Thesis Contreras L October Revised

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Contreras L October Revised Terrestrial ecosystems on a Greenhouse Earth: Climate and vegetation in the high southern latitudes during the early Paleogene Dissertation for attaining the PhD degree of Natural Sciences Submitted to the Faculty of Geosciences and Geography of the Johann Wolfgang Goethe University Frankfurt am Main By Lineth Contreras Arias from Bogotá (Colombia) Frankfurt am Main 2014 accepted by the faculty of Geosciences and Geography of the Johann Wolfgang Goethe University as a dissertation Dean: Prof. Dr. Ulrich Achatz Expert assessors: Prof. Dr. Jörg Pross Prof. Dr. Henk Brinkhuis Prof. Dr. Silke Voigt Examination board: Prof. Dr. Jörg Pross Prof. Dr. Silke Voigt Prof. Dr. Jens Herrle Prof. Dr. Eberhard Gischler Date of the disputation: April 24, 2015 Table of contents Table of contents Table of contents ................................................................................................................... 3 List of figures ........................................................................................................................ 5 List of tables .......................................................................................................................... 7 Abstract ................................................................................................................................. 8 Chapter 1. Introduction ................................................................................................... 9 1.1 Early Paleogene Greenhouse Earth ......................................................................... 10 1.2 Vegetation during the early Paleogene: A focus on the southern high latitudes ..... 12 1.3 Focus of this research .............................................................................................. 16 1.4 Terrestrial ecosystems from marine pollen records at the Australo-Antarctic region… ............................................................................................................................ 16 1.5 Proxy for reconstructing vegetation: Pollen and spores .......................................... 18 1.6 Quantitative methods for inferences of diversity and composition of the vegetation.. ....................................................................................................................... 20 1.7 Paleoclimatic estimations based on pollen and spores ............................................ 21 1.8 Comparison with organic proxies ........................................................................... 23 1.9 Framework of this thesis ......................................................................................... 24 Chapter 2. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch ............................................................................................................ 27 Abstract ............................................................................................................................ 27 2.1 Introduction ............................................................................................................. 28 2.2 Results and Discussion ............................................................................................ 29 2.3 Methods summary ................................................................................................... 34 2.4 Supplementary Information for Chapter 2 .............................................................. 35 Chapter 3. Early to Middle Eocene vegetation dynamics at the Wilkes Land Margin (Antarctica) ....................................................................................................... 61 Abstract ............................................................................................................................ 61 3.1 Introduction ............................................................................................................. 62 3.2 Study site ................................................................................................................. 63 3.3 Methods ................................................................................................................... 65 3.4 Results ..................................................................................................................... 69 3.5 Discussion ............................................................................................................... 74 3.6 Conclusions ............................................................................................................. 80 Chapter 4. Terrestrial climate dynamics in the Tasmanian sector of the Southwest Pacific Ocean during the Paleocene-Eocene deduced from a marine pollen record (ODP Site 1172, East Tasman Plateau) ............................................................................ 81 Abstract ............................................................................................................................ 81 4.1 Introduction ............................................................................................................. 82 4.2 Material and methods .............................................................................................. 85 3 Table of contents 4.3 Results ..................................................................................................................... 92 4.4 Interpretation ........................................................................................................... 96 4.5 Conclusions ........................................................................................................... 