Variation of the Frog Skin Microbiota Across an Environmental Gradient: Taxonomic Diversity and Potential Function

Total Page:16

File Type:pdf, Size:1020Kb

Variation of the Frog Skin Microbiota Across an Environmental Gradient: Taxonomic Diversity and Potential Function VARIATION OF THE FROG SKIN MICROBIOTA ACROSS AN ENVIRONMENTAL GRADIENT: TAXONOMIC DIVERSITY AND POTENTIAL FUNCTION Brandon J. Varela Department of Biology, Neotropical Environment Option McGill University, Montreal August, 2017 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master’s in Science in Biology Brandon J. Varela, 2017 1 TABLE OF CONTENTS ABSTRACT .............................................................................................................. 4 RÉSUMÉ .................................................................................................................. 5 ACKNOWLEDGEMENTS ...................................................................................... 7 CONTRIBUTIONS OF AUTHORS ......................................................................... 9 Introduction ............................................................................................................ 10 Thesis objectives ......................................................................................................................... 14 Hypothesis 1 ........................................................................................................................................ 15 Hypothesis 2 ........................................................................................................................................ 15 Hypothesis 3 ........................................................................................................................................ 16 Materials and Methods ........................................................................................... 17 Sampling sites and frog species ................................................................................................... 17 DNA extraction, Bd analyses and 16S rRNA library preparation ............................................... 19 Sequence reads processing .......................................................................................................... 21 Comparing alpha and beta diversity ........................................................................................... 21 Comparing bacterial diversity and functional group variation ................................................... 23 Estimating the Bd-inhibiting and Bd-enhancing functions of the skin microbiota ....................... 25 Results .................................................................................................................... 26 Frog host comparison ................................................................................................................. 26 Soil pH, onset of the wet season and site differences ................................................................... 27 Skin microbiota potential function variation .............................................................................. 29 Variation of potential Bd-interacting microbiota ........................................................................ 30 Bd diagnosis ................................................................................................................................ 31 Discussion ............................................................................................................... 32 Influence of soil pH on skin microbiota ....................................................................................... 32 Influence of the onset of the wet season on skin microbiota ........................................................ 33 Functional groups associated with the skin microbiota ............................................................... 34 Microbial diversity and functional group richness ...................................................................... 37 Conclusion .............................................................................................................. 39 Literature cited ....................................................................................................... 41 Tables ..................................................................................................................... 54 Table 1. Host species habitat and sample sizes of the three dendrobatid frogs by life stage. ....... 54 Table 2. Abiotic factors for the sites sampled along the Panama Canal: soil pH, volume of precipitation (mm) accumulated 5, 10, 15 days before sampling and historic annual mean......... 55 Table 3. Bacterial functional groups that best defined the site differences in functions and their corresponding linear discriminant analysis (LDA) scores computed using LEfSe. ...................... 56 Figures .................................................................................................................... 57 2 Figure 1. Map of sampling sites along the Panama Canal. A steep precipitation gradient separates the drier-Pacific Coast (Cerro Ancón) from the wetter-Atlantic Coast (Fort Sherman). .................................................................................................................................................... 57 Figure 2. Skin bacterial alpha diversity comparison between three dendrobatid frog species. ... 58 Figure 3. Bacterial Operational Taxonomic Units (OTUs) that best define bacterial community structure differences between sites, frog species, and in relation to the onset of the wet season. .. 