<<

Supplement to Nature Publishing Group Telephone: +1-617-679-7000 Website: www.millennium.com that makeareal difference inthefightagainstcancerbyfollowing itsVision: We Aspire toCure . lives. Theultimategoalis tofindcures forcancer, butuntilthen, theCompanystrivestodelivermedicines survive. We haveover300projects underwayandmore than17novelorbest-in-classdrugcandidates. range ofcancers. Ourfocusindrugdevelopmentisondiseasepathways thatcancercellsdependonto Millennium operates asTakeda’s GlobalCenterofExcellenceinOncology. The Takeda OncologyCompany. Asawhollyownedandindependentsubsidiary ofTakeda, acquired byTakeda PharmaceuticalCompanyLimitedinMay2008andrenamed Millennium: Millennium Pharmaceuticals,Inc. size, and it can be deconjugated from PEbyasecondAtg4-dependent cleavage. known asGATE16) andGABARAPL3.Atg8(LC3inmammals)helpsdetermineautophagosome Atg8 familymembersinmammalsincludeLC3, GABARAP, GABARAPL1,GABARAPL2(also act asanE3ligaseforAtg8–PEconjugation,andmaydictatethesiteofconjugation. by Atg7(shownas is processed bytheAtg4protease atits Two -likeprotein conjugationsystemsregulate expansion.Atg8 Ubiquitin-like conjugationsystems mATG9 isinitiallylocalizedtothetrans juxtaposed tomitochondria;inmammaliancells, pathway, andapopulationislocatedinreservoirs complex. Inyeast,Atg9transits through thesecretory membranes (thephagophore) bythePtdIns3K and WIPI2,are recruited toPtdIns3P-marked Atg18 anditsmammalianhomologues,WIPI1 the –Atg13andAtg2–Atg18complexes. of Atg9backtothedonorsitesinvolves Atg23 andAtg27. Retrograde move atio of Atg9tothesitevesicleform expansion. Anterograde movement donor membranes forphagophore puncta, whichprobably markthe detected inmultiplediscrete formation.Itis brane Atgprotein required for Atg9 istheprimarytransmem Atg9 transport plasm complex, mitochondriaand/or membran probably byincorporating to formtheautophagosome, ment, thephagophore, expands The initialsequesteringcompart Phagophore expansion by interacting withAtg8(inyeast)andLC3mammals). in and ALFY in mammals) linking the cargo with nascent auto (for example,Atg19,p62,NBR1andNDP52)and/oradaptorsAtg11 to thecargo byaubiquitinligasesuchasparkin.Tags are recognized byreceptors and mitochondria(Atg32inyeastNIXmammals),oraubiquitinmodificationisadded invasive . Sometargets comewithabuilt-intag,asprApe1(propeptide) canselectivelytarget superfluousordamagedorganelles, specificproteins or Cargo selection MO Millennium’s toppriorityis todevelopandbringmarketnewdrugcandidates thatimprove patients’ Millennium hasarobust developmentpipelineofdrugcandidatesthatare beinginvestigatedinabroad #VI :GPQRJCI[KPOCOOCNU #VI ­n, thePAS inyeast,requires Atg11, membrane. ­a /KVQRJCI[KP[GCUV $CEVGTKWO 7D 7D ­e from theER,Golgi #VI /KVQEJQPFTKQ R R LECU #VI #VI

.% .% #VI BIOLOG #VI .% Gly*) .% #VI #VI P .% .%

and conjugated to PE by Atg3. Atg12–Atg5-Atg16 may and conjugatedtoPEbyAtg3.Atg12–Atg5-Atg16may

LA ­ /KVQRJCI[KPOCOOCN 2+0- ­ Fax: +1-617-374-7788 e-mail: [email protected] ­ 2 was established in 1993 as a genomics company and was wasestablishedin1993asagenomicscompanyand was 7D 7D R CTMKP ment ment ­ R R ‑ C-terminal aminoacid(s) Y Golgi network. .% .% .% .% .% #VI U .%