107 4.6 Supplementary Information for Chapter 4 ............................................................ 108 Chapter 5. Conclusions and Outlook ......................................................................... 117 6.1 Conclusions ........................................................................................................... 117 6.2 Outlook .................................................................................................................. 119 Acknowledgements ........................................................................................................... 121 References ......................................................................................................................... 123 Zusammenfassung ............................................................................................................ 148 Appendices ........................................................................................................................ 153 Appendix 1 Taxonomy Site U1356 ................................................................................ 153 Appendix 2 Taxonomy Site 1172 ................................................................................... 170 Declaration of contribution ............................................................................................. 186 Curriculum Vitae ............................................................................................................. 189 4 List of figures List of figures Figure 1.1 Cenozoic atmospheric CO2 and deep-sea temperatures ..................................... 10 Figure 1.2 Modelled and estimated SSTs of the early Eocene ............................................ 12 Figure 1.3 Modern and Eocene extent of vegetation types ................................................ 13 Figure 1.4 Middle Paleocene to middle Eocene vegetation - Southern high latitudes ........ 15 Figure 1.5 Australo-Antarctic region during the early Paleocene and middle Eocene ....... 17 Figure 1.6 Steps of the palynological laboratory processing .............................................. 19 Figure 1.7 Temperature profiles of informative taxa. ......................................................... 22 Figure 2.1 Location of Site U1356 and Antarctica at early Eocene times. ......................... 29 Figure 2.2 Sporomorphs record of Site U1356 (selected taxa) .......................................... 30 Figure 2.3 Paleoclimatic reconstructions of Site U1356. .................................................... 32 Supplementary Figure S2.1 Age model of Site U1356 ..................................................... 37 Supplementary Figure S2.2 NMDS results of Site U1356 ................................................ 40 Supplementary Figure S2.3 Rarefaction results of Site U1356 ........................................ 41 Supplementary Figure S2.4 Temperature reconstructions of Site U1356 ......................... 45 Supplementary Figure S2.5 Precipitation reconstructions of Site U1356. ........................ 46 Supplementary Figure S2.6 Neodymium isotopic compositions ...................................... 52 Supplementary Figure S2.7 Photomicrographs of key taxa of Site U1356 ....................... 60 Figure 3.1 Present-day and Eocene configuration of Oceania and Antarctica .................... 68 Figure 3.2 Range chart of sporomorphs of Site U1356 ....................................................... 70 Figure 3.3 Diversity and DCA results of Site U1356. ......................................................... 73 Figure 3.4 Species accumulation curves of Site U1356 and Holocene records .................. 78 Figure 4.1 Location of Site 1172 and SW Pacific Ocean at early Eocene times ................. 84 Figure 4.2 Sporomorphs record of Site 1172 (selected taxa). ............................................
Recommended publications
  • The Potential Use of Annona (Annonaceae) by Products As a Source of Botanical Insecticides
    The potential use of Annona (Annonaceae) by products as a source of botanical insecticides Leandro do Prado Ribeiroa*, Camila Moreira de Souzab, Keylla Utherdyany Bicalhoc, Edson Luiz Lopes Baldinb, Moacir Rossi Forimc, João Batista Fernandesc, José Djair Vendramimd a Research Center for Family Agriculture, Agricultural Research and Rural Extension Company of Santa Catarina (CEPAF/EPAGRI), Chapecó, Santa Catarina, Brazil. *E-mail: [email protected]; bDepartment of Crop Protection, College of Agricultural Sciences, São Paulo State University (FCA/UNESP) Botucatu, São Paulo, Brazil; d Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil; c Department of Entomology and Acarology, “Luiz de Queiroz” College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil. INTRODUCTION In addition, some species of Annona genera (e.g.: Annona muricata, Annona squamosa, Annona cherimolia, and Annona The structural and functional diversity of secondary metabolites cherimolia x Annona squamosa) have great economic (allelochemicals) is a key factor for the survival and evolutionary importance due to their edible fruits of ample commercial success of plant species inhabiting an environment with an interest. Consequently, a considerably cultivated area (~ 14,000 abundance of natural enemies. Therefore, the tropical flora, hectares) with these species is observed in Brazil. However, most with its unique biodiversity, is a promising natural reservoir of of Annona fruits production are destined for fruit-processing bioactive substances. In this context, Brazil has the highest plant industries and commercialized as frozen pulps for juice genetic diversity in the world offering enormous potential for preparations due to its small shelf life.