59 Figure 4. Patterns of frog skin bacterial alpha variation across sites in D. auratus (A) and beta diversity variation across sites in three dendrobatid frogs (B). ................................................... 60 Figure 5. Frog skin bacterial alpha (A) and beta (B) diversity before and after the onset of the wet season. .................................................................................................................................. 61 Figure 6. Mean relative abundance of skin microbial functional groups before and after the onset of the wet season (A). ......................................................................................................... 62 Figure 7. The proportion of Batrachochytrium dendrobatidis (Bd)-interacting microbiota across sites in D. auratus (A, B) and in relation to the onset of the wet season in three dendrobatid frog species (C, D). ............................................................................................................................. 63 APPENDICES ........................................................................................................ 64 3 ABSTRACT Research on the amphibian skin microbiota has focused on identifying bacterial taxa that deter a pathogenic chytrid fungus (Batrachochytrium dendrobatidis - Bd), and on describing patterns of microbiota variation. However, it remains unclear how environmental variation affects amphibian skin bacterial communities, and whether the overall functional diversity of the amphibian skin microbiota is associated to such variation. I sampled skin microbial communities from three dendrobatid frog species before and after the onset of the wet season in one site, and from one dendrobatid frog species across an environmental gradient along the Panama Canal. I found frog skin microbial alpha diversity to be highest in frogs from sites with low soil pH, but no clear effect of the onset of the wet season. However, I found frog skin microbial community structure (beta diversity) to be affected by soil pH and the onset of the wet season, which also resulted in a decrease of between-samples variation. Across the sampled frog species, bacterial functional groups changed with the onset of the wet season, with certain bacterial functional groups entirely disappearing and others differing in their relative abundances after the onset of the wet season. In particular, I found proportion of Bd-inhibiting bacteria to correlate with mean soil pH, and to increase in two of the frog species with the onset of the wet season. Taken together, my results suggest that the host’s requirements facilitated by bacteria, including disease resistance, may be site-specific and follow seasonal patterns. These new insights should be considered when implementing conservation programs that include a probiotic bacteria treatment. 4 RÉSUMÉ La recherche sur le microbiote de la peau des amphibiens a pris plusieurs chemins dans les dernières années. Elle s’est principalement concentrée sur l’identité des bactéries dissuadant le champignon pathogène chytride (Batrachochytrium dendrobatidis - Bd) et sur la description de la variation du microbiote. Toutefois, il n’est pas encore clair comment la variation environnementale affecte la communauté bactérienne sur la peau des amphibiens. De plus, on s’interroge encore sur la diversité fonctionnelle du microbiote associée à une telle variation environnementale. J’ai échantillonné la communauté microbienne cutanée de trois espèces de grenouille de la famille Dendrobathidae avant et après le début de la saison humide. J’ai également échantilloné la communauté microbienne cutanée d’une espèce de Dendrobathidae à travers un gradient environnemental le long du canal de Panama. J’ai trouvé que la diversité alpha de la communauté microbienne cutanée était plus grande entre les grenouilles provenant de sites où le site avait un pH bas. Cependant, il n’y avait pas d’effet clair par rapport au début de la saison humide. Toutefois, j’ai trouvé que la structure de la communauté microbienne (la diversité béta) était affectée par le
Recommended publications
  • Method for Producing Methacrylic Acid And/Or Ester Thereof
    (19) TZZ _T (11) EP 2 894 224 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 15.07.2015 Bulletin 2015/29 C12P 7/62 (2006.01) C12N 15/09 (2006.01) (21) Application number: 13835104.4 (86) International application number: PCT/JP2013/005359 (22) Date of filing: 10.09.2013 (87) International publication number: WO 2014/038216 (13.03.2014 Gazette 2014/11) (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • SATO, Eiji GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Yokohama-shi PL PT RO RS SE SI SK SM TR Kanagawa 227-8502 (JP) Designated Extension States: • YAMAZAKI, Michiko BA ME Yokohama-shi Kanagawa 227-8502 (JP) (30) Priority: 10.09.2012 JP 2012198840 • NAKAJIMA, Eiji 10.09.2012 JP 2012198841 Yokohama-shi 31.01.2013 JP 2013016947 Kanagawa 227-8502 (JP) 30.07.2013 JP 2013157306 • YU, Fujio 01.08.2013 JP 2013160301 Yokohama-shi 01.08.2013 JP 2013160300 Kanagawa 227-8502 (JP) 20.08.2013 JP 2013170404 • FUJITA, Toshio Yokohama-shi (83) Declaration under Rule 32(1) EPC (expert Kanagawa 227-8502 (JP) solution) • MIZUNASHI, Wataru Yokohama-shi (71) Applicant: Mitsubishi Rayon Co., Ltd. Kanagawa 227-8502 (JP) Tokyo 100-8253 (JP) (74) Representative: Hoffmann Eitle Patent- und Rechtsanwälte PartmbB Arabellastraße 30 81925 München (DE) (54) METHOD FOR PRODUCING METHACRYLIC ACID AND/OR ESTER THEREOF (57) To provide a method for directly and efficiently producing methacrylic acid in a single step from renew- able raw materials and/or biomass arising from the utili- zation of the renewable raw materials.
