nic nerves through the inferior hypogastric plexus. The The patient is positioned on the fluoroscopy table in prone plexus is located in the retroperitoneum, anterior to the position. Using fluoroscopic guidance, the L4-5 spinal body of the lower part of L5, and upper part of S1. It is pos- process is identified. Going laterally, a 7-cm skin marker is terior to the bifurcation of the aorta and both common iliac made and this will be the point of needle entry. The arteries, and left common iliac vein. The superior hypogas- lumbarsacral area is prepped and draped in a sterile tric plexus divides into right and left hypogastric nerves, manner. Multiple approaches have been described, includ- which descend lateral to the sigmoid colon and rectosig- ing a lateral approach, medial approach, and the intradiskal moid to reach the two inferior hypogastric plexuses. The approach – the approach that is most often used is the superior hypogastric plexus gives off branches to the lateral approach (Figure 9-4.2). At 7-cm lateral to the L4-5 ureteric and testicular (or ovarian) plexus, the sigmoid interspace, the skin and deeper tissue and muscles are colon, and the internal iliac artery. In addition to the path- infiltrated with lidocaine 0.5% using a 20-gauge 6-in ways that traverse the superior hypogastric plexus, sympa- needle. The needle is directed 45 degrees medially and cau- thetic fibers also reach the plexus through perivascular dally to miss the transverse process of L5 and the sacral ala pathways that include the inferior mesenteric plexus on anteroposterior (AP) fluoroscopy view (Figure 9-4.3). (sigmoid, colon, and rectum) and renal plexus (ureteric The needle must be more than 1cm from the bony outline. and ovarian or testicular plexuses). On the lateral view, the needle tip should be at the anterior Pain Localization and Control 261 monitored in the postanesthesia care unit for the duration of pain relief, which should be for several hours. If it is short-lived (15–30 minutes), it is usually a placebo effect. CT guidance can be used for this block.2 Inferior Hypogastric Plexus The inferior hypogastric plexus is a bilateral abdominal structure situated on each side of the rectum, lower part of the bladder and (in men) prostate and seminal vesicles or (in women) cervix, uterus, and vaginal fornices (Figure 9- 4.4). The inferior hypogastric plexus supplies branches to the pelvic viscera directly, as well as from subsidiary plexuses (e.g., the superior, middle rectal, vesical, prostate, and uterovaginal plexuses). The sacral sympathetic trunk lies in the parietal pelvic fascia behind the parietal peri- toneum and on the ventral surface of the rectum, just medial to its anterior foramina and the existing sacral nerves. Below they converge and unite to form a solitary small “ganglion impar” which is located anterior to the sacrococcygeal junction. Technique of Inferior Hypogastric Block Multiple approaches, such as lateral, prone, and lithotomy have been described (Figure 9-4.5).3 The most frequently used approach is the prone position. The sacrococcygeal area is prepped and draped in a sterile manner. The entry site, just under the tip of the coccyx, is anesthetized with lidocaine 0.5% using a 25-gauge needle. A 22-gauge, 3.5-in spinal needle is bent into a C shape (commercial C shape 22-gauge, 3.5-in spinal needles are also available). At the site of entry, just under the coccyx, the needle is advanced in a semicircular manner under fluoroscopy (lateral view) until the top of the needle is just anterior to the sacrococ- Figure 9-4.2. Lateral view of superior hypogastric block. surface of the junction of L5-S1. It is further advanced, and loss of resistance usually occurs at this point. Confirmation of the location of the needle is done with injection of radio- opaque dye and the spread is followed both in AP and lateral views. After confirmation of the position of the needle and negative blood aspiration, a test dose of bupi- vacaine 0.375% (2–3mL) is injected. Patient evaluation is done a few minutes after the injection, to confirm there is no sensory or motor blockade.