    [Show full text]
  • Annona Glabra Global Invasive Species Database (GISD)
    FULL ACCOUNT FOR: Annona glabra Annona glabra System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Magnoliales Annonaceae Common name kaitambu (English, Fiji), kaitambo (English, Fiji), uto ni bulumakau (English, Fiji), uto ni mbulumakau (English, Fiji), corossolier des marais (English, French), annone des marais (English, French), bullock's heart (English), alligator apple (English), pond apple (English), cherimoyer (English) Synonym Similar species Summary Annona glabra is a highly invasive woody weed that threatens wetland and riparian ecosystems of wet tropics, world heritage areas and beyond. It can establish as a dense understorey that suppresses other growth leading to monocultures. view this species on IUCN Red List Species Description “Tree (2-) 3-8 (-12)m high, the trunk narrowly buttressed at the base; leaves oblong-elliptical, acute or shortly acuminate, 7-15cm long, up to 6cm broad; pedicel curved, expanded distally; sepals 4.5mm long, 9mm broad, apiculate; outer petals valvate, ovate-cordate, cream-coloured with a crimson spot at base within, 2.5-3cm long, 2-2.5cm broad; inner petals subimbricate, shortly clawed, 2-2.5cm long, 1.5-1.7cm broad, whitish outside, dark crimson within; stigmas sticky, deciduous; fruit up to 12cm long, 8cm broad, yellow outside when ripe, pulp pinkish- orange, rather dry, pungent-aromatic; seeds light brown, 1.5cm long, 1cm broad.” (Adams, 1972. In PIER, 2003) Notes Naturalised and sometimes exhibiting invasive behaviour in French Polynesia, (PIER, 2003). In Australia excessive drainage of surrounding areas for land reclamation raises the saline water table level sufficient to kill melaleuca trees thus allowing invasion by the salt tolerant pond apple, (Land Protection, 2001).
    [Show full text]
  • Dynamics of Even-Aged Nothofagus Truncata and N. Fusca Stands in North Westland, New Zealand
    12 DYNAMICS OF EVEN-AGED NOTHOFAGUS TRUNCATA AND N. FUSCA STANDS IN NORTH WESTLAND, NEW ZEALAND M. C SMALE Forest Research Institute, Private Bag, Rotorua, New Zealand H. VAN OEVEREN Agricultural University, Salverdaplein 11, P.O. Box 9101, 6700 HB, Wageningen, The Netherlands C D. GLEASON* New Zealand Forest Service, P.O. Box 138, Hokitika, New Zealand and M. O. KIMBERLEY Forest Research Institute, Private Bag, Rotorua, New Zealand (Received for publication 30 August, 1985; revision 12 January 1987) ABSTRACT Untended, fully stocked, even-aged stands of Nothofagus truncata (Col.) Ckn. (hard beech) or N. fusca (Hook, f.) Oerst. (red beech) of natural and cultural origin and ranging in age from 20 to 100 years, were sampled using temporary and permanent plots on a range of sites in North Westland, South Island, New Zealand. Changes in stand parameters with age were quantified in order to assess growth of these stands, and thus gain some insight into their silvicultural potential. Stands of each species followed a similar pattern of growth, with rapid early height and basal area increment. Mean top height reached a maximum of c. 27 m by age 100 years. Basal area reached an equilibrium of c. 41 m2/ha in N. truncata and 46 m2/ha in N. fusca as early as age 30 years. Nothofagus truncata stands had, on average, a somewhat lower mean diameter at any given age than N. fusca stands, and maintained higher stockings. Both species attained similar maximum volume of c. 460 m3/ha at age 100 years. Keywords: even-aged stands; stand dynamics; growth; Nothofagus truncata; Nothofagus fusca.