    [Show full text]
  • Phenotypic and Microbial Influences on Dairy Heifer Fertility and Calf Gut Microbial Development
    Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Animal Science, Dairy Rebecca R. Cockrum Kristy M. Daniels Alan Ealy Katharine F. Knowlton September 17, 2020 Blacksburg, VA Keywords: microbiome, fertility, inoculation Phenotypic and microbial influences on dairy heifer fertility and calf gut microbial development Connor E. Owens ABSTRACT (Academic) Pregnancy loss and calf death can cost dairy producers more than $230 million annually. While methods involving nutrition, climate, and health management to mitigate pregnancy loss and calf death have been developed, one potential influence that has not been well examined is the reproductive microbiome. I hypothesized that the microbiome of the reproductive tract would influence heifer fertility and calf gut microbial development. The objectives of this dissertation were: 1) to examine differences in phenotypes related to reproductive physiology in virgin Holstein heifers based on outcome of first insemination, 2) to characterize the uterine microbiome of virgin Holstein heifers before insemination and examine associations between uterine microbial composition and fertility related phenotypes, insemination outcome, and season of breeding, and 3) to characterize the various maternal and calf fecal microbiomes and predicted metagenomes during peri-partum and post-partum periods and examine the influence of the maternal microbiome on calf gut development during the pre-weaning phase. In the first experiment, virgin Holstein heifers (n = 52) were enrolled over 12 periods, on period per month. On -3 d before insemination, heifers were weighed and the uterus was flushed.
    [Show full text]
  • Microbiology in Shale: Alternatives for Enhanced Gas Recovery
    Graduate Theses, Dissertations, and Problem Reports 2015 Microbiology in Shale: Alternatives for Enhanced Gas Recovery Yael Tarlovsky Tucker Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Tucker, Yael Tarlovsky, "Microbiology in Shale: Alternatives for Enhanced Gas Recovery" (2015). Graduate Theses, Dissertations, and Problem Reports. 6834. https://researchrepository.wvu.edu/etd/6834 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Microbiology in Shale: Alternatives for Enhanced Gas Recovery Yael Tarlovsky Tucker Dissertation submitted to the Davis College of Agriculture, Natural Resources and Design at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Genetics and Developmental Biology Jianbo Yao, Ph.D., Chair James Kotcon, Ph.D.