OCVWT HQTOCVKQPCPF #WVQRJCIQUQOG #WVQRJCIQUQOG

#VI

#VI #VI #VI #VI CVKQP #VI

#VI #VI

#VI #VI #VI #VI 8 #VI #VI CEWQNG , activated , activated #VI #VI ­ phagosomes #VI #VI RT#RG Autophagy: molecularmechanismsanddiseaseoutcomes %CT #VI #VI of thecargo. Autophagycanbenonspecificintermsofitscytoplasmictargets incertain fuse withthelysosomeinmammaliancells(orvacuoleyeast)toallowdegradation portion ofthecytoplasmwithindouble-membrane vesiclescalledautophagosomes.These the bestcharacterized. Themorphologicalhallmarkofthisprocess isthesequestration ofa to externalandinternaltriggers.Ofthedifferent typesofautophagy, macroautophagy is components, includingtargets thatare toolarge forother degradative systems,inresponse Autophagy isacytoplasmic,homeostaticprocess bywhichcellsdegrade theirinterior

#VI

IQUGNGEVKQP

2JCIQRJQT #VI #VI #VI

#VI #VI #VI

#VI #VI #VI G /GODT #VI #VI

#EKFJ[FT #VI

#WVQRJCIKEDQF[ 8RU Telephone: +1-617-241-7072 Website: www.bostonbiochem.com For more information,pleasecontactusat: The innovationyouexpect. including , enzymes,substrates, inhibitors,antibodies andkits. Our extensiveproduct linecontainsacomprehensive range ofautophagyresearch tools, research area andisdedicatedtothedevelopment ofourautophagyproduct offering. a rapidly growing research area. BostonBiochemrecognizes theimportanceofthisexpanding reliability andspeedofubiquitin-related discovery. ubiquitin andubiquitin-related research products. Ourmissionremains toincrease thequality, Since 1997, #VI CPG The criticalinvolvementofautophagyintheregulation ofcellprocesses anddiseasestatesis #VI 8RU #VI #VI #VI #VI

QNCUG

#VI #VI #VI 2JCIQRJQT #VI

#VI 2 #VI Boston Biochem ; #VI #VI #VI #VI EQORNGZ+ %NCUU+++2VF+PU- #VI O#RG GCUV 2JQ )EP %NI 5KE /KVQEJQPFTKQP 2JQ )EP GGZRCPUKQP %FE 2EN 2MC NKOKVCVKQP 0WVTKGPV %NP

#VI hasmaintainedourpositionastheleadingglobal provider of #VI #VI #VI 5EJ #VI 2

#VI

2 GTOGCUG #VI #VI #VI #VI #VI 6Q 2 2 T Fax: +1-617-492-3565 e-mail: [email protected] #VI 6 2RC CR 2 #VI 4KO #VI 4CRCO[EKP #VI #VI #VI 5PH T /GODT GETWKVOGPV #VI #VI #VI #VI #VI +PFWEVKQP 2JQ 2JQ 2JQ &GEQPLWICVKQP CPG 0WENGWU 2JCIQRJQT )N[ 2' )N[ )N[ )N[ #VI #VI #T *[RQZKC 4CRCO[EKP 4'&& I #VI #VI */)$  4#5s'4- Daniel J.KlionskyandVojo Deretic )N[ )N[ 26'0 )QNI (+2 GGZRCPUKQP #VI # %NCUU+2+- '4 6) K %NCUU+++2VF+PU- 7.- 65% O6 4*'$ 2&- #-6 EQORNGZ+ # #VI #VI

14 6) 7.- #

6). )T 4GEGRVQT */)$ © 2011 Macmillan Publishers Limited. All rights reserved QYVJHCEVQTUQTKPUWNKP 1OGICUQOG )GPQVQZKEUVT #VI #VI #VI

