Tracing Scientific Influence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Concepts and the Social Order Robert K
CYAN MAGENTA YELLOW BLACK Concepts and the Social Order Robert K. Merton and the Future of Sociology Table of Contents The volume offers a comprehensive perspective on knowledge production in the field of sociology. About the Editors Moreover, it is a tribute to the scope of Merton’s work and the influence Merton has had on the work List of Illustrations and Tables and life of sociologists around the world.This is reflected in each of the 12 chapters by internationally Yehuda Elkana Institute of Advanced Study, Berlin Book Concept and Preface Yehuda Elkana acclaimed scholars witnessing the range of fields Merton has contributed to as well as the personal Note to Sound and SculptureAmos Elkana and Alexander Polzin András Szigeti Central European University impacthehashadonsociologists. Introduction György Lissauer Freelance researcher 1. The Paradoxes of Robert K. Merton: Fragmentary Among others, the chapters deal with history and social context, an exploration of sociology in three Reflections Arnold Thackray very different countries; the relationship between science and society; the role of experience and the 2. Looking for Shoulders to Stand on, or for a Paradigm for the Sociology of Science Anna Wessely conceptual word; the “Matthew effect” and “repetition with variation.”The contributors consider a 3. R. K. Merton in France: Foucault, Bourdieu, Latour and number of Mertonian themes and concepts, re-evaluating them, adapting them, highlighting their Edited by Yehuda Elkana, and the Invention of Mainstream Sociology in Paris Jean-Louis continuedrelevanceandthusopeningawellofpossibilitiesfornewresearch. Fabiani 4. Merton in South Asia: The Question of Religion and the Modernity of Science Dhruv Raina 5. The Contribution of Robert K. -
The Science of Science
UvA-DARE (Digital Academic Repository) The citation culture Wouters, P.F. Publication date 1999 Link to publication Citation for published version (APA): Wouters, P. F. (1999). The citation culture. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 Chapter 4 The science of science The science of science, or the self-consciousness of science, as I have put it elsewhere, is the real drastic advance of the second part of the twentieth cen- tury. (Bernal 1964) 4.1 Welcoming the SCI At first, the SCI did not seem to have much impact on science. Its existence did not change scientists’ information seeking behaviour. As has already been said in chapter 2, most of them seemed indifferent and the SCI failed to transform the system of scientific publication (chapter 3). -
Science and Its Significant Other: Representing the Humanities in Bibliometric Scholarship
Science and its significant other: Representing the humanities in bibliometric scholarship Thomas Franssen & Paul Wouters (CWTS, Leiden University, The Netherlands) 1. introduction Bibliometrics offers a particular representation of science (Wouters, 1999; Nicolaisen 2007). Through bibliometric methods a bibliometrician will always highlight particular elements of publications, and through these elements operationalize particular representations of science, while obscuring other possible representations from view. Understanding bibliometrics as representation implies that a bibliometric analysis is always performative; a bibliometric analysis brings a particular representation of science into being that potentially influences the science system itself (e.g. Wyatt et al., 2017). The performative effects of bibliometrics have been studied primarily in relation to individual researchers' behavior and how pervasive representations (and particular indicators) might influence this (De Rijcke et al., 2016). How bibliometrics influence the ways we think about, compare and contrast different scientific domains in general has however not been systematically analyzed. The pervasiveness of bibliometric representations of science in the contemporary science system warrants such a study. Moreover, a systematic, historical view of the development of bibliometrics might also offer this scientific community a better understanding of itself as well as the future of the discipline. We are in particular interested in the ways the humanities have been represented throughout the history of bibliometrics, often in comparison to other scientific domains or to a general notion of ‘the sciences’. Earlier reviews of bibliometric literature pertaining to the humanities exist (Nederhof, 2006; also part 2.3 in Moed, 2006; Huang & Chang, 2008; Ardanuy, 2013) but have been predominantly methodological in nature. They ask what bibliometric methods are suitable to use for research evaluation in the humanities (and social sciences) but do not engage with the question of representation. -
The Matthew Effect in Empirical Data