    [Show full text]
  • 1 Supplementary Material a Major Clade of Prokaryotes with Ancient
    Supplementary Material A major clade of prokaryotes with ancient adaptations to life on land Fabia U. Battistuzzi and S. Blair Hedges Data assembly and phylogenetic analyses Protein data set: Amino acid sequences of 25 protein-coding genes (“proteins”) were concatenated in an alignment of 18,586 amino acid sites and 283 species. These proteins included: 15 ribosomal proteins (RPL1, 2, 3, 5, 6, 11, 13, 16; RPS2, 3, 4, 5, 7, 9, 11), four genes (RNA polymerase alpha, beta, and gamma subunits, Transcription antitermination factor NusG) from the functional category of Transcription, three proteins (Elongation factor G, Elongation factor Tu, Translation initiation factor IF2) of the Translation, Ribosomal Structure and Biogenesis functional category, one protein (DNA polymerase III, beta subunit) of the DNA Replication, Recombination and repair category, one protein (Preprotein translocase SecY) of the Cell Motility and Secretion category, and one protein (O-sialoglycoprotein endopeptidase) of the Posttranslational Modification, Protein Turnover, Chaperones category, as annotated in the Cluster of Orthologous Groups (COG) (Tatusov et al. 2001). After removal of multiple strains of the same species, GBlocks 0.91b (Castresana 2000) was applied to each protein in the concatenation to delete poorly aligned sites (i.e., sites with gaps in more than 50% of the species and conserved in less than 50% of the species) with the following parameters: minimum number of sequences for a conserved position: 110, minimum number of sequences for a flank position: 110, maximum number of contiguous non-conserved positions: 32000, allowed gap positions: with half. The signal-to-noise ratio was determined by altering the “minimum length of a block” parameter.
    [Show full text]
  • List of Bacterial Orders.Pdf
    A.Phylum Acidobacteria I. Class Acidobacteria i. Acidobacteriales i Acidobacteriaceae 1 Acidobacterium 2 Edaphobacter 3 Terriglobus II.Class Holophagae i. Acanthopleuribacterales i Acanthopleuribacteraceae 1 Acanthopleuribacter ii. Holophagales i Holophagaceae 1 Geothrix 2 Holophaga B.Phylum Actinobacteria I. Class Actinobacteria i. Sphaerobacteridae i Sphaerobacterales 1 Sphaerobacterineae a Sphaerobacteraceae i Sphaerobacter ii. Rubrobacteridae i Rubrobacterales 1 Rubrobacterineae a Conexibacteraceae i Conexibacter b Patulibacteraceae i Patulibacter c Rubrobacteraceae i Rubrobacter d Solirubrobacteraceae i Solirubrobacter e Thermoleophilaceae i Thermoleophilum iii. Coriobacteridae i Coriobacteriales 1 Coriobacterineae a Coriobacteriaceae i Atopobium ii Collinsella iii Coriobacterium iv Cryptobacterium v Denitrobacterium vi Eggerthella vii Olsenella viii Slackia iv. Actinobacteridae i Bifidobacteriales 1 Bifidobacteriaceae a Aeriscardovia b Alloscardovia c Bifidobacterium d Gardnerella e Metascardovia f Parascardovia g Scardovia 2 Unclassified ii Actinomycetales 1 Streptosporangineae a Thermomonosporaceae i Actinocorallia ii Actinomadura iii Excellospora iv Spirillospora v Thermomonospora b Nocardiopsaceae i Nocardiopsis ii Streptomonospora iii Thermobifida c Streptosporangiaceae i Acrocarpospora ii Herbidospora iii Microbispora iv Microtetraspora v Nonomuraea vi Planobispora vii Planomonospora viii Planotetraspora ix Sphaerisporangium x Streptosporangium xi Thermopolyspora 2 Streptomycineae a Sterptomycetaceae i Actinopycnidium ii Actinosporangium
    [Show full text]
  • Systematic Research on Actinomycetes Selected According
