Complex Signal Processing Is Not — Complex Ken Martin [email protected] Dept

Total Page:16

File Type:pdf, Size:1020Kb

Complex Signal Processing Is Not — Complex Ken Martin Martin@Eecg.Toronto.Edu Dept Complex Signal Processing is Not — Complex Ken Martin [email protected] Dept. of Elect. and Comp. Engr., Univ. of Toronto, Toronto, ON Canada M5S 3G4 Wireless systems often make use of the quadrature Abstract: x ()t y ()t relationship between pairs of signals to effectively cancel r r out-of-band and interfering in-band signal components. The cos()ωit understanding of these systems is often simplified by consider- y ()t ing both the signals and system transfer-functions as ‘complex’ q quantities. The complex approach is especially useful in sin()ωit highly-integrated multi-standard receivers where the use of (a) narrow-band fixed-coefficient filters at the RF and high IF fre- quencies must be minimized. A tutorial review of complex sig- Xt()= xr()t + j× 0 Yt() nal processing for wireless applications emphasizing a jω t graphical and pictorial description rather than an equa- e i tion-based approach is first presented. Next, a number of clas- (b) sical modulation architectures are described using this Fig. 1. A signal-flow-graph (SFG) of an image-reject mixer formulation. Finally, more recent developments such as com- using (a) a real SFG and (b) a complex SFG. plex filters, image-reject mixers, low-IF receivers, and then taking the Fourier Transform we have over-sampling A/D converters are discussed. 1. Introduction Y()ω = X()ωω– i (2) A complex signal consists of a pair of real signals at an and we see that an ideal image-reject mixer results in a simple instance in time. If one denotes the complex signal, Xt(), as frequency-shift of the input signal with no images occurring, a Xt()= xr()t + jxq()t , where j1= – , then a Hilbert Space conclusion that is obvious from Fig. 1. (b), but is certainly not can be defined using appropriate definitions for addition, mul- obvious from Fig. 1. (a). tiplication, and an inner-product and norm. In an actual physi- The use of complex signal processing for wireless applica- cal system, the signals are both real (but are called the real and tions has blossomed recently. This is especially true for imaginary parts) and are found in two distinct signal paths. The high-bit-rate standards, such as local-area-networks (LAN’s), multiplier ‘j ’ is used to help define operations between differ- and for multi-standard transceivers. Evidence of this prolifera- ent complex signals, and is to some degree imaginary, i.e., it tion is that in 2001, 2002, and 2003, the majority of the papers doesn’t actually exist in real systems. Often the dependence of in IEEE ISSCC sessions on wireless transceivers for LAN signals on time is not shown explicitly. applications employed complex signal processing. The use of complex signal processing to describe wireless Much, but not all, of this paper deals with a tutorial review systems is increasingly important and ubiquitous for the fol- of complex signal processing, especially as applicable to wire- lowing reasons: it often allows for image-reject architectures to less systems. A great deal of the tutorial material on complex be described more compactly and simply, it leads to a graphical analog signal processing is directly based on the pioneering or signal-flow-graph (SFG) description of signal-processing research of W. Martin Snelgrove as described in [1][6][7], and systems that gives insight, and it often leads to the develop- in some theses of his graduate students in [9] and [11]. Unfor- ment of new systems where the use of high-frequency, highly tunately, no journal publications of this early work were pub- selective image-reject filters is minimized leading to more lished1. Some of the early published work on complex digital highly integrated transceivers using less power and requiring filters is described in [2] and [5]. It is speculated that the devel- less physical space. opment of complex filters was partially due to the use of For- As an example, consider the popular ‘image-reject’ mixer tran to simulate and design filters and the fact that Fortran having a real input as shown in Fig. 1. In the complex SFG, could do complex math — an example of a solution finding a two real multiplications have been replaced by a single com- problem. plex multiplication. Furthermore, since in the time domain we This paper starts with a review of the fundamentals of com- have plex signal processing. Some important identities are given. Examples are given using complex SFG representations. In the Yt() = yr()t + jyq()t (1) 1. A paper was submitted to the IEEE Transactions on Circuits and