Analog Signal Processing Christophe Caloz, Fellow, IEEE, Shulabh Gupta, Member, IEEE, Qingfeng Zhang, Member, IEEE, and Babak Nikfal, Student Member, IEEE

Total Page:16

File Type:pdf, Size:1020Kb

Analog Signal Processing Christophe Caloz, Fellow, IEEE, Shulabh Gupta, Member, IEEE, Qingfeng Zhang, Member, IEEE, and Babak Nikfal, Student Member, IEEE 1 Analog Signal Processing Christophe Caloz, Fellow, IEEE, Shulabh Gupta, Member, IEEE, Qingfeng Zhang, Member, IEEE, and Babak Nikfal, Student Member, IEEE Abstract—Analog signal processing (ASP) is presented as a discrimination effects, emphasizing the concept of group delay systematic approach to address future challenges in high speed engineering, and presenting the fundamental concept of real- and high frequency microwave applications. The general concept time Fourier transformation. Next, it addresses the topic of of ASP is explained with the help of examples emphasizing basic ASP effects, such as time spreading and compression, the “phaser”, which is the core of an ASP system; it reviews chirping and frequency discrimination. Phasers, which repre- phaser technologies, explains the characteristics of the most sent the core of ASP systems, are explained to be elements promising microwave phasers, and proposes corresponding exhibiting a frequency-dependent group delay response, and enhancement techniques for higher ASP performance. Based hence a nonlinear phase response versus frequency, and various on ASP requirements, found to be phaser resolution, absolute phaser technologies are discussed and compared. Real-time Fourier transformation (RTFT) is derived as one of the most bandwidth and magnitude balance, it then describes novel fundamental ASP operations. Upon this basis, the specifications synthesis techniques for the design of all-pass transmission of a phaser – resolution, absolute bandwidth and magnitude and reflection phasers and band-pass cross-coupled phasers. balance – are established, and techniques are proposed to enhance Finally, it presents some applications using these phasers, phasers for higher ASP performance. Novel closed-form synthesis including a tunable pulse delay system for pulse position techniques, applicable to all-pass transmission-type cascaded C- section phasers, all-pass reflection-type coupled resonator phasers modulation, a real-time spectrum sniffer for cognitive radio and band-pass cross-coupled resonator phasers are described. and a real-time spectrogram analyzer for the characterization Several applications using these phasers are presented, including and processing of nonstationary signals. a tunable pulse delay system, a spectrum sniffer and a real- time spectrum analyzer (RTSA). Finally, future challenges and II. WHAT IS MICROWAVE ANALOG SIGNAL PROCESSING? opportunities are discussed. Microwave ASP might be defined as the manipulation of Index Terms—Analog signal processing (ASP), phaser, signals in their pristine analog form and in real time to realize frequency-dependent group delay, dispersion engineering, dis- specific operations enabling microwave or millimeter-wave persive delay structure, chirping, real-time Fourier transform, C-section and D-section, cross-coupled resonators, filter synthesis. and terahertz applications. The essence of ASP might be best approached by consider- ing the two basic effects described in Fig. 1, chirping with time spreading and frequency discrimination in the time domain. I. INTRODUCTION AND MOTIVATION Both effects involve a linear element with transfer function Today’s exploding demand for faster, more reliable and H(!) = ejφ(!), which is assumed to be of unity magnitude ubiquitous radio systems in communication, instrumentation, and whose phase, φ(!), is a nonlinear function of frequency, or radar and sensors poses unprecedented challenges in mi- whose group delay, τ(!) = −@φ(!)=@!, assuming the time- crowave and millimeter-wave engineering. harmonic phasor dependence ej!t, is a function of frequency. Recently, the predominant trend has been to place an Note that there is no incompatibility between the linearity of increasing emphasis on digital signal processing (DSP). How- the element and the nonlinearity of its phase: the former refers ever, while offering device compactness and processing flex- to the independence of the element’s response to the magnitude ibility, DSP suffers of fundamental drawbacks, such as high- of the input signal, whereas the latter refers to the nonlinearity cost analog-digital conversion, high power consumption and of the element’s phase versus frequency, which is an inherent poor performance at high frequencies. property of the element, independent of the input signal. Such To overcome these drawbacks, and hence address the afore- an element, with frequency-dependent group delay, is called arXiv:1307.2618v2 [physics.optics] 3 Aug 2013 mentioned challenges, one might possibly get inspiration from temporally dispersive, or simply dispersive when the context ultrafast optics [1]. In this area, ultra-short and thus huge- is unambiguous. It is to be noted that temporal dispersion bandwidth electromagnetic pulses are efficiently processed in contrasts with spatial dispersion, occurring for instance in the real time using analog and dispersive materials and compo- phenomena of radiation through