Analog and Digital Electronics for Detectors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electronics Ii Curriculum Guide January 2012
PASSAIC COUNTY TECHNICAL INSTITUTE ELECTRONICS II CURRICULUM GUIDE JANUARY 2012 I. Course Description – Electronics Technology II Electronics II is designed to provide the student with enhanced skills and understanding of the electronics industry and changing career opportunities. Course goals are to provide the student with an augmented comprehension of advanced digital circuits and applications based on sound electrical fundamentals. Lab applications and projects are combined with theory based learning to provide the learner with a program which emulates industry standards and practices. II. Course Outline and Objectives UNIT 1: ELECTRONICS SHOP SAFETY (5.1.12.C.1, 5.1.4.D.3, 5.1.P.B.3) Students will: 1. develop a clear understanding of things that conduct electricity 2. understand lab and electrical hazards 3. know the dangers of electricity and how it affects the human body 4. learn how to report lab hazards to school personnel 5. develop a positive attitude about safe environments 6. learn proper use of tools in a safe manner 7. operate test equipment safely and effectively 8. avoid and report obstructions in the lab which can lead to injury 9. identify elements in the lab which can potentially cause injury 10. create and document a personal safety plan 11. know where to access safety standards posted in the lab 12. learn to ask appropriate questions when concerned about safety 13. operate and maintain all lab computers and peripherals efficiently 14. wear hand and eye protection as instructed 15. pass the program safety test with a 100% score UNIT 2: WORK ENVIRONMNETS IN ELECTRONICS (9.2.8.A.1, 9.4.12.O. -
Design & Performance Analysis of DG-MOSFET for Reduction of Short
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals Ankita Wagadre Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 7( Version 1), July 2014, pp.30-34 RESEARCH ARTICLE OPEN ACCESS Design & Performance Analysis of DG-MOSFET for Reduction of Short Channel Effect over Bulk MOSFET at 20nm Ankita Wagadre*, Shashank Mane** *(Research scholar, Department of Electronics & Communication, SBITM, Betul-460001) ** (Assistant Professor, Department of Electronics & Communication, SBITM, Betul-460001) ABSTRACT An aggressive scaling of conventional MOSFETs channel length reduces below 100nm and gate oxide thickness below 3nm to improved performance and packaging density. Due to this scaling short channel effect (SCEs) like threshold voltage, Subthreshold slope, ON current and OFF current plays a major role in determining the performance of scaled devices. The double gate (DG) MOSFETS are electro-statically superior to a single gate (SG) MOSFET and allows for additional gate length scaling. Simulation work on both devices has been carried out and presented in paper. The comparative study had been carried out for threshold voltage (VT), Subthreshold slope (Sub VT), ION and IOFF Current. It is observed that DG MOSFET provide good control on leakage current over conventional Bulk (Single Gate) MOSFET. The VT (Threshold Voltage) is 2.7 times greater than & ION of DG MOSFET is 2.2 times smaller than the conventional Bulk (Single Gate) MOSFET. Keywords - DG MOSFET (Double Gate Metal oxide Field Effect Transistor), Short Channel Effect (SCE), Bulk (Single Gate) MOSFET. -
High Frequency Integrated MOS Filters C
N94-71118 2nd NASA SERC Symposium on VLSI Design 1990 5.4.1 High Frequency Integrated MOS Filters C. Peterson International Microelectronic Products San Jose, CA 95134 Abstract- Several techniques exist for implementing integrated MOS filters. These techniques fit into the general categories of sampled and tuned continuous- time niters. Advantages and limitations of each approach are discussed. This paper focuses primarily on the high frequency capabilities of MOS integrated filters. 1 Introduction The use of MOS in the design of analog integrated circuits continues to grow. Competitive pressures drive system designers towards system-level integration. System-level integration typically requires interface to the analog world. Often, this type of integration consists predominantly of digital circuitry, thus the efficiency of the digital in cost and power is key. MOS remains the most efficient integrated circuit technology for mixed-signal integration. The scaling of MOS process feature sizes combined with innovation in circuit design techniques have also opened new high bandwidth opportunities for MOS mixed- signal circuits. There is a trend to replace complex analog signal processing with digital signal pro- cessing (DSP). The use of over-sampled converters minimizes the requirements for pre- and post filtering. In spite of this trend, there are many applications where DSP is im- practical and where signal conditioning in the analog domain is necessary, particularly at high frequencies. Applications for high frequency filters are in data communications and the read channel of tape, disk and optical storage devices where filters bandlimit the data signal and perform amplitude and phase equalization. Other examples include filtering of radio and video signals. -