    Systematic Research on Actinomycetes Selected according to Biological Activities Dissertation Submitted in fulfillment of the requirements for the award of the Doctor (Ph.D.) degree of the Math.-Nat. Fakultät of the Christian-Albrechts-Universität in Kiel By MSci. - Biol. Yi Jiang Leibniz-Institut für Meereswissenschaften, IFM-GEOMAR, Marine Mikrobiologie, Düsternbrooker Weg 20, D-24105 Kiel, Germany Supervised by Prof. Dr. Johannes F. Imhoff Kiel 2009 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: ______________________ Tag der mündlichen Prüfung: Kiel, ____________ Zum Druck genehmigt: Kiel, _____________ Summary Content Chapter 1 Introduction 1 Chapter 2 Habitats, Isolation and Identification 24 Chapter 3 Streptomyces hainanensis sp. nov., a new member of the genus Streptomyces 38 Chapter 4 Actinomycetospora chiangmaiensis gen. nov., sp. nov., a new member of the family Pseudonocardiaceae 52 Chapter 5 A new member of the family Micromonosporaceae, Planosporangium flavogriseum gen nov., sp. nov. 67 Chapter 6 Promicromonospora flava sp. nov., isolated from sediment of the Baltic Sea 87 Chapter 7 Discussion 99 Appendix a Resume, Publication list and Patent 115 Appendix b Medium list 122 Appendix c Abbreviations 126 Appendix d Poster (2007 VAAM, Germany) 127 Appendix e List of research strains 128 Acknowledgements 134 Erklärung 136 Summary Actinomycetes (Actinobacteria) are the group of bacteria producing most of the bioactive metabolites. Approx. 100 out of 150 antibiotics used in human therapy and agriculture are produced by actinomycetes. Finding novel leader compounds from actinomycetes is still one of the promising approaches to develop new pharmaceuticals. The aim of this study was to find new species and genera of actinomycetes as the basis for the discovery of new leader compounds for pharmaceuticals.
    [Show full text]
  • Comparison of Actinobacterial Diversity in Marion Island Terrestrial
    Comparison of actinobacterial diversity in Marion Island terrestrial habitats Walter Tendai Sanyika A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biotechnology, University of the Western Cape. Supervisor: Prof D. A. Cowan November 2008 DECLARATION I declare that “Comparison of actinobacterial diversity in Marion Island terrestrial habitats” is my own work, that it has not been submitted for any degree or examination in any other university, and that all the sources I have used or quoted have been indicated and acknowledged by complete references. Walter Tendai Sanyika November 2008 -------------------------------------- ii Abstract Marion Island is a sub-Antarctica Island that consists of well-characterised terrestrial habitats. A number of previous studies have been conducted, which involved the use of culture-dependent and culture-independent identification of bacterial communities from Antarctic and sub-Antarctic soils. Previous studies have shown that actinobacteria formed the majority of microorganisms frequently identified, suggesting that they were adapted to cold environments. In this study, metagenomic DNA was directly isolated from the soil and actinomycete, actinobacterial and bacterial 16S rRNA genes were amplified using specific primers. Hierarchical clustering and multidimensional scaling were used to relate the microbiological diversity to the habitat plant and soil physiochemical properties. The habitats clusters obtained were quite similar based on the analysis of soil and plant characteristics. However, the clusters obtained from the analysis of environmental factors were not similar to those obtained using microbiological diversity. The culture- independent studies were based on the 16S rRNA genes. Soil salinity was the major factor determining the distribution of microorganisms in habitats based on DGGE and PCA.