an aperture or propagation nents [2], [3], [4]. across a periodic structure, where different spatial frequencies, We speculate here that the same approach could be po- corresponding to scattering in different directions, are gener- tentially applied to high-frequency and high-bandwidth mi- ated. The spectrum of H(!) is assumed to cover the entire crowave signals, leading to systematic microwave analog spectrum of the input signal. signal processing (ASP) as an alternative to DSP-based pro- In the chirping case, depicted in Fig. 1(a), a pulse (typically cessing, with particular promise for millimeter and terahertz be a gaussian pulse, whose spectrum is also a gaussian frequency applications. function [5]) modulated at an angular frequency !0 is passed The paper first explains more specifically what is meant through the element H(!), which is assumed here to ex- by microwave ASP, covering the basic chirping and frequency hibit a positive linear group delay slope over a frequency 2 τ(ω) that with the flat-step law considered here the pulses are not time-spread (Tout = T0), assuming that the pulse bandwidth fits τ0 τ3 = τ0 ω0 in the flat bands of the steps, since all the spectral components ω ω1 ω2 ω3 ω4 ω5 within each band are delayed by the same amount of time. ω0 Reference [8] provides a fundamental explanation of group t H(ω) = ejφ(ω) t delay dispersion in terms of wave interference mechanisms. III. CORE OF AN ASP SYSTEM: THE PHASER Tin = T0 (a) Tout > T0 The dispersive element H(!) in Fig. 1, which manipulates the spectral components of the input signal in the time τ(ω) ∆ω domain, is the core of an ASP system. We suggest to call τ02 such a dispersive element, in which a nonlinear phase versus ∆τ ω1,ω2 ∆τ frequency response is necessary for ASP, a phaser. Several τ01 τ02 ω terms have been used by the authors and discussed with τ01 ω01 ω02 colleagues from various academic and industrial backgrounds. ω01 ω02 t H(ω) = ejφ(ω) t After much reflection, “phaser” imposed itself as the most appropriate term. Table I lists the four main terms that were considered with their pros and cons, and shows the superiority Tout = T0 Tout = T0 of “phaser” over the other three terms. A phaser “phases” as a Tin = T0 (b) filter filters: it modifies the phase of the input signal following Fig. 1: Basic effects in ASP. (a) Chirping with time spreading. phase – or more fundamentally group delay – specifications, (b) Frequency discrimination in the time domain. with some magnitude considerations, just in the same way as a filter modifies the magnitude of the input signal following magnitude specifications, with some phase considerations. It has come to the attention of the authors that a few people band centered at the frequency ! , corresponding to a group 0 seem to dislike the terminology “phaser.” One of them asserted delay τ . Due to the dispersive nature of this element, the 0 that “this term should be reserved to Star Trek” [sic]. Well, the different spectral components of the pulse experience different fact that “phaser” refers to a directed-energy weapon in this delays and therefore emerge at different times. Here, the popular science fiction series [9] is not considered a major lower-frequency components are less delayed and therefore concern by the authors, who judge that confusion between emerge earlier than the higher-frequency components, while ASP phasers and Star Trek phasers is fairly unlikely! τ = τ the center-frequency component appears at the time 3 0. An ideal phaser is a phaser that would exhibit an arbitrary This results in an output pulse whose instantaneous frequency group delay with flat and lossless magnitude over a given is progressively increasing (would be decreasing in the case frequency band, as illustrated in Fig. 2. Obviously, such an of a phaser with a negative group delay slope), a phenomenon ideal response is practically unrealizable. Realizing a response called “chirping”, and which has experienced time spread- as close as possible to this ideal one for specific applications T > T ing ( out 0), accompanied with reduced amplitude due is the objective of phaser synthesis, which will be discussed to energy conservation. When undesired, this time spreading in Sec. VI. effect can be compensated by either using a stepped group delay phaser, as will be shown in the next paragraph, or by compression, using phasers of opposite chirps, as will be S (ω) 21 0 dB shown in the tunable pulse delay line application of Sec. VII. | | It should be noted that in many applications, time spreading is | τ 21 actually useful. For instance, it belongs to the essence of real- S time Fourier transformation, to be presented in Sec. IV. As | another example, time spreading may be exploited to increase τ(ω) group delay, the sampling rate of a signal at fixed clock [6],[7]. magnitude, In the latter case, depicted in Fig. 1(b), the input pulse is modulated by a two-tone signal, with frequencies !01 and !02, and passed through a dispersive element H(!) exhibiting a stopband passband stopband positive stepped group delay, with two steps, centered at ! 01 ω1 ω2 and !02, respectively. Based on this dispersive characteristic, frequency, ω the part of the pulse modulated at the lower frequency, !01, is delayed less than the part modulated at the higher frequency, Fig.