The Matthew effect in empirical data Matjazˇ Perc∗ Faculty of Natural Sciences and Mathematics, University of Maribor, Koroskaˇ cesta 160, SI-2000 Maribor, Slovenia The Matthew effect describes the phenomenon that in societies the rich tend to get richer and the potent even more powerful. It is closely related to the concept of preferential attachment in network science, where the more connected nodes are destined to acquire many more links in the future than the auxiliary nodes. Cumulative ad- vantage and success-breads-success also both describe the fact that advantage tends to beget further advantage. The concept is behind the many power laws and scaling behaviour in empirical data, and it is at the heart of self-organization across social and natural sciences. Here we review the methodology for measuring preferential attachment in empirical data, as well as the observations of the Matthew effect in patterns of scientific collabora- tion, socio-technical and biological networks, the propagation of citations, the emergence of scientific progress and impact, career longevity, the evolution of common English words and phrases, as well as in education and brain development. We also discuss whether the Matthew effect is due to chance or optimisation, for example related to homophily in social systems or efficacy in technological systems, and we outline possible directions for future research. Keywords: Matthew effect, preferential attachment, cumulative advantage, self-organization, power law, empirical data I. INTRODUCTION tally on the assumption that an initially small advantage in numbers may snowball over time [29]. The Gibrat law of pro- portional growth [30], inspired by the assumption that the size The Gospel of St. -
Katy Börner, Andrea Scharnhorst
This is a pre-print of the Guest Editor‘s Introduction to the 2009 Journal of Informetrics Special Issue on the Science of Science Börner, Katy, Andrea Scharnhorst. 2009. Visual Conceptualizations and Models of Science. Journal of Informetrics, 3(3). Visual Conceptualizations and Models of Science Katy Börner, Cyberinfrastructure for Network Science Center, School of Library and Information Science, Indiana University, 10th Street & Jordan Avenue, Wells Library 021, Bloomington, IN 47405, USA [email protected] Andrea Scharnhorst, The Virtual Knowledge Studio for the Humanities and Social Sciences - VKS Royal Netherlands Academy of Arts and Sciences, Cruquiusweg 31, 1019 AT Amsterdam, The Netherlands [email protected] This Journal of Informetrics special issue aims to improve our understanding of the structure and dynamics of science by reviewing and advancing existing conceptualizations and models of scholarly activity. Several of these conceptualizations and models have visual manifestations supporting the combination and comparison of theories and approaches developed in different disciplines of science. The term ―model‖ and ―conceptualization‖ has diverse definitions in different disciplines and use contexts. In this issue, ‗conceptualization‘ refers to an unifying mental framework that identifies the boundaries of the system or object under study, its basic building blocks, interactions among building blocks, basic mechanisms of growth and change, and existing laws (static and dynamic). The term ‗model‘ refers to a precise description of a system or object under study in a formal language, e.g., using mathematical equations or computational algorithms. An older more comprehensive definition of ‗science‘ using a description by Cohen ―… in its oldest and widest sense the term science (like the German word Wissenschaft) denotes all ordered and reliable knowledge—so that a philologist or a critical historian can truly be called scientific …‖ (Cohen, 1933). -
CHALLENGING the MATTHEW EFFECT International Exchange of Publications in Four Finnish Learned Societies Until the Second World War
COMMENTATIONES SCIENTIARUM SOCIALIUM 76 Johanna Lilja CHALLENGING THE MATTHEW EFFECT International Exchange of Publications in Four Finnish Learned Societies until the Second World War THE FINNISH SOCIETY OF SCIENCE AND LETTERS HELSINKI 2012 COMMENTATIONES SCIENTIARUM SOCIALIUM Editor: Leif Nordberg Copyright © 2012 by Johanna Lilja and The Finnish Society of Science and Letters Cover design: Maarit Inbar Front cover: Based on illustration from the Gospel of St. Matthew, woodcut on the New Testament (Se wsi Testamenti) 1548. Back cover: The postcard sent on February 12th 1913 by Zeitschrift für wissenschaftliche Insektenbiologie to the Societas pro Fauna et Flora Fennica (National Library of Finland, the Archive of the Societas pro Fauna et Flora Fennica). The series Commentationes Scientiarum Socialium is part of the publishing cooperation between the Finnish Society of Science and Letters and the Finnish Academy of Science and Letters, established in 1996. Distributor: Bookstore Tiedekirja Kirkkokatu 14, FIN-00170 HELSINKI, Finland Tel +358-9-635 177 [email protected] www.tiedekirja.fi ISSN 0355-256X ISBN 978-951-653-391-2 Vammalan Kirjapaino Oy Sastamala 2012 ABSTR ACT Lilja, Johanna (2012). Challenging the Matthew Effect. International Exchange of Publications in Four Finnish Learned Societies until the Second World War. Com- mentationes Scientiarum Socialium 76. 352 p. ISBN 978-951-653-391-2, ISSN 0355- 256X. The Finnish Society of Science and Letters. Helsinki. The thesis addresses the international exchange of publications of Finnish learned so- cieties from the early nineteenth century until the Second World War. Exchange of publications refers to the regular and mutual delivery of books and journals between institutions. -