    [Show full text]
  • The Earliest Known Animals
    JOURNAL OF THE TRANSACTIONS OF ~be Victoria 3Jnstitutc OR i,Bbtlosopbical ~ocittp of · ereat J!lritain VOL. LXXX 1948 LONDON: PUBLISHED BY THE INSTITUTE, 12, QUEEN ANNE'S GATE, WESTMINSTER, S.W.1 Al L RIGHTS RESERVE'D (This paper was not read before the Institute, but was circulated in proof form). THE EARLIEST KNOWN ANIMALS. BY DOUGLAS DEWAR, B.A., F.Z.S. HE most striking feature of the geological record is the T abundance of fossils in the rocks laid down during the Cambrian and all later periods and the complete lack of indubitable fossils in all the earlier rocks-all those laid down in the pre-Cambrian period. Yet in many places these pre­ Cambrian rocks seem to be well-fitted to hold and preserve fossils. Examples of such are the Torridon Sandstones of Scotland, 8,000 feet thick, the Green Shales of Brittany, 17,000 feet thick, the Huronian Series of Canada, 18,000 feet thick, the Tindir Group in Alaska, 20,000 feet thick, the Belt Series of North America, 40,000 feet thick, and the Cuddapah Series of India, 20,000 feet thick. This sudden appearance of fossils in great variety and of high specialisation presented no difficulties to the older geologists, who regarded this as proof of a great creation at the beginning of the Cambrian period. But to the geologists who were induced by Darwin to accept the evolution theory this sudden advent in the rocks of a vast array of fossils presented a most formidable difficulty, because, in the words of Darwin (Origin of Species, 6th edn.
    [Show full text]
  • Flora of China 12: 300–301. 2007. 2. BOMBAX Linnaeus, Sp. Pl. 1
    Flora of China 12: 300–301. 2007. 2. BOMBAX Linnaeus, Sp. Pl. 1: 511. 1753, nom. cons. 木棉属 mu mian shu Deciduous big trees; young trunk usually spiny. Leaf blade palmately compound; leaflets 5–9, sometimes petiolulate, with basal joint, margin entire. Flowers bisexual, solitary or fascicled, axillary or terminal. Flowers large, produced before leaf flush. Pedicel shorter than 10 cm. Bracteoles absent. Calyx tubular, campanulate, or cup-shaped, apex truncate to deeply lobed, sometimes with abaxial glands, leathery, falling with petals and stamens. Petals 5, usually red, sometimes yellow, orange, or white, obovate or obovate-lanceolate, asymmetrical, sometimes reflexed. Stamens 70–900, bases connate into short tube; filaments connate into 5–10 distinct phalanges, alternating with petals; anthers reniform. Ovary syncarpous, 5-locular; ovules many per locule; style filiform, longer than stamens; stigma stellately lobed. Capsule loculicidally dehiscent into 5 valves, valves woody or leathery, with silky wool inside. Seeds small, black, enclosed by wool. About 50 species: mostly in tropical America, also in tropical Africa, Asia, and Australasia; three species in China. 1a. Leaflets abaxially densely tomentose; petals white, ca. 4 cm ................................................................................ 3. B. cambodiense 1b. Leaflets abaxially glabrous or hairy only on veins; petals red or orange-red, 10–15 cm. 2a. Calyx 3.8–5 cm; petals adaxially glabrous; filaments linear; capsule 25–30 cm ..................................................... 1. B. insigne 2b. Calyx 2–3(–4.5) cm; petals adaxially stellate pilose; filaments thicker at base than apex; capsule 10–15 cm .......... 2. B. ceiba 1. Bombax insigne Wallich var. tenebrosum (Dunn) A. lobes 3–5, semi-orbicular, ca.