Recommended publications
  • Real-Time Programming and Processing of Music Signals Arshia Cont
    Real-time Programming and Processing of Music Signals Arshia Cont To cite this version: Arshia Cont. Real-time Programming and Processing of Music Signals. Sound [cs.SD]. Université Pierre et Marie Curie - Paris VI, 2013. tel-00829771 HAL Id: tel-00829771 https://tel.archives-ouvertes.fr/tel-00829771 Submitted on 3 Jun 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Realtime Programming & Processing of Music Signals by ARSHIA CONT Ircam-CNRS-UPMC Mixed Research Unit MuTant Team-Project (INRIA) Musical Representations Team, Ircam-Centre Pompidou 1 Place Igor Stravinsky, 75004 Paris, France. Habilitation à diriger la recherche Defended on May 30th in front of the jury composed of: Gérard Berry Collège de France Professor Roger Dannanberg Carnegie Mellon University Professor Carlos Agon UPMC - Ircam Professor François Pachet Sony CSL Senior Researcher Miller Puckette UCSD Professor Marco Stroppa Composer ii à Marie le sel de ma vie iv CONTENTS 1. Introduction1 1.1. Synthetic Summary .................. 1 1.2. Publication List 2007-2012 ................ 3 1.3. Research Advising Summary ............... 5 2. Realtime Machine Listening7 2.1. Automatic Transcription................. 7 2.2. Automatic Alignment .................. 10 2.2.1.
    [Show full text]
  • High Frequency Integrated MOS Filters C
    N94-71118 2nd NASA SERC Symposium on VLSI Design 1990 5.4.1 High Frequency Integrated MOS Filters C. Peterson International Microelectronic Products San Jose, CA 95134 Abstract- Several techniques exist for implementing integrated MOS filters. These techniques fit into the general categories of sampled and tuned continuous- time niters. Advantages and limitations of each approach are discussed. This paper focuses primarily on the high frequency capabilities of MOS integrated filters. 1 Introduction The use of MOS in the design of analog integrated circuits continues to grow. Competitive pressures drive system designers towards system-level integration. System-level integration typically requires interface to the analog world. Often, this type of integration consists predominantly of digital circuitry, thus the efficiency of the digital in cost and power is key. MOS remains the most efficient integrated circuit technology for mixed-signal integration. The scaling of MOS process feature sizes combined with innovation in circuit design techniques have also opened new high bandwidth opportunities for MOS mixed- signal circuits. There is a trend to replace complex analog signal processing with digital signal pro- cessing (DSP). The use of over-sampled converters minimizes the requirements for pre- and post filtering. In spite of this trend, there are many applications where DSP is im- practical and where signal conditioning in the analog domain is necessary, particularly at high frequencies. Applications for high frequency filters are in data communications and the read channel of tape, disk and optical storage devices where filters bandlimit the data signal and perform amplitude and phase equalization. Other examples include filtering of radio and video signals.