Recommended publications
  • Effects of Electrical Stimulation of the Superior Ovarian Nerve and the Ovarian Plexus Nerve on the Ovarian Estradiol Secretion Rate in Rats
    06-JPS58-2-RP001508.fm 133 ページ 2008年4月14日 月曜日 午後3時22分 REGULAR PAPER J. Physiol. Sci. Vol. 58, No. 2; Apr. 2008; pp. 133–138 Online Mar. 22, 2008; doi:10.2170/physiolsci.RP001508 Effects of Electrical Stimulation of the Superior Ovarian Nerve and the Ovarian Plexus Nerve on the Ovarian Estradiol Secretion Rate in Rats Fusako KAGITANI1,2, Sae UCHIDA1, and Harumi HOTTA1 1Department of the Autonomic Nervous System, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo ,173-0015 Japan; 2University of Human Arts and Sciences, Saitama, Saitama, 339-8539 Japan Abstract: The present experiments examined the effects of rate of ovarian venous plasma. Either an SON or OPN, ipsilater- electrical stimulation of the superior ovarian nerve (SON) and al to the ovary from which ovarian venous blood was collected, the ovarian plexus nerve (OPN) on the ovarian estradiol secre- was electrically stimulated at a supramaximal intensity for C-fi- tion in rats. The rats were anesthetized on the day of estrus, and bers. The secretion rate of estradiol was significantly decreased the ovarian venous blood was collected intermittently. The se- by 47 ± 6% during SON stimulation, but it was not significantly cretion rate of estradiol from the ovary was calculated from dif- changed during OPN stimulation. These results suggest that au- ferences in the estradiol concentration between ovarian venous tonomic nerves, which reach the ovary via the SON, have an in- plasma and systemic arterial blood plasma, and from the flow hibitory role in ovarian estradiol secretion. Key words: superior ovarian nerve, ovarian plexus nerve, estradiol, secretion, rat. Many studies have examined the relationship between ulation of the autonomic nerves innervating the ovary on hypothalamic-pituitary-ovarian hormones and ovarian ovarian estradiol secretion.
    [Show full text]
  • The Sympathetic and the Parasympathetic Nervous System
    The sympathetic and the parasympathetic nervous system Zsuzsanna Tóth, PhD Institute of Anatomy, Histology and Embryology Semmelweis University The role of the autonomic nervous system Claude Bernard • „milieu intérieur” concept; every organism lives in its internal environment that is constant and independent form the external environment Walter Bradford Cannon homeostasis; • an extension of the “milieu interieur” concept • consistence in an open system requires mechanisms that act to maintain that consistency • steady-state conditions require that any tendency toward change automatically meets with factors that resist that change • regulating systems that determine the homeostatic state : o autonomic nervous system ( sympathetic, parasympathetic, enteral) o endocrine system General structure of the autonomic nervous system craniosacral thoracolumbar Anatomy Neurotransmittersof the gut autonomic nervous system. symp. gangl pregangl. fiber pregangl. postgangl. fiber fiber (PoR) PoR enteral ganglion PoR PoR smooth muscle smooth muscle Kuratani S Development 2009;136:1585-1589 Sympathetic activation: Fight or flight reaction • energy mobilization • preparation for escape, or fight vasoconstriction • generalized Parasympathetic activation: adrenal • energy saving and restoring • „rest and digest” system • more localized vasoconstriction Paravertebral ganglia and the sympathetic chains pars cervicalis superius ganglion medium cervicale stellatum pars vertebrae • from the base of the skull to the caudal end thoracalis thoracalis of the sacrum • paravertebral ganglia (ganglia trunci sympathici) • rami interganglionares pars vertebrae • the two chains fuses at the ganglion impar abdominalis lumbalis sacrum pars pelvina foramen sacralia anteriora ganglion impar Anatomy of the cervical part of the sympathetic trunk superior cervical ganglion • behind the seath of the carotid, fusiform ggl. cervicale superius • IML T1-3 vegetative motoneurons- preganglionic fibers truncus symp.
    [Show full text]
  • The Ovarian Innervation Participates in the Regulation of Ovarian Functions Roberto Domínguez1* and Sara E
    Metab y & o g lic lo S o y n n i r d c r Domínguez et al. Endocrinol Metabol Syndrome 2011, S:4 o o m d n e E Endocrinology & Metabolic Syndrome DOI: 10.4172/2161-1017.S4-001 ISSN: 2161-1017 Review Article Open Access The Ovarian Innervation Participates in the Regulation of Ovarian Functions Roberto Domínguez1* and Sara E. Cruz-Morales2 1Faculty of gradúate studies, Research Unit In Reproductive Biology, Zaragoza College of Professional Studies, National Autonomous University of Mexico, Mexico 2Faculty of gradúate studies Iztacala, National Autonomous University of Mexico, Mexico Abstract The release of gonadotropins is the main endocrine signal regulating ovulation and the release of hormones by the ovaries. Several types of growth factors modulate the effects of gonadotropins on the follicular, luteal and interstitial compartments of the ovaries. During the last 30 years, numerous studies have indicated that the ovarian innervations play a role in modulating the effects that gonadotropin have on the ovaries’ ability to ovulate and secrete steroid hormones. This literature review presents a summary of the experimental results obtained by analyzing the effects of stimulating or blocking the well-known neural pathways participating in the regulation of ovulation and secretion of steroid hormones. Together, the results suggest that various neurotransmitter systems modulate the effects of gonadotropins on ovulation and the ovaries capacity to secrete steroid hormones. In addition, the ovaries asymmetric capacity for ovulation and hormone secretion could be explained by the asymmetries in their innervations. Introduction of follicles is continuous, the effects that FSH and LH have during the estrous cycle can be explained by the oscillatory number of hormone Ovarian functions, such as hormone secretion and the release of receptors in the follicles and interstitial gland cells through the cells (oocytes) able to be fertilized are regulated by hormonal signals cycle.