    [Show full text]
  • Proterozoic East Gondwana: Supercontinent Assembly and Breakup Geological Society Special Publications Society Book Editors R
    Proterozoic East Gondwana: Supercontinent Assembly and Breakup Geological Society Special Publications Society Book Editors R. J. PANKHURST (CHIEF EDITOR) P. DOYLE E J. GREGORY J. S. GRIFFITHS A. J. HARTLEY R. E. HOLDSWORTH A. C. MORTON N. S. ROBINS M. S. STOKER J. P. TURNER Special Publication reviewing procedures The Society makes every effort to ensure that the scientific and production quality of its books matches that of its journals. Since 1997, all book proposals have been refereed by specialist reviewers as well as by the Society's Books Editorial Committee. If the referees identify weaknesses in the proposal, these must be addressed before the proposal is accepted. Once the book is accepted, the Society has a team of Book Editors (listed above) who ensure that the volume editors follow strict guidelines on refereeing and quality control. We insist that individual papers can only be accepted after satis- factory review by two independent referees. The questions on the review forms are similar to those for Journal of the Geological Society. The referees' forms and comments must be available to the Society's Book Editors on request. Although many of the books result from meetings, the editors are expected to commission papers that were not pre- sented at the meeting to ensure that the book provides a balanced coverage of the subject. Being accepted for presentation at the meeting does not guarantee inclusion in the book. Geological Society Special Publications are included in the ISI Science Citation Index, but they do not have an impact factor, the latter being applicable only to journals.
    [Show full text]
  • Fossil History of Curculionoidea (Coleoptera) from the Paleogene
    geosciences Review Fossil History of Curculionoidea (Coleoptera) from the Paleogene Andrei A. Legalov 1,2 1 Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Ulitsa Frunze, 11, 630091 Novosibirsk, Novosibirsk Oblast, Russia; [email protected]; Tel.: +7-9139471413 2 Biological Institute, Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Tomsk Oblast, Russia Received: 23 June 2020; Accepted: 4 September 2020; Published: 6 September 2020 Abstract: Currently, some 564 species of Curculionoidea from nine families (Nemonychidae—4, Anthribidae—33, Ithyceridae—3, Belidae—9, Rhynchitidae—41, Attelabidae—3, Brentidae—47, Curculionidae—384, Platypodidae—2, Scolytidae—37) are known from the Paleogene. Twenty-seven species are found in the Paleocene, 442 in the Eocene and 94 in the Oligocene. The greatest diversity of Curculionoidea is described from the Eocene of Europe and North America. The richest faunas are known from Eocene localities, Florissant (177 species), Baltic amber (124 species) and Green River formation (75 species). The family Curculionidae dominates in all Paleogene localities. Weevil species associated with herbaceous vegetation are present in most localities since the middle Paleocene. A list of Curculionoidea species and their distribution by location is presented. Keywords: Coleoptera; Curculionoidea; fossil weevil; faunal structure; Paleocene; Eocene; Oligocene 1. Introduction Research into the biodiversity of the past is very important for understanding the development of life on our planet. Insects are one of the Main components of both extinct and recent ecosystems. Coleoptera occupied a special place in the terrestrial animal biotas of the Mesozoic and Cenozoics, as they are characterized by not only great diversity but also by their ecological specialization.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italic refer to tables, and those in bold to figures. accretionary orogens, defined 23 Namaqua-Natal Orogen 435-8 Africa, East SW Angola and NW Botswana 442 Congo-Sat Francisco Craton 4, 5, 35, 45-6, 49, 64 Umkondo Igneous Province 438-9 palaeomagnetic poles at 1100-700 Ma 37 Pan-African orogenic belts (650-450 Ma) 442-50 East African(-Antarctic) Orogen Damara-Lufilian Arc-Zambezi Belt 3, 435, accretion and deformation, Arabian-Nubian Shield 442-50 (ANS) 327-61 Katangan basaltic rocks 443,446 continuation of East Antarctic Orogen 263 Mwembeshi Shear Zone 442 E/W Gondwana suture 263-5 Neoproterozoic basin evolution and seafloor evolution 357-8 spreading 