    [Show full text]
  • 21065L Audio Tutorial
    a Using The Low-Cost, High Performance ADSP-21065L Digital Signal Processor For Digital Audio Applications Revision 1.0 - 12/4/98 dB +12 0 -12 Left Right Left EQ Right EQ Pan L R L R L R L R L R L R L R L R 1 2 3 4 5 6 7 8 Mic High Line L R Mid Play Back Bass CNTR 0 0 3 4 Input Gain P F R Master Vol. 1 2 3 4 5 6 7 8 Authors: John Tomarakos Dan Ledger Analog Devices DSP Applications 1 Using The Low Cost, High Performance ADSP-21065L Digital Signal Processor For Digital Audio Applications Dan Ledger and John Tomarakos DSP Applications Group, Analog Devices, Norwood, MA 02062, USA This document examines desirable DSP features to consider for implementation of real time audio applications, and also offers programming techniques to create DSP algorithms found in today's professional and consumer audio equipment. Part One will begin with a discussion of important audio processor-specific characteristics such as speed, cost, data word length, floating-point vs. fixed-point arithmetic, double-precision vs. single-precision data, I/O capabilities, and dynamic range/SNR capabilities. Comparisions between DSP's and audio decoders that are targeted for consumer/professional audio applications will be shown. Part Two will cover example algorithmic building blocks that can be used to implement many DSP audio algorithms using the ADSP-21065L including: Basic audio signal manipulation, filtering/digital parametric equalization, digital audio effects and sound synthesis techniques. TABLE OF CONTENTS 0. INTRODUCTION ................................................................................................................................................................4 1.
    [Show full text]
  • The Equivalence of Digital and Analog Signal Processing *
    Reprinted from I ~ FORMATIO:-; AXDCOXTROL, Volume 8, No. 5, October 1965 Copyright @ by AcademicPress Inc. Printed in U.S.A. INFORMATION A~D CO:";TROL 8, 455- 4G7 (19G5) The Equivalence of Digital and Analog Signal Processing * K . STEIGLITZ Departmentof Electrical Engineering, Princeton University, Princeton, l\rew J er.~e!J A specific isomorphism is constructed via the trallsform domaiIls between the analog signal spaceL2 (- 00, 00) and the digital signal space [2. It is then shown that the class of linear time-invariaIlt realizable filters is illvariallt under this isomorphism, thus demoIl- stratillg that the theories of processingsignals with such filters are identical in the digital and analog cases. This means that optimi - zatioll problems illvolving linear time-illvariant realizable filters and quadratic cost functions are equivalent in the discrete-time and the continuous-time cases, for both deterministic and random signals. FilIally , applicatiolls to the approximation problem for digital filters are discussed. LIST OF SY~IBOLS f (t ), g(t) continuous -time signals F (jCAJ), G(jCAJ) Fourier transforms of continuous -time signals A continuous -time filters , bounded linear transformations of I.J2(- 00, 00) {in}, {gn} discrete -time signals F (z), G (z) z-transforms of discrete -time signals A discrete -time filters , bounded linear transfornlations of ~ JL isomorphic mapping from L 2 ( - 00, 00) to l2 ~L 2 ( - 00, 00) space of Fourier transforms of functions in L 2( - 00,00) 512 space of z-transforms of sequences in l2 An(t ) nth Laguerre function * This work is part of a thesis submitted in partial fulfillment of requirements for the degree of Doctor of Engineering Scienceat New York University , and was supported partly by the National ScienceFoundation and partly by the Air Force Officeof Scientific Researchunder Contract No.
    [Show full text]
  • Analog Signal Processing Circuits in Organic Transistor Technology a Dissertation Submitted to the Department of Electrical Engi
    ANALOG SIGNAL PROCESSING CIRCUITS IN ORGANIC TRANSISTOR TECHNOLOGY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Wei Xiong October 2010 © 2011 by Wei Xiong. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/fk938sr9136 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Boris Murmann, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Zhenan Bao I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Robert Dutton Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Low-voltage organic thin-film transistors offer potential for many novel applications. Because organic transistors can be fabricated near room temperature, they allow integrated circuits to be made on flexible plastic substrates.
    [Show full text]
  • Adaptive Translinear Analog Signal Processing a Prospectus
    ADAPTIVE TRANSLINEAR ANALOG SIGNAL PROCESSING A PROSPECTUS Eric J. McDonald, Koji Mensa Odame, and Bradley A. Minch School of Electrical and Computer Engineering Cornell University Ithaca, NY 14853-5401 [email protected] ABSTRACT are directly implementable as networks of MITES. We have devised a systematic method of transforming high- One common implementation of a MITE unit is shown level time-domain descriptions of linear and nonlinear adap- in Fig. 1. In this case, we operate a floating-gate PMOS tive signal-processing algorithms into compact, continuous- transistor in weak-inversion in addition to using a cascode time analog circuitry using basic units called multiple-input transistor to reduce the effects of the gate-to-drain capac- translinear elements (MITES). In this paper, we describe itance and channel-length modulation. The input voltages, the current state of the an and illustrate the method with an VI and V,, capacitively couple into the floating gate through unit-sized capacitors. The drain current of this device is example of an analog phase-locked loop (PLL). given by I = Isew(I’,+1’d/UT, 1. CIRCUIT SYNTHESIS METHODOLOGY where I, is a pre-exponential scaling current, w is the weight- The class of dyiamic translinear circuits [ 1-31 makes possi- ing cwfficient of the inputs (accounting for the body-effect 2.’ _.ble a promising approach to the structured design of analog and the capacitive voltage divider, Cunjt/Ctota,),and UT is ”. .‘ signal and information processing systems [4]. Such cir- the thermal voltage, kT/q. ’ cuits are capable of accurately realizing a wide range of lin- ear and nonlinear systems whose behavior can be described 2.