Digital Electronics Syllabus
Digital Electronics Mrs. Carlson – D102 Pathway to Engineering Project Lead the Way CTE Academy Sioux Falls, SD [email protected] DE Course Description Digital electronics is the foundation of all modern electronic devices such as cellular phones, MP3 players, laptop computers, digital cameras, and high-definition televisions. The major focus of Digital Electronics is to expose students to the design process of combinational and sequential logic design, key elements of careers in engineering. Students design circuits to solve problems, export their designs to a printed circuit auto-routing program that generates printed circuit boards, and use appropriate components to build their designs. DE Expectations Project Lead the Way’s Pathway to Engineering program is a pre-professional program. Participants in this program will be held to the highest academic and behavior standards. Academic expectations include: Preparing for class and having all required materials on hand: pen/pencil, calculator, engineering notebook, 3-ring binder Completing activities and meeting project deadlines Working cooperatively with others Submitting ALL assignments on or before the assigned due date Using the PLTW Learning Management System to review course materials, receive messages and keep track of due dates Behavior expectations include: Being punctual for all class meeting times Maintaining a clean and SAFE working environment Speaking respectfully to others Using all equipment SAFELY and for its intended purpose only Late work policy: -
The Equivalence of Digital and Analog Signal Processing *
Reprinted from I ~ FORMATIO:-; AXDCOXTROL, Volume 8, No. 5, October 1965 Copyright @ by AcademicPress Inc. Printed in U.S.A. INFORMATION A~D CO:";TROL 8, 455- 4G7 (19G5) The Equivalence of Digital and Analog Signal Processing * K . STEIGLITZ Departmentof Electrical Engineering, Princeton University, Princeton, l\rew J er.~e!J A specific isomorphism is constructed via the trallsform domaiIls between the analog signal spaceL2 (- 00, 00) and the digital signal space [2. It is then shown that the class of linear time-invariaIlt realizable filters is illvariallt under this isomorphism, thus demoIl- stratillg that the theories of processingsignals with such filters are identical in the digital and analog cases. This means that optimi - zatioll problems illvolving linear time-illvariant realizable filters and quadratic cost functions are equivalent in the discrete-time and the continuous-time cases, for both deterministic and random signals. FilIally , applicatiolls to the approximation problem for digital filters are discussed. LIST OF SY~IBOLS f (t ), g(t) continuous -time signals F (jCAJ), G(jCAJ) Fourier transforms of continuous -time signals A continuous -time filters , bounded linear transformations of I.J2(- 00, 00) {in}, {gn} discrete -time signals F (z), G (z) z-transforms of discrete -time signals A discrete -time filters , bounded linear transfornlations of ~ JL isomorphic mapping from L 2 ( - 00, 00) to l2 ~L 2 ( - 00, 00) space of Fourier transforms of functions in L 2( - 00,00) 512 space of z-transforms of sequences in l2 An(t ) nth Laguerre function * This work is part of a thesis submitted in partial fulfillment of requirements for the degree of Doctor of Engineering Scienceat New York University , and was supported partly by the National ScienceFoundation and partly by the Air Force Officeof Scientific Researchunder Contract No. -
Chapter 1 Computers and Digital Basics Computer Concepts 2014 1 Your Assignment…
Chapter 1 Computers and Digital Basics Computer Concepts 2014 1 Your assignment… Prepare an answer for your assigned question. Use Chapter 1 in the book and this PowerPoint to procure information. Prepare a PowerPoint presentation to: 1. Show your answer and additional information/facts – make sure you understand and can explain your answer. Provide as must information and detail as possible. Add graphics to enhance. 2. Where in the book did you find your information? Include the page number. 3. What more do you need to find out to help you better understand this question? Be prepared to share your information with the class. Chapter 1: Computers and Digital Basics 2 1 The Digital Revolution The digital revolution is an ongoing process of social, political, and economic change brought about by digital technology, such as computers and the Internet The technology driving the digital revolution is based on digital electronics and the idea that electrical signals can represent data, such as numbers, words, pictures, and music Chapter 1: Computers and Digital Basics 6 1 The Digital Revolution Digitization is the process of converting text, numbers, sound, photos, and video into data that can be processed by digital devices The digital revolution has evolved through four phases, beginning with big, expensive, standalone computers, and progressing to today’s digital world in which small, inexpensive digital devices are everywhere Chapter 1: Computers and Digital Basics 7 1 The Digital Revolution Chapter 1: Computers and Digital Basics -