5GUVTKP 9+2+ #WVQN[UQUQOG QT415 OGVJ[NCFGPKPG #/2- %NCUU+++2VF+PU- R response; UVRAG,UVradiation resistance-associated gene;Vps, vacuolarprotein sorting;WIPI,WDrepeat domainphosphoinositide-interacting. UNC ULK, ubiquitin; Ub, containing; cysteine-rich and BECLIN 1-interacting domain RUN RUBICON, species; PtdIns3P,3-; PtdIns PtdIns3K, ; PtdIns, I; PtdIns 3 aminopeptidase precursor prApe1, ; PE, PAS,site; BNIP3L); assembly as phagophore known (also NIP3-like X , CALCOCO2); as known (also 52 kDa dot nuclear NDP52, gene 1; BRCA1 to next NBR1, complex II; histocompatibility major mATG,MHCII, autophagy-related; mammalian aminopeptidase I; mature mApe1, MAP1LC3); as known (also 3 chain light 1 proteinmicrotubule-associated LC3, glycoprotein 2; membrane associated protein; GABARAPL,GABARAP-like;HMGB1,high-mobility group B1;HSC70,heatshockcognate 70;LAMP2A,-associated protein 1(alsoknown asZFYVE1);ER,endoplasmicreticulum; ERAD,ER-associateddegradation; GABARAP, BIF1, BAX-interacting factor1;C-terminal,carboxy-terminal;CMA,chaperone-mediated autophagy;DFCP1,doubleFYVEdomain-containing protein 1; coiled-coil myosin/moesin-like interacting BCL-2 1, ATG16L,BECLIN BARKOR); Atg16-like; as yeast known ATG14L,(also Atg14-like yeast autophagy-related; Atg, autophagy 1; 1-regulated BECLIN in molecule activating AMBRA1, WDFY3); ALFY,as known (also FYVE autophagy-linked Abbreviations %NCUU+++2VF+PU- YQTVOCPPKP #VI EQORNGZ+ /COOCNU &(%2 #VI

GUU EQORNGZ+ .-$ #VI %C/-- promise ofallowingustotarget thispathwayfortherapeutic purposes. in recent yearsandisdepictedhere forbothyeastandmammals.Thisknowledgeholdsthe human .Our molecular understandingofautophagyhasincreased exponentially and developmental processes, whereas autophagic dysfunction isassociatedwithvarious invasive microorganisms. Whenproperly regulated, autophagy supportsnormalcellular specific autophagycantarget superfluousordamagedorganelles, protein aggregates or situations, forexampleinresponse tostarvation.However, dependingonthesignal,highly %C β  7D $'%.+0 2 #/$4# .% 2 2 825 .% 9+2+ .% # R 6). microbial .Inyeast,theprimaryregulation ofautophagyisnutrientdependent programmes andbyvarioustypesofstress, includingnutrientlimitation,hypoxiaand Autophagy occursatabasallevelbutcanbefurtherinducedduringdevelopmental Induction .% R %CT R .% 7D 7D and is controlled by a complex network of positive and negative pathways. Proteins pathways. negative and positive of network complex a by controlled and is R R .% IQUGNGEVKQP .% 2JCIQRJQT 7D R 7D 7D depicted inpinkandgreen ultimatelyinhibitandstimulate,respectively, the $+( .% EQORNGZ++ %NCUU+++2VF+PU- 2 47$+%10 $'%.+0 activity of the Atg1 kinase complex (the ULK1 and ULK2 complex in activity oftheAtg1kinasecomplex(theULK1andULK2in G 784#) 825 $CEVGTKWO mammals) and,subsequently, autophagy. Theinteractions withtheAtg1 R #WVQRJCIQUQOG kinase complexshownare notnecessarilydirect. TheAtg1kinase .#/2# HQTOCVKQPCPF complex plays a crucial part in autophagy induction and also acts complex playsacrucialpartinautophagyinductionandalsoacts .% R OCVWT #WVQRJCIQUQOG at laterstagesoftheprocess; however, itislikelythatnotall 7D of itsphysiologicalsubstrates havebeenidentified. *5% 7D R .% CVKQP . [UQUQOG receptor andlumenalHSC70,fordegradation. through theactionofLAMP2Amembrane translocated across thelysosomemembrane, unfolded bycytosolicHSC70chaperones and a looselyconservedKFERQconsensusmotifare macroautophagy. Individualproteins thatcontain CMA functionstemporally aftertheinductionof Chaperone-mediated autophagy macroautophagy. Autophagosome formation formation that is involved in some types of formation thatisinvolvedinsometypesof and maturation the omegasome,ascaffoldforphagophore 2 Expansion ofthephagophore intoan GTOGCUG binds PtdIns3Panddirects theformationof autophagosome requires thegeneration the conjugation of LC3 to PE. DFCP1 also the conjugationofLC3toPE.DFCP1also of thephospholipidPtdIns3P. ATG16L andULK1,whichinpartdirect PtdIns3K complex of PtdIns3Precruits WIPI2,alongwith The Vps34complexgenerates PtdIns3P, complex totheER.Thegeneration which mayallowrecruitment of ATG14L targets thePtdIns3K certain Atg components to the certain Atgcomponentstothe The omegasome phagophore. There are multiple BIF1, RUBICONandHMGB1. Vps34 complexes,eachofwhich mammalian cells include AMBRA1, mammalian cellsincludeAMBRA1, contains theVps34lipidkinase, Additional modulatingproteins in the Vps15regulatory kinase complex includes UVRAG. complex includesUVRAG. (p150 inmammals)andAtg6 autolysosome in mammals the autolysosome inmammalsthe During mammals). 1 in (BECLIN during maturation intoan (ATG14L inmammals),whereas Vps34 complexcontainsAtg14 phagophore formation,the γ ‑ 51 -aminobutyric acidreceptor- ‑ phosphate; ROS, reactive oxygen oxygen reactive ROS, phosphate; ‑ like kinase; UPR, unfolded protein unfolded UPR, kinase; like