    [Show full text]
  • Current Mode Computational Circuits for Analog Signal Processing
    ISSN (Print) : 2320 – 3765 ISSN (Online): 2278 – 8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 4, April 2014 Current Mode Computational Circuits for Analog Signal Processing Amanpreet Kaur1, Rishikesh Pandey2 PG Student (VLSI), Department of ECE, ThaparUniversity, Patiala,Punjab, India 1 Assistant Professor, Department of ECE, Thapar University, Patiala, Punjab, India2 ABSTRACT: The paper presents current adder and subtractor circuits based on cascode current mirror with improved linearity and wide linear range. The proposed circuits can be used for analog signal processing applications such as amplifiers, operational transconductance amplifiers (OTA), Gm-C filters, etc. In the proposed circuits, cascode current mirror topology is employed to improve current mirroring operation. The proposed circuits have been simulated using TSMC 0.18µm CMOS process technology with a supply voltage of 1.8 V. The proposed circuits operate efficiently within the current range of 0 to 80µA with the permissible error percentage of less than 2.5%. The SPICE simulation results have been presented to demonstrate the effectiveness of the proposed circuits. KEYWORDS: Adaptive biasing, cascode current mirror, current mode circuits, adder, subtractor.. I.INTRODUCTION In low-voltage/ low-power analog systems, current-mode signal processing has been usually considered an attractive strategy due to its potential for high-speed operation and low-voltage compatibility [1]-[4]. The behaviour of electrical circuits is always the result of interplay between voltage and current. In current mode circuits (CMCs), the currents determine the complete circuit response. The voltage signals are irrelevant in determining the circuit performance.
    [Show full text]
  • Impact of Audio Signal Processing and Compression Techniques on Terrestrial FM Sound Broadcasting Emissions at VHF
    Report ITU-R BS.2213-4 (10/2017) Impact of audio signal processing and compression techniques on terrestrial FM sound broadcasting emissions at VHF BS Series Broadcasting service (sound) ii Rep. ITU-R BS.2213-4 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Signal Processing for Music Analysis Meinard Müller, Member, IEEE, Daniel P
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 0, NO. 0, 2011 1 Signal Processing for Music Analysis Meinard Müller, Member, IEEE, Daniel P. W. Ellis, Senior Member, IEEE, Anssi Klapuri, Member, IEEE, and Gaël Richard, Senior Member, IEEE Abstract—Music signal processing may appear to be the junior consumption, which is not even to mention their vital role in relation of the large and mature field of speech signal processing, much of today’s music production. not least because many techniques and representations originally This paper concerns the application of signal processing tech- developed for speech have been applied to music, often with good niques to music signals, in particular to the problems of ana- results. However, music signals possess specific acoustic and struc- tural characteristics that distinguish them from spoken language lyzing an existing music signal (such as piece in a collection) to or other nonmusical signals. This paper provides an overview of extract a wide variety of information and descriptions that may some signal analysis techniques that specifically address musical be important for different kinds of applications. We argue that dimensions such as melody, harmony, rhythm, and timbre. We will there is a distinct body of techniques and representations that examine how particular characteristics of music signals impact and are molded by the particular properties of music audio—such as determine these techniques, and we highlight a number of novel music analysis and retrieval tasks that such processing makes pos- the pre-eminence of distinct fundamental periodicities (pitches), sible. Our goal is to demonstrate that, to be successful, music audio the preponderance of overlapping sound sources in musical en- signal processing techniques must be informed by a deep and thor- sembles (polyphony), the variety of source characteristics (tim- ough insight into the nature of music itself.