Systems, jω t = Xt()e i in 1981, but it was inexplicably rejected; a copy of this key paper submission has been obtained and is available at [8]. third section, a number of classical wireless modulations sys- x y tems are described using the complex formulation. These sys- 1r r X1 Y x tems include Weaver and Hartley modulators and polyphase 2r X2 filters. Errors due to non-ideal coefficients in mixers are quan- x1q yr tified. In the fourth section, complex analog and digital filters x2q are discussed. The fifth section describes more-recent complex (a) (b) signal-processing applications. These include complex adap- Fig. 2. (a) The real SFG for adding two complex signals and tive image-reject mixers, complex low-IF receiver architec- (b) the equivalent complex SFG. tures including a new modulation approach that doubles the data rate for a given A/D sampling frequency, and complex a x = cos()ω t yr jω t band-pass over-sampling A/D converters, as examples. These r i e i Y systems are especially useful in multi-standard wireless appli- b cations as they are inherently wide-band (without excessive b Kajb= + imaging errors) and allow the systems to be adapted to individ- (b) xq = sin()ωit yq ual standards using digital programming after the A/D convert- a (a) ers. 2. Complex Signal Processing Fig. 3. (a) The real SFG of a complex multiply and (b) the equivalent complex SFG. Complex signal processing systems operate on ordered-pairs again the complex SFG of a multiplication operation, as shown of real signals. The typical definition of a complex inner-prod- in Fig. 3. (b), is considerably simpler. Note that the real SFG uct is does not include the constant j anywhere, whereas in the com- t plex SFG, it is admissible. 1 ∗ 〈〉x1()t , x2()t = lim -----x1()xτ 2 ()τ dτ (3) t → ∞ 2t∫ A special case of multiplication is when multiplying an –t input signal by the constant j. This is shown using a complex SFG in Fig. 4. (a) and a real SFG in Fig. 4. (b). It is seen this Combining this definition with the typical definitions for com- operation is simply an interchanging of the real and inverted plex inversion, addition and multiplication, and the properties imaginary parts; this operation is the basis behind realizing of commutation and association, constitutes a Hilbert Space. It imaginary components in complex networks. is assumed that all signals are effectively of finite-energy and x y frequency and time limited (or periodic). This implies that a X Y r –1 r signal, xi()t can be represented as a finite series of complex- oids2 j xq yq N (a) (b) jω0it Fig. 4. Multiplying a signal by j . xi()t = ∑ kie (4) iN= – Another important operation is complex conjugation. Con- sider where ki is in general complex [5]. In this paper, we will limit our consideration normally to a single (or a few) complexoids Xt()= Mejφejωit (6) to simplify explanations. The generalization to signals as We have defined by (4) is left for a later date. –jω t 2.1 Complex Operations X∗()t = Me–jφe i (7) A complex addition of two complex signals simply adds the and we see that besides being phase rotated, X has been trans- two real parts and the two imaginary parts independently. Con- formed from a positive frequency into a negative frequency sider the real SFG that represents adding a complex signal to a complexoid. Conjugation also changes negative frequencies second complex signal as shown in Fig. 2. (a). Its complex complexoids to positive frequencies. The conjugation opera- SFG is shown in Fig. 2. (b). tion is shown in the real SFG of Fig. 5. (a). Alternative com- Slightly more complicated is a complex multiplication; con- plex SFG’s are shown in Fig. 5. (b) and (c). sider multiplying a complexoid Xt()= ejωit by a complex coefficient Kajb= + . We have xr yr X conj{ } Y X Y Yt()= {} acos()ωit – bsin()ωit (5) xq yq –1 (b) + ja{}sin()ωit + bcos()ωit –1 (c) (a) The real SFG of this operation is shown in Fig. 3. (a). Once 2. Historically, a complexoid had been called a cissoid. The author prefers the Fig. 5. The complex conjugation operation. former name. Two additional operations are required for realizing com- plex filters, namely the delay operator for digital filters and the X Y integration operator for analog filters. These operations simply consist of independently applying the real operation to each –jsgn()ω 12⁄ part of the complex signal as shown in Fig. 6. Hilbert Transform (a) j x x r yr r z–1 yr X z–1 Y 12⁄ xq yq xq –1 y z q Hilbert Transform (a) 12⁄ –jsgn()ω –1 xr 1s⁄ yr X 1s⁄ Y –jsgn()ω xq 1s⁄ yq (b) (b) Fig. 7. One possibility for realizing a positive-pass filter Fig. 6. (a) The digital delay operator and (b) the analog (PPF): (a) a complex SFG and (b) an equivalent real SFG.