For the reference list see: http://www.nature.com/nrm/poster *Beneficial ( Autophagy inhealthanddisease Cancer orprocess Embryogenesis Development renal diseases Heart, vascular and disease bowel disease inflammatory Immune response; infection Microbial diseases lysosomal storage Myopathies; diseases Neurodegenerative comments. We thankN.Mizushima forhelpful Acknowledgements 5 microbial adaptations. Levine, B.Autophagy, immunity, and Biol. history ofmacroautophagy. Yang, Z.&Klionsky, D.J.Eatenalive: a clean house. Deretic, V. &Klionsky, D.J.Howcells Further Reading , 527–549(2009)

12 22 1,2 , 814–822 (2010) | Deretic, V.Deretic, (2010) | 814–822 , & 5 3,4 13,14 6,7 ) or harmful ( Sci. Am. 9 15–19 10–12 8 20,21

298 Cell Host Microbe Role ofautophagy* ) roles of autophagy in health and disease. , 74–81 (2008) | (2008) | 74–81 , wasting in Increased levels may lead to muscle and organ and prolong life aggregated macromolecules to increase health Removes damaged and oxidized or Unknown cell the removal of dead cells during programmed transplacental supply of nutrients; involved in neonates to survive after termination of the Required for embryo implantation; allows Unknown reticulocytes is key to erythrocyte differentiation Removal of mitochondria by in autophagy and pancreatic Exposure to free fatty acids can lead to excessive high-fat diet; may affect neutral function; involved in the response of Basal levels maintain normal islet structure and Can be harmful during reperfusion disease against in plaques; prevents glomerular ischaemia and pressure overload; may protect cardiomyocytes and podocytes; protective during Its homeostatic properties are essential to liver damage Excessive autophagic removal of the ER can cause overloads the UPR and ERAD the ER to be removed when protein misfolding Role in allows portions of when defective May promote excess inflammatory homeostasis; counters damaging T cell maturation and B cell and T cell presentation; regulates naive T cell repertoires, Processes endogenous antigens for MHCII autophagy or use it to promote their own growth Some pathogens have adaptations that counter inflammatory response to microbial products regulates innate immunity and the protective Helps eliminate invasive microorganisms and physiology; excessive levels cause muscle wasting maturation is impeded can compromise cellular Accumulation of when homeostasis dysfunctional organelles and maintain cellular the accumulation of protein aggregates or Removes proteins and organelles to prevent can generate pathology-associated peptides Amyloid precursor protein in autophagosomes mitochondria by mitophagy in neurons; selectively removes damaged Basal levels clear toxic protein aggregates Used by cancer cells for cytoprotection Functions in tumour suppression Nature Cell

autophagy http://www.nature.com/nrm/posters/  Klionsky. Daniel J. designed byVicky Summersbyand copy-edited byAntonyBickenson; Edited byKatharineWrighton; [email protected] [email protected] Contact Information 2011Nature Publishing Group. β s/autophagy -