    [Show full text]
  • Sympathetic Nervous System
    Prof. Ahmed Fathalla Ibrahim Professor of Anatomy College of Medicine King Saud University E-mail: [email protected] OBJECTIVES At the end of the lecture, students should: . Define the autonomic nervous system. Describe the structure of autonomic nervous system . Trace the preganglionic & postganglionic neurons in both sympathetic & parasympathetic nervous system. Enumerate in brief the main effects of sympathetic & parasympathetic system DEFINITION Nerve cells located in both central & peripheral nervous system that are concerned with innervation of involuntary structures: viscera, smooth & cardiac muscles, glands. Function: maintains homeostasis of internal environment. Regulation: by hypothalamus. STRUCTURE OF AUTONOMIC NERVOUS SYSTEM SYMPATHETIC NERVOUS SYSTEM Cells of lateral horn of spinal cord (T1 – L3) Short axon .Cells of sympathetic chain .Cells of plexuses surrounding abdominal aorta (Coeliac, superior & inferior mesenteric) Long axon SYMPATHETIC NERVOUS SYSTEM SYMPATHETIC NERVOUS SYSTEM SYMPATHETIC NERVOUS SYSTEM Preganglionic sympathetic neurons: cells of the lateral horn of spinal cord in all thoracic + upper 3 lumbar segments. Preganglionic axons leave the spinal cord, join corresponding spinal nerves & reach the sympathetic chain (via the white ramus communicans). They either: 1. Synapse with cells of paravertebral ganglia located in sympathetic chain (postganglionic neurons are cells of paravertebral ganglia: postganglionic axons leave the sympathetic chain & join again the spinal nerve (via grey ramus communicans) to supply structures in head & thorax + blood vessels & sweat glands . SYMPATHETIC NERVOUS SYSTEM 2. Leave the sympathetic chain (without synapse) to reach coeliac & mesenteric plexuses (around branches of abdominal aorta) to synapse with their cells. Postganglionic neurons are cells of coeliac & mesenteric plexuses. Postganglionic axons supply abdominal & pelvic viscera. PARAVERTEBRAL GANGLIA They are interconnected to form 2 sympathetic chains, one on each side of vertebral column.
    [Show full text]
  • Review of Sympathetic Blocks Anatomy, Sonoanatomy, Evidence, and Techniques
    CHRONIC AND INTERVENTIONAL PAIN REVIEW ARTICLE Review of Sympathetic Blocks Anatomy, Sonoanatomy, Evidence, and Techniques Samir Baig, MD,* Jee Youn Moon, MD, PhD,† and Hariharan Shankar, MBBS*‡ Search Strategy Abstract: The autonomic nervous system is composed of the sympa- thetic and parasympathetic nervous systems. The sympathetic nervous sys- We performed a PubMed and MEDLINE search of all arti- tem is implicated in situations involving emergent action by the body and cles published in English from the years 1916 to 2015 using the “ ”“ ”“ additionally plays a role in mediating pain states and pathologies in the key words ultrasound, ultrasound guided, sympathetic block- ”“ ”“ body. Painful conditions thought to have a sympathetically mediated com- ade, sympathetically mediated pain, stellate ganglion block- ”“ ” “ ” ponent may respond to blockade of the corresponding sympathetic fibers. ade, celiac plexus blockade, , lumbar sympathetic blockade, “ ” “ ” The paravertebral sympathetic chain has been targeted for various painful hypogastric plexus blockade, and ganglion impar blockade. conditions. Although initially injected using landmark-based techniques, In order to capture the breadth of available evidence, because there fluoroscopy and more recently ultrasound imaging have allowed greater were only a few controlled trials, case reports were also included. visualization and facilitated injections of these structures. In addition to There were an insufficient number of reports to perform a system- treating painful conditions, sympathetic blockade has been used to improve atic review. Hence, we elected to perform a narrative review. perfusion, treat angina, and even suppress posttraumatic stress disorder symptoms. This review explores the anatomy, sonoanatomy, and evidence DISCUSSION supporting these injections and focuses on ultrasound-guided/assisted tech- nique for the performance of these blocks.