Recommended publications
  • High Frequency Integrated MOS Filters C
    N94-71118 2nd NASA SERC Symposium on VLSI Design 1990 5.4.1 High Frequency Integrated MOS Filters C. Peterson International Microelectronic Products San Jose, CA 95134 Abstract- Several techniques exist for implementing integrated MOS filters. These techniques fit into the general categories of sampled and tuned continuous- time niters. Advantages and limitations of each approach are discussed. This paper focuses primarily on the high frequency capabilities of MOS integrated filters. 1 Introduction The use of MOS in the design of analog integrated circuits continues to grow. Competitive pressures drive system designers towards system-level integration. System-level integration typically requires interface to the analog world. Often, this type of integration consists predominantly of digital circuitry, thus the efficiency of the digital in cost and power is key. MOS remains the most efficient integrated circuit technology for mixed-signal integration. The scaling of MOS process feature sizes combined with innovation in circuit design techniques have also opened new high bandwidth opportunities for MOS mixed- signal circuits. There is a trend to replace complex analog signal processing with digital signal pro- cessing (DSP). The use of over-sampled converters minimizes the requirements for pre- and post filtering. In spite of this trend, there are many applications where DSP is im- practical and where signal conditioning in the analog domain is necessary, particularly at high frequencies. Applications for high frequency filters are in data communications and the read channel of tape, disk and optical storage devices where filters bandlimit the data signal and perform amplitude and phase equalization. Other examples include filtering of radio and video signals.
    [Show full text]
  • The Equivalence of Digital and Analog Signal Processing *
    Reprinted from I ~ FORMATIO:-; AXDCOXTROL, Volume 8, No. 5, October 1965 Copyright @ by AcademicPress Inc. Printed in U.S.A. INFORMATION A~D CO:";TROL 8, 455- 4G7 (19G5) The Equivalence of Digital and Analog Signal Processing * K . STEIGLITZ Departmentof Electrical Engineering, Princeton University, Princeton, l\rew J er.~e!J A specific isomorphism is constructed via the trallsform domaiIls between the analog signal spaceL2 (- 00, 00) and the digital signal space [2. It is then shown that the class of linear time-invariaIlt realizable filters is illvariallt under this isomorphism, thus demoIl- stratillg that the theories of processingsignals with such filters are identical in the digital and analog cases. This means that optimi - zatioll problems illvolving linear time-illvariant realizable filters and quadratic cost functions are equivalent in the discrete-time and the continuous-time cases, for both deterministic and random signals. FilIally , applicatiolls to the approximation problem for digital filters are discussed. LIST OF SY~IBOLS f (t ), g(t) continuous -time signals F (jCAJ), G(jCAJ) Fourier transforms of continuous -time signals A continuous -time filters , bounded linear transformations of I.J2(- 00, 00) {in}, {gn} discrete -time signals F (z), G (z) z-transforms of discrete -time signals A discrete -time filters , bounded linear transfornlations of ~ JL isomorphic mapping from L 2 ( - 00, 00) to l2 ~L 2 ( - 00, 00) space of Fourier transforms of functions in L 2( - 00,00) 512 space of z-transforms of sequences in l2 An(t ) nth Laguerre function * This work is part of a thesis submitted in partial fulfillment of requirements for the degree of Doctor of Engineering Scienceat New York University , and was supported partly by the National ScienceFoundation and partly by the Air Force Officeof Scientific Researchunder Contract No.
    [Show full text]
  • Analog Signal Processing Circuits in Organic Transistor Technology a Dissertation Submitted to the Department of Electrical Engi
    ANALOG SIGNAL PROCESSING CIRCUITS IN ORGANIC TRANSISTOR TECHNOLOGY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Wei Xiong October 2010 © 2011 by Wei Xiong. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/fk938sr9136 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Boris Murmann, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Zhenan Bao I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Robert Dutton Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Low-voltage organic thin-film transistors offer potential for many novel applications. Because organic transistors can be fabricated near room temperature, they allow integrated circuits to be made on flexible plastic substrates.