β -cells to a -cells to a

SUPPLEMENTARY INFORMATION

Supplementary information to poster | Autophagy: molecular mechanisms and disease outcomes. Daniel J. Klionsky and April 2010 (http://www.nature.com/nrm/posters/autophagy)

References for Table on Autophagy in health and disease 1. Dikic, I., Johansen, T. & Kirkin, V. Selective autophagy in 12. Periyasamy-Thandavan, S., Jiang, M., Schoenlein, P. & cancer development and therapy. Cancer Res. 70, Dong, Z. Autophagy: molecular machinery, regulation, 3431–3434 (2010). and implications for renal . Am. J. 2. White, E., Karp, C., Strohecker, A. M., Guo, Y. & Physiol. Renal Physiol. 297, F244–F256 (2009). Mathew, R. Role of autophagy in suppression of 13. Gonzalez, C. D. et al. The emerging role of autophagy in inflammation and cancer. Curr. Opin. Cell Biol. 22, the pathophysiology of diabetes mellitus. Autophagy 7, 212–217 (2010). 2–11 (2011). 3. Rubinsztein, D. C. et al. Autophagy and its possible roles 14. Chen, Z. F. et al. The double-edged effect of autophagy in in nervous system diseases, damage and repair. pancreatic beta cells and diabetes. Autophagy 7, 12–16 Autophagy 1, 11–22 (2005). (2010). 4. Irrcher, I. & Park, D. S. Parkinson’s disease: to live or die 15. Mizushima, N. & Levine, B. Autophagy in mammalian by autophagy. Sci. Signal. 2, pe21 (2009). development and differentiation. Nature Cell Biol. 12, 5. Malicdan, M. C., Noguchi, S., Nonaka, I., Saftig, P. & 823–830 (2010). Nishino, I. Lysosomal myopathies: an excessive build-up 16. Levine, B. & Klionsky, D. J. Development by self-digestion: in autophagosomes is too much to handle. Neuromuscul. molecular mechanisms and biological functions of Disord. 18, 521–529 (2008). autophagy. Dev. Cell 6, 463–477 (2004). 6. Deretic, V. & Levine, B. Autophagy, immunity, and 17. Qu, X. et al. Autophagy gene-dependent clearance of microbial adaptations. Cell Host Microbe 5, 527–549 apoptotic cells during embryonic development. Cell 128, (2009). 931–946 (2007). 7. Levine, B. & Deretic, V. Unveiling the roles of autophagy 18. Zhang, J. & Ney, P. A. Reticulocyte mitophagy: monitoring in innate and adaptive immunity. Nature Rev. Immunol. 7, mitochondrial clearance in a mammalian model. 767–777 (2007). Autophagy 6, 405–408 (2010). 8. Brest, P. et al. Autophagy and Crohn’s disease: at the 19. Kundu, M. et al. Ulk1 plays a critical role in the crossroads of infection, inflammation, immunity, and autophagic clearance of mitochondria and cancer. Curr. Mol. Med. 10, 486–502 (2010). during reticulocyte maturation. Blood 112, 1493–1502 9. Greene, C. M. et al. Alpha-1 antitrypsin deficiency: a (2008). conformational disease associated with lung and liver 20. Tsukamoto, S., Kuma, A. & Mizushima, N. The role of manifestations. J. Inherit. Metab. Dis. 31, 21–34 (2008). autophagy during the oocyte‑to‑embryo transition. 10. Nishida, K., Kyoi, S., Yamaguchi, O., Sadoshima, J. & Autophagy 4, 1076–1078 (2008). Otsu, K. The role of autophagy in the heart. Cell Death 21. Kuma, A. et al. The role of autophagy during the early Differ. 16, 31–38 (2009). neonatal starvation period. Nature 432, 1032–1036 11. Gustafsson, A. B. & Gottlieb, R. A. Eat your heart out: (2004). role of autophagy in myocardial ischemia/reperfusion. 22. Cuervo, A. M. Autophagy and aging: keeping that old Autophagy 4, 416–421 (2008). broom working. Trends Genet. 24, 604–612 (2008).

NATURE REVIEWS | MOLECULAR www.nature.com/reviews/molcellbio © 2011 Macmillan Publishers Limited. All rights reserved