    [Show full text]
  • Unit #2 - Abdomen, Pelvis and Perineum
    UNIT #2 - ABDOMEN, PELVIS AND PERINEUM 1 UNIT #2 - ABDOMEN, PELVIS AND PERINEUM Reading Gray’s Anatomy for Students (GAFS), Chapters 4-5 Gray’s Dissection Guide for Human Anatomy (GDGHA), Labs 10-17 Unit #2- Abdomen, Pelvis, and Perineum G08- Overview of the Abdomen and Anterior Abdominal Wall (Dr. Albertine) G09A- Peritoneum, GI System Overview and Foregut (Dr. Albertine) G09B- Arteries, Veins, and Lymphatics of the GI System (Dr. Albertine) G10A- Midgut and Hindgut (Dr. Albertine) G10B- Innervation of the GI Tract and Osteology of the Pelvis (Dr. Albertine) G11- Posterior Abdominal Wall (Dr. Albertine) G12- Gluteal Region, Perineum Related to the Ischioanal Fossa (Dr. Albertine) G13- Urogenital Triangle (Dr. Albertine) G14A- Female Reproductive System (Dr. Albertine) G14B- Male Reproductive System (Dr. Albertine) 2 G08: Overview of the Abdomen and Anterior Abdominal Wall (Dr. Albertine) At the end of this lecture, students should be able to master the following: 1) Overview a) Identify the functions of the anterior abdominal wall b) Describe the boundaries of the anterior abdominal wall 2) Surface Anatomy a) Locate and describe the following surface landmarks: xiphoid process, costal margin, 9th costal cartilage, iliac crest, pubic tubercle, umbilicus 3 3) Planes and Divisions a) Identify and describe the following planes of the abdomen: transpyloric, transumbilical, subcostal, transtu- bercular, and midclavicular b) Describe the 9 zones created by the subcostal, transtubercular, and midclavicular planes c) Describe the 4 quadrants created
    [Show full text]
  • Ganglion of Impar Block
    Ganglion of Impar Block A ganglion of impar block is safe and easy procedure used to treat visceral, pelvic, genital, perineal and anal pain. This injection is considered to be a type of sympathetic block that can be used in the treatment of sympathetically-mediated pain, pain secondary to malignancy, neuropathic pain and post- surgical pain. Patients who will benefit from this blockade will frequently present with vague and poorly localized pain in the “seat” region, which is burning in character and frequently accompanied by sensations of urgency with urination and/or defecation.[1] The target in the procedure is the ganglion of impar – also known as the ganglion of Walther or sacrococcygeal ganglion. It is a singular retroperitoneal structure located at the level of the sacrococcygeal junction (SCJ). There are 4 or 5 small sacral ganglia with the ganglion Impar being the most caudal segment of the confluence of the sacral sympathetic chain as it passes anteromedially over the sacrum. More specifically, the ganglion Impar is the terminal fusion of the 2 sacral sympathetic chains and is located with some anatomical variability between the SCJ and the lower segment of the first coccyx. The fusion of the 2 chains typically positions the ganglion midline, which makes it relatively easy to find. However, there is a wide range of variability in the anatomical location with respect to the SCJ.[2] This structure is of particular importance when considering patients who suffer from pain in the pelvic and perineal structures as it provides nociceptive and sympathetic supply to those regions. It receives afferent innervation from: Perineum Distal rectum Anus Distal urethra Distal vagina Vulva Coccyx Scrotum The block is performed by injecting a small amount of anesthetic onto the ganglion of impar, signals of the sympathetic nervous system (SNS) and pain fibers are interrupted from multiple structures simultaneously, leading to dramatic pain relief.