    [Show full text]
  • Adaptive Translinear Analog Signal Processing a Prospectus
    ADAPTIVE TRANSLINEAR ANALOG SIGNAL PROCESSING A PROSPECTUS Eric J. McDonald, Koji Mensa Odame, and Bradley A. Minch School of Electrical and Computer Engineering Cornell University Ithaca, NY 14853-5401 [email protected] ABSTRACT are directly implementable as networks of MITES. We have devised a systematic method of transforming high- One common implementation of a MITE unit is shown level time-domain descriptions of linear and nonlinear adap- in Fig. 1. In this case, we operate a floating-gate PMOS tive signal-processing algorithms into compact, continuous- transistor in weak-inversion in addition to using a cascode time analog circuitry using basic units called multiple-input transistor to reduce the effects of the gate-to-drain capac- translinear elements (MITES). In this paper, we describe itance and channel-length modulation. The input voltages, the current state of the an and illustrate the method with an VI and V,, capacitively couple into the floating gate through unit-sized capacitors. The drain current of this device is example of an analog phase-locked loop (PLL). given by I = Isew(I’,+1’d/UT, 1. CIRCUIT SYNTHESIS METHODOLOGY where I, is a pre-exponential scaling current, w is the weight- The class of dyiamic translinear circuits [ 1-31 makes possi- ing cwfficient of the inputs (accounting for the body-effect 2.’ _.ble a promising approach to the structured design of analog and the capacitive voltage divider, Cunjt/Ctota,),and UT is ”. .‘ signal and information processing systems [4]. Such cir- the thermal voltage, kT/q. ’ cuits are capable of accurately realizing a wide range of lin- ear and nonlinear systems whose behavior can be described 2.
    [Show full text]
  • Analog Signal Processing Christophe Caloz, Fellow, IEEE, Shulabh Gupta, Member, IEEE, Qingfeng Zhang, Member, IEEE, and Babak Nikfal, Student Member, IEEE
    1 Analog Signal Processing Christophe Caloz, Fellow, IEEE, Shulabh Gupta, Member, IEEE, Qingfeng Zhang, Member, IEEE, and Babak Nikfal, Student Member, IEEE Abstract—Analog signal processing (ASP) is presented as a discrimination effects, emphasizing the concept of group delay systematic approach to address future challenges in high speed engineering, and presenting the fundamental concept of real- and high frequency microwave applications. The general concept time Fourier transformation. Next, it addresses the topic of of ASP is explained with the help of examples emphasizing basic ASP effects, such as time spreading and compression, the “phaser”, which is the core of an ASP system; it reviews chirping and frequency discrimination. Phasers, which repre- phaser technologies, explains the characteristics of the most sent the core of ASP systems, are explained to be elements promising microwave phasers, and proposes corresponding exhibiting a frequency-dependent group delay response, and enhancement techniques for higher ASP performance. Based hence a nonlinear phase response versus frequency, and various on ASP requirements, found to be phaser resolution, absolute phaser technologies are discussed and compared. Real-time Fourier transformation (RTFT) is derived as one of the most bandwidth and magnitude balance, it then describes novel fundamental ASP operations. Upon this basis, the specifications synthesis techniques for the design of all-pass transmission of a phaser – resolution, absolute bandwidth and magnitude and reflection phasers
    [Show full text]
  • Current Mode Computational Circuits for Analog Signal Processing
    ISSN (Print) : 2320 – 3765 ISSN (Online): 2278 – 8875 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (An ISO 3297: 2007 Certified Organization) Vol. 3, Issue 4, April 2014 Current Mode Computational Circuits for Analog Signal Processing Amanpreet Kaur1, Rishikesh Pandey2 PG Student (VLSI), Department of ECE, ThaparUniversity, Patiala,Punjab, India 1 Assistant Professor, Department of ECE, Thapar University, Patiala, Punjab, India2 ABSTRACT: The paper presents current adder and subtractor circuits based on cascode current mirror with improved linearity and wide linear range. The proposed circuits can be used for analog signal processing applications such as amplifiers, operational transconductance amplifiers (OTA), Gm-C filters, etc. In the proposed circuits, cascode current mirror topology is employed to improve current mirroring operation. The proposed circuits have been simulated using TSMC 0.18µm CMOS process technology with a supply voltage of 1.8 V. The proposed circuits operate efficiently within the current range of 0 to 80µA with the permissible error percentage of less than 2.5%. The SPICE simulation results have been presented to demonstrate the effectiveness of the proposed circuits. KEYWORDS: Adaptive biasing, cascode current mirror, current mode circuits, adder, subtractor.. I.INTRODUCTION In low-voltage/ low-power analog systems, current-mode signal processing has been usually considered an attractive strategy due to its potential for high-speed operation and low-voltage compatibility [1]-[4]. The behaviour of electrical circuits is always the result of interplay between voltage and current. In current mode circuits (CMCs), the currents determine the complete circuit response. The voltage signals are irrelevant in determining the circuit performance.