Analog Signal Processing Circuits in Organic Transistor Technology a Dissertation Submitted to the Department of Electrical Engi
ANALOG SIGNAL PROCESSING CIRCUITS IN ORGANIC TRANSISTOR TECHNOLOGY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Wei Xiong October 2010 © 2011 by Wei Xiong. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/fk938sr9136 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Boris Murmann, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Zhenan Bao I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Robert Dutton Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Low-voltage organic thin-film transistors offer potential for many novel applications. Because organic transistors can be fabricated near room temperature, they allow integrated circuits to be made on flexible plastic substrates. -
Lecture Notes for Digital Electronics
Lecture Notes for Digital Electronics Raymond E. Frey Physics Department University of Oregon Eugene, OR 97403, USA [email protected] March, 2000 1 Basic Digital Concepts By converting continuous analog signals into a finite number of discrete states, a process called digitization, then to the extent that the states are sufficiently well separated so that noise does create errors, the resulting digital signals allow the following (slightly idealized): • storage over arbitrary periods of time • flawless retrieval and reproduction of the stored information • flawless transmission of the information Some information is intrinsically digital, so it is natural to process and manipulate it using purely digital techniques. Examples are numbers and words. The drawback to digitization is that a single analog signal (e.g. a voltage which is a function of time, like a stereo signal) needs many discrete states, or bits, in order to give a satisfactory reproduction. For example, it requires a minimum of 10 bits to determine a voltage at any given time to an accuracy of ≈ 0:1%. For transmission, one now requires 10 lines instead of the one original analog line. The explosion in digital techniques and technology has been made possible by the incred- ible increase in the density of digital circuitry, its robust performance, its relatively low cost, and its speed. The requirement of using many bits in reproduction is no longer an issue: The more the better. This circuitry is based upon the transistor, which can be operated as a switch with two states. Hence, the digital information is intrinsically binary. So in practice, the terms digital and binary are used interchangeably. -
Introduction (Pdf)
chapter1.fm Page 1 Thursday, August 17, 2000 4:43 PM CHAPTER 1 INTRODUCTION The evolution of digital circuit design n Compelling issues in digital circuit design n How to measure the quality of digital design n Valuable references 1.1 A Historical Perspective 1.2 Issues in Digital Integrated Circuit Design 1.3 Quality Metrics of A Digital Design 1.4 Summary 1.5 To Probe Further 1 chapter1.fm Page 2 Thursday, August 17, 2000 4:43 PM 2 INTRODUCTION Chapter 1 1.1A Historical Perspective The concept of digital data manipulation has made a dramatic impact on our society. One has long grown accustomed to the idea of digital computers. Evolving steadily from main- frame and minicomputers, personal and laptop computers have proliferated into daily life. More significant, however, is a continuous trend towards digital solutions in all other areas of electronics. Instrumentation was one of the first noncomputing domains where the potential benefits of digital data manipulation over analog processing were recognized. Other areas such as control were soon to follow. Only recently have we witnessed the con- version of telecommunications and consumer electronics towards the digital format. Increasingly, telephone data is transmitted and processed digitally over both wired and wireless networks. The compact disk has revolutionized the audio world, and digital video is following in its footsteps. The idea of implementing computational engines using an encoded data format is by no means an idea of our times. In the early nineteenth century, Babbage envisioned large- scale mechanical computing devices, called Difference Engines [Swade93]. Although these engines use the decimal number system rather than the binary representation now common in modern electronics, the underlying concepts are very similar. -
Digital Electronics Part II - Circuits