    [Show full text]
  • Autonomic Nervous System
    Autonomic nervous System Regulates activity of: Smooth muscle Cardiac muscle certain glands Autonomic- illusory (convenient)-not under direct control Regulated by: hypothalamus Medulla oblongata Divided in to two subdivisions: Sympathetic Parasympathetic Sympathetic: mobilizes all the resources of body in an emergency Parasympathetic: maintains the normal body functions Complimentary to each other. ANS Activity expressed • Regulation of Blood Pressure • Regulation of Body Temperature • Cardio-respiratory rate • Gastro-intestinal motility • Glandular Secretion Sensations • General – Hunger , Thirst , Nausea • Special -- Smell, taste and visceral pain • Location of ANS in CNS: 1. cerebral hemispheres (limbic system) 2. Brain stem (general visceral nuclei of cranial nerves) 3. Spinal cord (intermediate grey column) ANS Anatomy • Pathway: Two motor neurons 1. In CNS -->Axon-->Autonomic ganglion 2. In Autonomic ganglion-->Axon-->effector organ • Anatomy: Preganglionic neuron--->preganglionic fibre (myelinated axon)--->out of CNS as a part of cranial/spinal nerve--->fibres separate & extend to ANS ganglion-->synapse with postganglionic neuron--->postganglionic fibre (nonmyelinated)-- >effector organ Sympathetic system Components • Pair of ganglionic sympathetic trunk • Communicating rami • Branches • Plexuses • Subsidiary ganglia – collateral , terminal ganglia Sympathetic trunk (lateral ganglia) • Paravertebral in position • Extend from base of skull to coccygeal • Both trunk unite to form – ganglion impar Total Ganglia • Cervical-3 • Thoracic-11
    [Show full text]
  • Female Genital System
    The University Of Jordan Faculty Of Medicine Female genital system By Dr.Ahmed Salman Assistant Professor of Anatomy &Embryology Female Genital Organs This includes : 1. Ovaries 2. Fallopian tubes 3. Uterus 4. Vagina 5. External genital organs Ovaries Site of the Ovary: In the ovarian fossa in the lateral wall of the pelvis which is bounded. Anteriorly : External iliac vessels. Posteriorly : internal iliac vessels and ureter. Shape : the ovary is almond-shaped. Orientation : In the nullipara : long axis is vertical with superior and inferior poles. In multipara : long axis is horizontal, so that the superior pole is directed laterally and the inferior pole is directed medially. External Features : Before puberty : Greyish-pink and smooth. After puberty with onset of ovulation, the ovary becomes grey in colour with puckered surface. In old age : it becomes atrophic External iliac vessels. Obturator N. Internal iliac artery Ureter UTERUS Ovaries Description : In nullipara, the ovary has : Two ends : superior (tubal) end and inferior (uterine) end. Two borders : anterior (mesovarian) border and posterior (free) border. Two surfaces : lateral and medial. A. Ends of the Ovary : Superior (tubal) end : is attached to the ovarian fimbria of the uterine tube and is attached to side wall of the pelvis by the ovarian suspensory ligament. Inferior (uterine) end : it is connected to superior aspect of the uterotubal junction by the round ligament of the ovary which runs within the broad ligament . B. Borders of the Ovary : Anterior (mesovarian) border :presents the hilum of the ovary and is attached to the upper layer of the broad ligament by a short peritoneal fold called the mesovarium.
    [Show full text]
  • Genitalia Blood Supply to Internal Female Course
    U4-Reproductive BS+NS DEC 2016 FNF, approved by: DR.manoj Blood supply to internal female genitalia: artery origin distribution Anastamoses? Course Sup. large branch: Medially in base of broad Yes, cranially with Internal iliac uterus, inf. Small ligament to junction between ovarian, caudally uterine artery branch: cervix+ sup. cervix and uterus, run above with vaginal Vagina ureter, ascend to anastamose Middle +inferior part Yes, ant+post azygos Descand to vagina after Uterine of vagina along with arteries of vagina branching at junction between Vaginal artery pudendal artery with uterine artery uterus + cervix Yes, with uterine Descend along post. abdominal artery (collateral Ovarian Abdominal wall, at pelvic prim cross Ovary+ uterine tube circulation between artery aorta external iliac> enter suspensory abdominal +pelvic ligament source) vein Drainage Anastamoses? Course Vaginal venous plexus>vaginal vein> anastamose with uterine venous plexus Yes, vaginal plexus with Sides of vagina Vaginal >uterovaginal venous plexus>uterine uterine plexus vein>internal iliac vein uterine venous plexus >uterovaginal Yes, vaginal plexus with Uterine venous plexus>uterine vein>internal iliac Pass in broad ligament uterine plexus vein Pampiniform plexus of veins>ovarian vein Plexus in broad ligament Ovarian Rt:IVC - , ovarian vein in suspensory ligament Lt:LRV Note: -tubal veins drain in ovarian veins+ uterovaginal venous plexus -uterine vessels pass in cardinal ligament 1 | P a g e U4-Reproductive BS+NS DEC 2016 FNF, approved by: DR.manoj Blood supply to external female genitalia: artery origin distribution Course Perineum Leave pelvis through greater sciatic foramen hook Internal Internal iliac artery +external around ischial spine then enter through lesser pudendal genitalia sciatic foramen.