    [Show full text]
  • Digital Signal Processing Zahir M
    Digital Signal Processing Zahir M. Hussain Á Amin Z. Sadik Á Peter O’Shea Digital Signal Processing An Introduction with MATLAB and Applications 123 Prof. Zahir M. Hussain Peter O’Shea School of Electrical and Computer School of Engineering Systems Engineering QUT RMIT University Gardens Point Campus Latrobe Street 124, Melbourne Brisbane 4001 VIC 3000 Australia Australia e-mail: [email protected] e-mail: [email protected] Amin Z. Sadik RMIT University Monash Street 19 Lalor, Melbourne VIC 3075 Australia e-mail: [email protected] ISBN 978-3-642-15590-1 e-ISBN 978-3-642-15591-8 DOI 10.1007/978-3-642-15591-8 Springer Heidelberg Dordrecht London New York Ó Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the right of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: eStudio Calamar S.L. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) This book is dedicated to our loving families.
    [Show full text]
  • Design, Implementation, Comparison, and Performance Analysis Between Analog Butterworth and Chebyshev-I Low Pass Filter Using Approximation, Python and Proteus
    Design, Implementation, Comparison, and Performance analysis between Analog Butterworth and Chebyshev-I Low Pass Filter Using Approximation, Python and Proteus Navid Fazle Rabbi ( [email protected] ) Islamic University of Technology https://orcid.org/0000-0001-5085-2488 Research Article Keywords: Filter Design, Butterworth Filter, Chebyshev-I Filter Posted Date: February 16th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-220218/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Journal of Signal Processing Systems manuscript No. (will be inserted by the editor) Design, Implementation, Comparison, and Performance analysis between Analog Butterworth and Chebyshev-I Low Pass Filter Using Approximation, Python and Proteus Navid Fazle Rabbi Received: 24 January, 2021 / Accepted: date Abstract Filters are broadly used in signal processing and communication systems in noise reduction. Butterworth, Chebyshev-I Analog Low Pass Filters are developed and implemented in this paper. The filters are manually calculated using approximations and verified using Python Programming Language. Filters are also simulated in Proteus 8 Professional and implemented in the Hardware Lab using the necessary components. This paper also denotes the comparison and performance analysis of filters using Manual Computations, Hardware, and Software. Keywords Filter Design · Butterworth Filter · Chebyshev-I Filter 1 Introduction Filters play a crucial role in the field of digital and analog signal processing and communication networks. The standard analog filter architecture consists of two main components: the problem of approximation and the problem of synthesis. The primary purpose is to limit the signal to the specified frequency band or channel, or to model the input-output relationship of a specific device.[20][12] This paper revolves around the following two analog filters: – Butterworth Low Pass Filter – Chebyshev-I Low Pass Filter These filters play an essential role in alleviating unwanted signal parts.
    [Show full text]
  • Signal Processing for Communications Winter Semester 2007 - 2008
    Signal Processing for Communications Winter Semester 2007 - 2008 Instructor: Prof. Suhas Diggavi LICOS, EPFL based on lecture notes by Suhas Diggavi (LICOS), Paolo Prandoni and Martin Vetterli (LCAV), EPFL Contents 0 Mathematical Prerequisites 9 0.1 Complex Numbers ................................. 9 0.1.1 Operations on Complex Numbers ..................... 9 0.1.2 The Complex Number Field ........................ 10 0.1.3 The Complex Plane ............................ 10 0.1.4 Absolute Value, Conjugation and Distance ................ 12 0.2 Summations .................................... 13 0.3 Integration ..................................... 14 0.4 Linear Algebra ................................... 14 0.4.1 Matrices .................................. 14 0.4.2 Vectors ................................... 15 0.4.3 Determinants ............................... 16 0.4.4 Eigenvalues and Eigenvectors ....................... 16 0.5 Problems ...................................... 17 1 What Is Signal Processing ? 19 1.1 Introduction .................................... 19 1.2 Elementary Concepts ............................... 20 1.3 Examples of Signals ................................ 21 1.3.1 Speech ................................... 22 1.3.2 Music ................................... 23 1.3.3 Other One-Dimensional Signals ...................... 23 1.3.4 Images ................................... 26 1.3.5 Other Types of Images .......................... 27 1.3.6 Higher-Dimensional Signals ........................ 27 1.4 Systems .....................................