445-6 extensional collapse in DML 271-87 orogenesis 446-51 deformations 283-5 Ubendian and Kibaran Belts 445 Heimefront Shear Zone, DML 208,251, 252-3, within-plate magmatism and basin initiation 443-5 284, 415,417 Zambezi Belt 27,415 structural section, Neoproterozoic deformation, Zambezi Orogen 3, 5 Madagascar 365-72 Zambezi-Damara Belt 65, 67, 442-50 see also Arabian-Nubian Shield (ANS); Zimbabwe Belt, ophiolites 27 Mozambique Belt Zimbabwe Craton 427,433 Mozambique Belt evolution 60-1,291, 401-25 Zimbabwe-Kapvaal-Grunehogna Craton 42, 208, 250, carbonates 405.6 272-3 Dronning Mand Land 62-3 see also Pan-African eclogites and ophiolites 406-7 Africa, West 40-1 isotopic data Amazonia-Rio de la Plata megacraton 2-3, 40-1 crystallization and metamorphic ages 407-11 Birimian Orogen 24 Sm-Nd (T DM) 411-14 A1-Jifn Basin see Najd Fault System lithologies 402-7 Albany-Fraser-Wilkes
    [Show full text]
  • Pachira Aquatica, (Zapotón, Pumpo)
    How to Grow a Sacred Maya Flower Pachira aquatica, (Zapotón, Pumpo) Nicholas Hellmuth 1 Introduction: There are several thousand species of flowering plants in Guatemala. Actually there are several thousand flowering TREES in Guatemala. If you count all the bushes, shrubs, and vines, you add thousands more. Then count the grasses, water plants; that’s a lot of flowers to look at. Actually, if you count the orchids in Guatemala you would run out of numbers! Yet out of these “zillions” of beautiful tropical flowers, the Classic Maya, for thousands of years, picture less than 30 different species. It would be a challenge to find representations of a significant number of orchids in Maya art: strange, since they are beautiful, and there are orchids throughout the Maya homeland as well as in the Olmec homeland, plus orchids are common in the Izapa area of proto_Maya habitation in Chiapas. Yet other flowers are pictured in Maya yart, yet in the first 150 years of Maya studies, only one single solitary flower species was focused on: the sacred water lily flower! (I know this focus well, I wrote my PhD dissertation featuring this water lily). But already already 47 years ago, I had noticed flowers on Maya vases: there were several vases that I discovered myself in a royal burial at Tikal that pictured stylized 4-petaled flowers (Burial 196, the Tomb of the Jade Jaguar). Still, if you have XY-thousand flowers blooming around you, why did the Maya picture less than 30? In other words, why did the Maya select the water lily as their #1 flower? I know most of the reasons, but the point is, the Maya had XY-thousand.
    [Show full text]
  • Baez NHM 1997.Pdf (3.622Mb)
    HERP QL 668 B33 l':iif;,O0i.U'.Z06l("'^ ocxentxpc Papers Natural History Museum The University of Kansas 29 October 1997 Number 4:1^1 Redescription of the Paleogene Shelania pascuali from Patagonia and Its Bearing on the Relationships of Fossil and Recent Pipoid Frogs >. By o O Ana Maria BAez^ and Linda Trueb- o ^Departamento de Geologia, FacuUad de Ciencias Exactas, Universidad de 0) w >. > t- Buenos Aires, Pabellon II, Ciudad Universitaria, 1428 Buenos Aires, Argentina CO !-> >^ ^ £ -^ '^Division of Herpetology, Natural Histoiy Museum, and Department of P Kansas 66045-2454, J3 o, Systematics and Ecology, The University of Kansas, Lawrence, USA a o t3 o CO ^ t. CONTENTS ° CO I ABSTRACT 2 « RESUMEN 2 5S INTRODUCTION 2 Previous Paleontological Work 4 Acknowledgments 4 MATERIALS AND METHODS 5 General Methodology 5 Cladistic Methodology 5 Specimens Examined 6 STRATIGRAPHIC PROVENANCE AND AGE OF MATERIAL 6 REDESCRIPTION OF SHELANIA 8 ANALYSIS OF CHARACTERS 16 RESULTS 31 DISCUSSION 35 Taxonomic Considerations 35 Characters 36 LITERATURE CITED 37 APPENDIX 40 © Natural History Museum, The University of Kansas ISSN No. 1094-0782 — 2 Scientific Papers, Natural History Museum, The University of Kansas 1960, is redescribed on the basis of a series of 30 recently I ABSTIMCT Shdania pascuali Casamiquela, .'-\ ' . discovered specimens, which range in estimated snout-vent length from 30-100 mm, from the Paleo- y ' gene of Patagonia. This large pipoid anuran is distinguished by possessing a long, narrow braincase; an hourglass-shaped frontoparietal; a robust antorbital process on the edentate maxilla; long, straight {/) '/^ I ilia that describe a V-shape in dorsal profile; and a trunk that is long relative to the lengths of the head and limbs.