    [Show full text]
  • Biology and Biotechnology of Actinobacteria Biology and Biotechnology of Actinobacteria Joachim Wink Fatemeh Mohammadipanah Javad Hamedi Editors
    Joachim Wink Fatemeh Mohammadipanah Javad Hamedi Editors Biology and Biotechnology of Actinobacteria Biology and Biotechnology of Actinobacteria Joachim Wink Fatemeh Mohammadipanah Javad Hamedi Editors Biology and Biotechnology of Actinobacteria Editors Joachim Wink Fatemeh Mohammadipanah Microbial Strain Collection; College of Science Helmholtz- Centre for Infection Research University of Tehran Braunschweig Tehran Germany Iran Javad Hamedi College of Science University of Tehran Tehran Iran ISBN 978-3-319-60338-4 ISBN 978-3-319-60339-1 (eBook) DOI 10.1007/978-3-319-60339-1 Library of Congress Control Number: 2017955832 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Contents Topic 1. Introduction to Microbiology. the Subject and Tasks
    Contents Topic 1. Introduction to microbiology. The subject and tasks of microbiology. A short historical essay………………………………………………………………5 Topic 2. Systematics and nomenclature of microorganisms……………………. 10 Topic 3. General characteristics of prokaryotic cells. Gram’s method ………...45 Topic 4. Principles of health protection and safety rules in the microbiological laboratory. Design, equipment, and working regimen of a microbiological laboratory………………………………………………………………………….162 Topic 5. Physiology of bacteria, fungi, viruses, mycoplasmas, rickettsia……...185 TOPIC 1. INTRODUCTION TO MICROBIOLOGY. THE SUBJECT AND TASKS OF MICROBIOLOGY. A SHORT HISTORICAL ESSAY. Contents 1. Subject, tasks and achievements of modern microbiology. 2. The role of microorganisms in human life. 3. Differentiation of microbiology in the industry. 4. Communication of microbiology with other sciences. 5. Periods in the development of microbiology. 6. The contribution of domestic scientists in the development of microbiology. 7. The value of microbiology in the system of training veterinarians. 8. Methods of studying microorganisms. Microbiology is a science, which study most shallow living creatures - microorganisms. Before inventing of microscope humanity was in dark about their existence. But during the centuries people could make use of processes vital activity of microbes for its needs. They could prepare a koumiss, alcohol, wine, vinegar, bread, and other products. During many centuries the nature of fermentations remained incomprehensible. Microbiology learns morphology, physiology, genetics and microorganisms systematization, their ecology and the other life forms. Specific Classes of Microorganisms Algae Protozoa Fungi (yeasts and molds) Bacteria Rickettsiae Viruses Prions The Microorganisms are extraordinarily widely spread in nature. They literally ubiquitous forward us from birth to our death. Daily, hourly we eat up thousands and thousands of microbes together with air, water, food.
    [Show full text]
  • Associations Biologiques Entre Les Termites Du Genre Nasutitermes Et Leur Microflore Actinomycétale: Spécificité Et Évolution
    Université Paris Est Ecole doctorale Science de la Vie et de la Santé Thèse de Doctorat Associations biologiques entre les termites du genre Nasutitermes et leur microflore actinomycétale: spécificité et évolution. par Thomas Lefebvre Soutenance prévue le 17 décembre 2008 devant le jury composé de : Rapporteur Alain Brauman Rapporteur Alain Robert Directeur de thèse Corinne Rouland-Lefèvre Examinateur Anne Geneviève Bagnères Examinateur Edouard Miambi 1 Remerciements Cette thèse est le fruit d’un long travail réalisé au sein du Laboratoire d’Ecologie des Sols Tropicaux à l’IRD de Bondy. Elle représente pour moi une période très intense de ma vie, ponctuée par des expériences et rencontres, professionnelles et personnelles, toutes déterminantes. S’il a été surtout question de termites, l’humain a été le facteur essentiel. J’ai beaucoup de personnes à remercier, la liste qui va suivre ne serait être exhaustive. Je tiens tout d’abord à exprimer ma profonde gratitude à Corinne Rouland-Lefèvre qui m’a permis de réaliser cette thèse sous sa direction et de continuer à explorer le monde des termites. A ses côtés, l’aventure a été particulièrement enrichissante. Je reste profondément admiratif de ses qualités humaines et scientifiques. Et je m’interroge encore comment elle arrive à faire autant de choses à la fois tout en gardant une bonne humeur constante et un enthousiasme communicatif. Je la remercie pour tout ce qu’elle a fait pour moi et tout ce qu’elle m’a permis de faire, pour ses conseils judicieux de directrice de thèse et de mère. Je tiens également à exprimer mes sincères remerciements à Edouard Miambi qui a été d’un soutien si précieux dans la réalisation de cette thèse.