Robert C. Merton and the Science of Finance- a Collection
BRIEF / ROBERT C. MERTON AND THE SCIENCE OF FINANCE CFA INSTITUTE RESEARCH FOUNDATION / BRIEF ROBERT C. MERTON AND THE SCIENCE OF FINANCE A COLLECTION LUIS GARCIA-FEIJÓO, CFA, CIPM, LAURENCE B. SIEGEL, AND TIMOTHY R. KOHN, EDITORS GARCIA-FEIJÓO, SIEGEL, AND KOHN ROBERT C. MERTON AND THE SCIENCE OF FINANCE A Collection Luis Garcia-Feijóo, CFA, CIPM, Laurence B. Siegel, and Timothy R. Kohn, Editors Statement of Purpose CFA Institute Research Foundation is a not-for- profit organization established to promote the development and dissemination of relevant research for investment practitioners worldwide. Neither CFA Institute Research Foundation, CFA Institute, nor the publication’s edi- torial staff is responsible for facts and opinions presented in this publication. This publication reflects the views of the author(s) and does not represent the official views of CFA Institute Research Foundation. CFA®, Chartered Financial Analyst®, and GIPS® are just a few of the trademarks owned by CFA Institute. To view a list of CFA Institute trademarks and the Guide for the Use of CFA Institute Marks, please visit our website at www.cfainstitute.org. © 2020 CFA Institute Research Foundation. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright holder. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional service. -
The Role of the Matthew Effect in Science
The Role of the Matthew Effect in Science Michael Strevens To appear in Studies in History and Philosophy of Science Abstract Robert Merton observed that better-known scientists tend to get more credit than less well-known scientists for the same achievements; he called this the Matthew effect. Scientists themselves, even those eminent re- searchers who enjoy its benefits, regard the effect as a pathology: it results, they believe, in a misallocation of credit. If so, why do scientists continue to bestow credit in the manner described by the effect? This paper advocates an explanation of the effect on which it turns out to allocate credit fairly after all, while at the same time making sense of scientists’ opinions to the contrary. 1 For unto every one that hath shall be given, and he shall have abundance: but from him that hath not shall be taken away even that which he hath (Matthew 25:29). 1. Introduction Can the true significance of a scientific practice be found hidden in a biblical interstice? Thirty-five years ago Robert Merton observed that, for equally good sci- entific work, renowned scientists tend to get more credit than unknown sci- entists. He called this phenomenon the Matthew effect (Merton 1968, 1988), after the Gospel of Matthew 25:29, my compulsory epigraph.1 The workings of the Matthew effect are especially obvious when a more and a less well-known scientist independently and simultaneously make the same discovery, or when a more and a less well-known scientist together make a discovery while collaborating as equals. -
The Matthew and Matilda Effects: the Phenomenon of Under-Recognition in Science
The Matthew and Matilda effects: the phenomenon of under-recognition in science. Assignment written by Diana Grajales Abellán. October 2016. Lund University. Modern science is built based on cooperation, trust, competence and fairness between collaborative projects that involve a group of researchers (graduate students, PhDs, post-docs, senior researchers…). Furthermore, it is often seen that the research group extends the network to different collaborations and relationships with other colleagues. This cooperative way of building knowledge facilitates the trustworthiness of society in research (1). However, science is not completely objective, and it can be affected by psychological and social factors that determine the scientific paradigm of the moment, as Thomas Kuhn proposed in 1962 (2). Two good examples of these social factors that compromise scientific objectivity are the Matthew and Matilda effects. In short, the Matthew effect describes that contributions made by “high standing” scientists are the most visible ones, while contributions from less-known scientists are unnoticed. On the other hand, the Matilda effect explains that the work made by women scientists is sometimes seen as work of lower-quality compared to similar work made by their male peers. In this assignment, I will try to review both effects and explain some characteristics examples of both phenomenon. The Matthew effect was first described by the sociologist Robert K. Merton in 1968. The idea refers to the possibility that research done by well-known and renowned scientists receives greater attention than scientific work performed by emerging scientists. This phenomenon would comprise factors such as number of publications, number of citations, publication in high-impact journals, relevant work at universities, founding, etc. -
The Three Merton Theses