Digital Electronics Part II - Circuits Dr. I. J. Wassell Gates from Transistors 1 Introduction • Logic circuits are non-linear, consequently we will introduce a graphical technique for analysing such circuits • The construction of an NMOS inverter from an n-channel field effect transistor (FET) is described • CMOS logic is then introduced Solving Non-linear circuits • First of all we need to introduce Ohm’s Law. For a linear component such as a resistor, this states that the voltage across the device is proportional to the current through it, i.e., V = IR • We will apply this concept to a simple circuit consisting of 2 resistors in series connected across an ideal voltage source – known as a potential divider 2 Potential Divider • What is the voltage at point x relative to the the 0V point? I V = V1 +V2 V = IR V = IR R1 V1 1 1 2 2 V x V = IR1 + IR2 = I(R1 + R2 ) R 2 V2 V I = 0V (R1 + R2) V R2 Vx = V2 = R2 = V (R1 + R2 ) R1 + R2 Potential Divider • How can we do this graphically? I So if V = 10V, R1 = 1 Ω and R2 = 2 Ω R V 1 1 V x R2 2 Vx = V =10 = 7.6 V R R + R 1+ 2 2 V2 1 2 0V Current Current through through R2 (2 Ω) R1 (1 Ω) 0V Voltage x= 6.7V Voltage V= 10V across R2 across R1 3 Graphical Approach • Clearly approach works for a linear circuit. • How could we apply this if we have a non- linear device, e.g., a transistor in place of R2? • What we do is substitute the V-I characteristic of the non-linear device in place of the linear characteristic (a straight line due to Ohm’s Law) used previously for R2 Graphical Approach -
Introduction to Digital Electronics by Agner Fog, 2019-10-30
Introduction to Digital Electronics by Agner Fog, 2019-10-30. Contents 1. Number systems ............................................................................................................................... 3 1.1. Decimal, binary, and hexadecimal numbers ............................................................................ 3 1.2. Conversion from another number system to decimal ............................................................... 4 1.3. Conversion from decimal to another number system ............................................................... 5 1.4. Addition of binary numbers ...................................................................................................... 6 1.5. Signed binary numbers ............................................................................................................ 7 1.6. Binary coded decimal numbers ................................................................................................ 9 1.7. Exercises ............................................................................................................................... 10 2. Boolean algebra .............................................................................................................................. 12 2.1. Laws and rules ....................................................................................................................... 13 2.2. Truth tables ........................................................................................................................... -
2021-22 Senior Worksheet
BROWNSBURG HIGH SCHOOL SENIOR COURSE SELECTION WORKSHEET Students and Parents: To assist you in planning your course selections, please review the Program of Studies. This document can be found on the high school website at https://www.brownsburg.k12.in.us/bhs-scheduling. Please take time to review the BHS policies and procedures and the graduation requirements for Core 40, Academic Honors, and Technical Honors. This form has been created as an aid in selecting courses online for the 2021-2022 school year using your PowerSchool account. Courses with two identifying numbers indicate a full year course (or two semesters). Identifying single numbers indicate a one semester course. A total of 14 semesters should be selected. A. CORE SENIOR REQUIREMENTS Select one (1) box in each of the core areas below. English Social Studies - Economics Credits Course # Course Name Credits Course # Course Name □ 2 157-158 English 12 □ 1 408 Economics □ 2 1651-1652 English Literature & Composition, AP □ 1 422 Microeconomics, AP □ 2 1861-1901 Adv. Eng CC/IT ENGL 111/215 Social Studies - Government Credits Course # Course Name □ 1 407 US Government 1 421 US Government & Politics, AP □ B. CORE SENIOR RECOMMENDED Math Science Credits Course # Course Name Credits Course # Course Name □ 2 215-216 Algebra II □ 2 311-312 Chemistry I □ 2 2171-2172 Algebra II Honors □ 2 3451-3452 Pre-AP Chemistry I Honors □ 2 251-252 Pre-Calculus/Trigonometry □ 2 353-354 Integrated Chemistry-Physics □ 2 2521-2522 Pre-Calculus/Trigonometry Honors AB □ 2 351-352 Advanced Science: Earth Systems □ 2 2543-2544 Pre-Calculus/Trigonometry Honors BC □ 2 315-316 Physics I □ 2 2181-2182 Finite Math (non dual credit) □ 2 3481-3482 Pre-AP Physics I Honors □ 2 239-240 Statistics, AP □ 2 339-340 Anatomy & Physiology □ 2 229-230 Calculus AB, AP □ 2 309-310 Advanced Science: Zoology □ 2 2341-2342 Calculus BC, AP □ 2 361-362 Adv.