    [Show full text]
  • An Introduction to Digital Signal Processing
    An Introduction to Digital Signal Processing: A Focus on Implementation This page intentionally left blank An Introduction to Digital Signal Processing: A Focus on Implementation Stanley H. Mneney University of KwaZulu-Natal Durban South Africa Aalborg Published, sold and distributed by: River Publishers ApS PO box 1657 Algade 42 9000 Aalborg Denmark Tel.: +4536953197 EISBN: 978-87-92982-03-2 ISBN:978-87-92329-12-7 c 2008RiverPublishers All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechan- ical, photocopying, recording or otherwise, without prior written permission of the publishers. Dedication To my wife Edith, my daughter Thecla and my son Dan v This page intentionally left blank Acknowledgments The author would like to acknowledge the contribution made by Cen- tre for TeleInFrastruktur at Aalborg University in Denmark in making their facilities available and for the support the center has provided in hosting the author during the development of this book. Special thanks to the Director of the centre Prof Ramjee Prasad who had the initial vision and encouraged and supported this work. Stanley H Mneney University of KwaZulu-Natal vii About the Author Prof S. H. Mneney Pr. Eng., B.Sc.(Hons)Eng., M.A.Sc., Ph.D., SMSAIEE, MIET Stanley Henry Mneney was born in Arusha in Tanzania and attended primary and secondary school in the same town. He completed the Cambridge O-level and the Tanzania National form 6 examinations with the maximum passes possible. He was admitted to the University of Science and Technology in Kumasi, Ghana, in 1972 to study Electri- cal Engineering and graduated in 1976, winning the Charles Deakens award for being the best engineering student in that year.
    [Show full text]
  • Efficient Implementation of Analog Signal Processing Functions in Xilinx All Programmable Devices
    White Paper: FPGAs and Zynq-7000 AP SoCs WP442 (v1.0.2) March 16, 2018 Efficient Implementation of Analog Signal Processing Functions in Xilinx All Programmable Devices By: Cathal Murphy Despite increasing levels of system integration, many signal processing functions are still performed using discrete analog components on the PCB. With ever-increasing time-to-market and system cost reduction pressures, designing analog signal processing functions can sorely challenge a design team’s ability to meet both cost and performance requirements. In addition, these analog circuits are subject to tolerances, drift, and aging, all of which impact the accuracy of the system. Xilinx's Vivado® Design Suite and All Programmable Abstractions provide a powerful and easy to use methodology to address many of these analog design challenges while also reducing cost. And even designers with little FPGA or HDL experience can leverage tools like Vivado HLS and Vivado IP Integrator (IPI) to create flexible, accurate, robust analog/mixed-signal subsystems. © Copyright 2013–2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. All other trademarks are the property of their respective owners. WP442 (v1.0.2) March 16, 2018 www.xilinx.com 1 Introduction Introduction Most systems need to be able to interact with the real world for the purpose of monitoring and controlling it. To allow this to happen, systems contain sensors that translate real-world stimuli, such as light, heat, and sound, into analog electrical signals.
    [Show full text]
  • Digital Signal Processing Mathematics
    Digital signal processing mathematics M. Hoffmann DESY, Hamburg, Germany Abstract Modern digital signal processing makes use of a variety of mathematical tech- niques. These techniques are used to design and understand efficient filters for data processing and control. In an accelerator environment, these tech- niques often include statistics, one-dimensional and multidimensional trans- formations, and complex function theory. The basic mathematical concepts are presented in four sessions including a treatment of the harmonic oscillator, a topic that is necessary for the afternoon exercise sessions. 1 Introduction Digital signal processing requires the study of signals in a digital representation and the methods to in- terpret and utilize these signals. Together with analog signal processing, it composes the more general modern methodology of signal processing. Although the mathematics that are needed to understand most of the digital signal processing concepts were developed a long time ago, digital signal processing is still a relatively new methodology. Many digital signal processing concepts were derived from the analog signal processing field, so you will find a lot of similarities between the digital and analog signal pro- cessing. Nevertheless, some new techniques have been necessitated by digital signal processing, hence, the mathematical concepts treated here have been developed in that direction. The strength of digital signal processing currently lies in the frequency regimes of audio signal processing, control engineering, digital image processing, and speech processing. Radar signal processing and communications signal processing are two other subfields. Last but not least, the digital world has entered the field of accel- erator technology. Because of its flexibilty, digital signal processing and control is superior to analog processing or control in many growing areas.
    [Show full text]