221-238 JCS-078040.qxd 26/5/07 10:12 AM Page 221 Journal of Classical Sociology Copyright © 2007 SAGE Publications Los Angeles, London, New Delhi and Singapore Vol 7(2): 221–238 DOI: 10.1177/1468795X07078040 www.sagepublications.com The Three Merton Theses VIDAR ENEBAKK University of Oslo, Norway ABSTRACT In this article I examine the historical background to Merton’s for- mulation of the scientific ethos, especially in relation to his dissertation, published in 1938 as Science, Technology and Society in Seventeenth-Century England. Here Merton outlined the so-called ‘Merton thesis’, and I emphasize how both the con- tent and the context of the monograph is related to his formulation of an ‘ethos of science’ – introduced for the first time in 1938 in ‘Science and the Social Order’. Three different readings can, however, highlight different aspects of Merton’s monograph, thus the article attempts to enrich the understanding both of the ethos of science and of Merton as a politically engaged social scientist by discussing ‘The Three Merton Theses’. KEYWORDS Hessen, history of science, Merton, science, social responsibility of science, technology and society, visible college, Werskey The Merton Thesis The main topic of Science, Technology and Society in Seventeenth-Century England (Merton, 1938a) was the emergence of the Royal Society in London, while the so- called ‘Merton thesis’ concerns the relationship between science and religion. Contrary to the assumed opposition, Merton argued for an intrinsic compatibility between the ethos of science and the ethos of Puritanism. According to Merton, the spread of Puritan values encouraged the growth of modern science in 17th- century England – a thesis similar to Weber’s in The Protestant Ethic and the Spirit of Capitalism (1958 [1904–5]) regarding the religious context of the rise of mod- ern capitalism. -
The Matthew Effect in Science, II : Cumulative Advantage and The
The Matthew Effect in Science, II Cumulative Advantage and the Symbolism of Intellectual Property By Robert K. Merton* HE SUBJECT OF THIS ESSAY is a problem in the sociology of science T that has long been of interest to me. That problem, a candid friend tells me, is somewhat obscured by the formidable title assigned to it. Yet, properly deci- phered, the title is not nearly as opaque as it might at first seem. Consider first the signal emitted by the Roman numeral II in the main title. It informs us that the paper follows on an earlier one, “The Matthew Effect in Science, ” which I finally put into print a good many years ago.’ The ponderous, not to say lumpy, subtitle goes on to signal the direction of this follow-on. The first concept, cumulative advantage, applied to the domain of science, refers to the social processes through which various kinds of opportunities for scientific inquiry as well as the subsequent symbolic and material rewards for the results of that inquiry tend to accumulate for individual practitioners of science, as they do also for organizations engaged in scientific work. The concept of cumulative advantage directs our attention to the ways in which initial comparative advan- tages of trained capacity 7 structural location , and available resources make for successive increments of ad vantage s uch that the gaps between the hav es and the have-nots in science (as in other domains of social life) widen until dampened by countervailing processes. The second phrase in the subtitle directs us to the distinctive character of intellectual property in science. -
Scientific Prize Network Predicts Who Pushes the Boundaries of Science
Scientific prize network predicts who pushes the boundaries of science Yifang Maa,b and Brian Uzzia,b,c,1 aNorthwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208; bKellogg School of Management, Northwestern University, Evanston, IL 60208; and cMcCormick School of Engineering, Northwestern University, Evanston, IL 60208 Edited by Paul Trunfio, Boston University, and accepted by Editorial Board Member Pablo G. Debenedetti July 24, 2018 (received for review March 1, 2018) Scientific prizes confer credibility to persons, ideas, and disciplines, Medal, which is discipline nonspecific. While prizes aim to expand provide financial incentives, and promote community-building attention to scientific ideas, they also connect science. In some celebrations. We examine the growth dynamics and interlocking cases, a single scientist can be a winner of multiple prizes within relationships found in the worldwide scientific prize network. We and across disciplines. Rainer Weiss, winner of the 2017 Nobel focus on understanding how the knowledge linkages among Prize in Physics, was already an Einstein, Shaw, and Harvey prizes and scientists’ propensities for prizewinning relate to prizewinner. The Clark Medal, also known as the “Baby Nobel,” knowledge pathways between disciplines and stratification within has 12 of 23 (52%) medalists who went onto become Nobelists disciplines. Our data cover more than 3,000 different scientific (21, 22). The increasing proliferation of prizes and connections prizes in diverse disciplines and the career histories of 10,455 prize- among prizes suggest that the prize network embodies information winners worldwide for over 100 years. We find several key links about scientists poised to grow in acclaim as well as scientific between prizes and scientific advances.