    [Show full text]
  • Taxonomy and Ecology of Antibiotic Producing Actinomycetes
    African Journal of Agricultural Research Vol. 7(15), pp. 2255-2261, 19 April, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJARX11.071 ISSN 1991-637X © 2012 Academic Journals Review Taxonomy and ecology of antibiotic producing actinomycetes Mobolaji Felicia Adegboye* and Olubukola Oluranti Babalola Department of Biological Sciences, Faculty of Agriculture, Science and Technology, North-West University, South Africa. Accepted 1 March, 2012 The taxonomic and ecological positions of antibiotic producing actinomycetes are an integral part in antimicrobial agents’ development program. Comprehensive understanding of the organisms give useful insight on the secondary metabolites been produced by them and other activities carried out by them in their habitat. Criteria for the identification of actinomycetes include morphological, physiological, ecological and molecular characterization. It is vital to identify the organism up to species level, since this will give an indication whether the antimicrobial agent being produced is novel or not. The suborder and habitat also act as pointers for possible secondary metabolites production and confer the need for further exploration. Key words: Taxonomy, ecology, actinomycetes, antimicrobial agents, characterization. INTRODUCTION Actinomycetes are prolific producers of novel species. Taxonomic characterization of antibiotic antimicrobial agents (Atta et al., 2010). Vast numbers of producing actinomycetes is a very important aspect in these antimicrobial agents are discovered from screening for novel antibiotic (Van Hop et al., 2011). This actinomycetes by screening natural habitat such as soils provides informative insight about the organism, possible and water bodies (Duraipandiyan et al., 2010; Gallagher kind of secondary metabolite and whether the metabolite et al., 2010; Zotchev, 2011).
    [Show full text]
  • Appendix 1. New and Emended Taxa Described Since Publication of Volume One, Second Edition of the Systematics
    188 THE REVISED ROAD MAP TO THE MANUAL Appendix 1. New and emended taxa described since publication of Volume One, Second Edition of the Systematics Acrocarpospora corrugata (Williams and Sharples 1976) Tamura et Basonyms and synonyms1 al. 2000a, 1170VP Bacillus thermodenitrificans (ex Klaushofer and Hollaus 1970) Man- Actinocorallia aurantiaca (Lavrova and Preobrazhenskaya 1975) achini et al. 2000, 1336VP Zhang et al. 2001, 381VP Blastomonas ursincola (Yurkov et al. 1997) Hiraishi et al. 2000a, VP 1117VP Actinocorallia glomerata (Itoh et al. 1996) Zhang et al. 2001, 381 Actinocorallia libanotica (Meyer 1981) Zhang et al. 2001, 381VP Cellulophaga uliginosa (ZoBell and Upham 1944) Bowman 2000, VP 1867VP Actinocorallia longicatena (Itoh et al. 1996) Zhang et al. 2001, 381 Dehalospirillum Scholz-Muramatsu et al. 2002, 1915VP (Effective Actinomadura viridilutea (Agre and Guzeva 1975) Zhang et al. VP publication: Scholz-Muramatsu et al., 1995) 2001, 381 Dehalospirillum multivorans Scholz-Muramatsu et al. 2002, 1915VP Agreia pratensis (Behrendt et al. 2002) Schumann et al. 2003, VP (Effective publication: Scholz-Muramatsu et al., 1995) 2043 Desulfotomaculum auripigmentum Newman et al. 2000, 1415VP (Ef- Alcanivorax jadensis (Bruns and Berthe-Corti 1999) Ferna´ndez- VP fective publication: Newman et al., 1997) Martı´nez et al. 2003, 337 Enterococcus porcinusVP Teixeira et al. 2001 pro synon. Enterococcus Alistipes putredinis (Weinberg et al. 1937) Rautio et al. 2003b, VP villorum Vancanneyt et al. 2001b, 1742VP De Graef et al., 2003 1701 (Effective publication: Rautio et al., 2003a) Hongia koreensis Lee et al. 2000d, 197VP Anaerococcus hydrogenalis (Ezaki et al. 1990) Ezaki et al. 2001, VP Mycobacterium bovis subsp. caprae (Aranaz et al.
    [Show full text]