    [Show full text]
  • Approved NSW & National Recovery Plan Eidothea Hardeniana
    Approved NSW & National Recovery Plan Eidothea hardeniana September 2004 © Department of Environment and Conservation (NSW), July 2004. This work is copyright. However, material presented in this plan may be copied for personal use or published for educational purposes, providing that any extracts are fully acknowledged. Apart from this and any other use as permitted under the Copyright Act 1968, no part may be reproduced without prior written permission from NSW Department of Environment and Conservation. NSW Department of Environment and Conservation 43 Bridge Street (PO Box 1967) Hurstville NSW 2220 Tel: 02 9585 6444 www.nationalparks.nsw.gov.au Requests for information or comments regarding the recovery program for the Nightcap Oak are best directed to: The Nightcap Oak Recovery Co-ordinator Threatened Species Unit, North East Branch NSW Department of Environment and Conservation Locked Bag 914 Coffs Harbour NSW 2450 Tel: 02 6651 5946 Cover illustrator: Lesley Elkan © Botanic Gardens Trust, Sydney Cover illustration: Adult and juvenile leaves and fruit of Eidothea hardeniana This plan should be cited as follows: NSW Department of Environment and Conservation 2004, Recovery Plan for the Nightcap Oak (Eidothea hardeniana), Department of Environment and Conservation (NSW), Hurstville. ISBN 0 7313 6781 2 Recovery Plan The Nightcap Oak Recovery Plan for the Nightcap Oak (Eidothea hardeniana) Foreword The New South Wales Government established a new environment agency on 24 September 2003, the Department of Environment and Conservation (NSW), which incorporates the New South Wales National Parks and Wildlife Service. Responsibility for the preparation of Recovery Plans now rests with this new department. This document constitutes the New South Wales State and National Recovery Plan for Eidothea hardeniana Weston & Kooyman (Nightcap Oak), and as such considers the conservation requirements of the species across its range.
    [Show full text]
  • Plant Life of Western Australia
    INTRODUCTION The characteristic features of the vegetation of Australia I. General Physiography At present the animals and plants of Australia are isolated from the rest of the world, except by way of the Torres Straits to New Guinea and southeast Asia. Even here adverse climatic conditions restrict or make it impossible for migration. Over a long period this isolation has meant that even what was common to the floras of the southern Asiatic Archipelago and Australia has become restricted to small areas. This resulted in an ever increasing divergence. As a consequence, Australia is a true island continent, with its own peculiar flora and fauna. As in southern Africa, Australia is largely an extensive plateau, although at a lower elevation. As in Africa too, the plateau increases gradually in height towards the east, culminating in a high ridge from which the land then drops steeply to a narrow coastal plain crossed by short rivers. On the west coast the plateau is only 00-00 m in height but there is usually an abrupt descent to the narrow coastal region. The plateau drops towards the center, and the major rivers flow into this depression. Fed from the high eastern margin of the plateau, these rivers run through low rainfall areas to the sea. While the tropical northern region is characterized by a wet summer and dry win- ter, the actual amount of rain is determined by additional factors. On the mountainous east coast the rainfall is high, while it diminishes with surprising rapidity towards the interior. Thus in New South Wales, the yearly rainfall at the edge of the plateau and the adjacent coast often reaches over 100 cm.
    [Show full text]