    [Show full text]
  • Digital Signal Processing Zahir M
    Digital Signal Processing Zahir M. Hussain Á Amin Z. Sadik Á Peter O’Shea Digital Signal Processing An Introduction with MATLAB and Applications 123 Prof. Zahir M. Hussain Peter O’Shea School of Electrical and Computer School of Engineering Systems Engineering QUT RMIT University Gardens Point Campus Latrobe Street 124, Melbourne Brisbane 4001 VIC 3000 Australia Australia e-mail: [email protected] e-mail: [email protected] Amin Z. Sadik RMIT University Monash Street 19 Lalor, Melbourne VIC 3075 Australia e-mail: [email protected] ISBN 978-3-642-15590-1 e-ISBN 978-3-642-15591-8 DOI 10.1007/978-3-642-15591-8 Springer Heidelberg Dordrecht London New York Ó Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the right of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: eStudio Calamar S.L. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) This book is dedicated to our loving families.
    [Show full text]
  • Design, Implementation, Comparison, and Performance Analysis Between Analog Butterworth and Chebyshev-I Low Pass Filter Using Approximation, Python and Proteus
    Design, Implementation, Comparison, and Performance analysis between Analog Butterworth and Chebyshev-I Low Pass Filter Using Approximation, Python and Proteus Navid Fazle Rabbi ( [email protected] ) Islamic University of Technology https://orcid.org/0000-0001-5085-2488 Research Article Keywords: Filter Design, Butterworth Filter, Chebyshev-I Filter Posted Date: February 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-220218/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Journal of Signal Processing Systems manuscript No. (will be inserted by the editor) Design, Implementation, Comparison, and Performance analysis between Analog Butterworth and Chebyshev-I Low Pass Filter Using Approximation, Python and Proteus Navid Fazle Rabbi Received: 24 January, 2021 / Accepted: date Abstract Filters are broadly used in signal processing and communication systems in noise reduction. Butterworth, Chebyshev-I Analog Low Pass Filters are developed and implemented in this paper. The filters are manually calculated using approximations and verified using Python Programming Language. Filters are also simulated in Proteus 8 Professional and implemented in the Hardware Lab using the necessary components. This paper also denotes the comparison and performance analysis of filters using Manual Computations, Hardware, and Software. Keywords Filter Design · Butterworth Filter · Chebyshev-I Filter 1 Introduction Filters play a crucial role in the field of digital and analog signal processing and communication networks. The standard analog filter architecture consists of two main components: the problem of approximation and the problem of synthesis. The primary purpose is to limit the signal to the specified frequency band or channel, or to model the input-output relationship of a specific device.[20][12] This paper revolves around the following two analog filters: – Butterworth Low Pass Filter – Chebyshev-I Low Pass Filter These filters play an essential role in alleviating unwanted signal parts.
    [Show full text]
  • Introduction to Audio Signal Processing Human-Computer Interaction
    Introduction to Audio Signal Processing Human-Computer Interaction Angelo Antonio Salatino [email protected] http://infernusweb.altervista.org License This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Overview • Audio Signal Processing; • Waveform Audio File Format; • FFmpeg; • Audio Processing with Matlab; • Doing phonetics with Praat; • Last but not least: Homework. Audio Signal Processing • Audio signal processing is an engineering field that focuses on the computational methods for intentionally altering auditory signals or sounds, in order to achieve a particular goal. Output Signal Input Signal Audio Signal Processing Data with meaning Audio Processing in HCI Some HCI applications involving audio signal processing are: • Speech Emotion Recognition • Speaker Recognition ▫ Speaker Verification ▫ Speaker Identification • Voice Commands • Speech to Text • Etc. Audio Signals You can find audio signals represented in either digital or analog format. • Digital – the pressure wave-form is a sequence of symbols, usually binary numbers. • Analog – is a smooth wave of energy represented by a continuous stream of data. Analog to Digital Converter (ADC) • Don’t worry, it’s only a fast review!!! Sampling Frequency # bits per sample must be defined must be defined Analog Signal Sample Digital Signal Quantization Encoding Continuous in Time & Hold Discrete in Time Discrete in Time Discrete in Time Continuous in Continuous in Discrete in Discrete in Amplitude Amplitude Amplitude Amplitude • For each measurement a number is assigned according to its amplitude.
    [Show full text]