    [Show full text]
  • THE ANATOMY of the SYMPATHETHIC TRUNKS in MAN by MARTIN WRETE Histological Department, the University of Uppsala, Sweden
    [ 448 ] THE ANATOMY OF THE SYMPATHETHIC TRUNKS IN MAN BY MARTIN WRETE Histological Department, The University of Uppsala, Sweden INTRODUCTION Even a cursory study of the anatomical descriptions of the cervical parts of the sympathetic trunks given in modern text-books or articles discloses that, now as earlier, great confusion exists with respect to terminology. This applies even to monographs and more specialized presentations. The primary cause of this confusion is the very marked variability of the trunks in the neck region, which gives wide scope for arbitrary interpretations of the arrangement; some uncertainty about the terminology and notation of other parts of the trunks also persists. It is true that the terms to be used for the sympathetic nervous system were fixed by the International Anatomical Nomenclature Committee (Nomina Anatomica, Paris, 1955). This does not, however, prevent some of the individual terms being used to denote different anatomical units, and for practical reasons (such as limiting printing costs) comprehensive explanations could not always be given in the annota- tions to the Parisian Nomina Anatomica. As one of the three members of the Sub- Committee responsible for the nomenclature of the peripheral nervous system, I wish to define more exactly my views on the terminology adopted for the sympathetic trunks. I also take this opportunity of revising a few terms I used in certain papers published some twenty years ago. In Nomina Anatomica the term truncus sympathicus is followed by the names of its ganglia, ganglia trunci sympathici, as well as of its connecting rami interganglio- nares. But, also under the heading ganglia trunci sympathici, the term ganglia intermedia is used to denote ganglia on the rami communicantes and certain ganglia on the trunks in the rami interganglionares between the other ganglia-namely the ganglion cervicale superius, ganglion cervicale medium, ganglion cervicothoracicum (s.
    [Show full text]
  • Autonomic Nervous System
    17 The Nervous System: Autonomic Nervous System PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • The autonomic nervous system functions outside of our conscious awareness • The autonomic nervous system makes routine adjustments in our body’s systems • The autonomic nervous system: • Regulates body temperature • Coordinates cardiovascular, respiratory, digestive, excretory, and reproductive functions © 2012 Pearson Education, Inc. A Comparison of the Somatic and Autonomic Nervous Systems • Autonomic nervous system • Axons innervate the visceral organs • Has afferent and efferent neurons • Afferent pathways originate in the visceral receptors • Somatic nervous system • Axons innervate the skeletal muscles • Has afferent and efferent neurons • Afferent pathways originate in the skeletal muscles ANIMATION The Organization of the Somatic and Autonomic Nervous Systems © 2012 Pearson Education, Inc. Subdivisions of the ANS • The autonomic nervous system consists of two major subdivisions • Sympathetic division • Also called the thoracolumbar division • Known as the “fight or flight” system • Parasympathetic division • Also called the craniosacral division • Known as the “rest and repose” system © 2012 Pearson Education, Inc. Figure 17.1b Components and Anatomic Subdivisions of the ANS (Part 1 of 2) AUTONOMIC NERVOUS SYSTEM THORACOLUMBAR DIVISION CRANIOSACRAL DIVISION (sympathetic (parasympathetic division of ANS) division of ANS) Cranial nerves (N III, N VII, N IX, and N X) T1 T2 T3 T4 T5 T Thoracic 6 nerves T7 T8 Anatomical subdivisions. At the thoracic and lumbar levels, the visceral efferent fibers that emerge form the sympathetic division, detailed in Figure 17.4. At the cranial and sacral levels, the visceral efferent fibers from the CNS form the parasympathetic division, detailed in Figure 17.8.
    [Show full text]