Transportation Milestones
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Solar Vehicle Case Study
UNIVERSITY OF MINNESOTA SOLAR VEHICLE PROJECT Weather Data Vital for Solar-Powered Vehicle Race When the University of Minnesota Solar Vehicle Project (UMNSVP) team was looking for a weather station to compete in the 2017 Bridgestone World Solar Challenge, they contacted Columbia Weather Systems. “One of the most important resources for our race strategy is real-time weather data,” said Electrical Technical Advisor Spencer Berglund. Founded in 1990, UMNSVP is a student-administered, designed, and built project that teaches members about engineering and management in a complete product development environment. The diverse design and construction challenges help further the school’s mission to “create the best engineers possible.” Over the years they have built 13 solar cars, competing in over 30 racing events across three con- tinents. A new car is designed and built every two years. “One of the most important resources for our race strategy is real-time weather data.” The Challenge - Spencer Berglund, The biennial Bridgestone World Solar Challenge event challenges univer- Electrical Technical sity teams from around the world to engineer, build, and race a vehicle Advisor that is powered by the sun. In preparing for the 2017 race, Berglund said, “Our lack of accurate weather data is a large limiting factor in maxi- mizing our race performance.” The Solution A Magellan MX500™ Weather Station was mounted on a support vehicle providing met data to help optimize power for the new solar-powered, Cruiser-Class car dubbed “Eos II.” Besides speed, Cruiser-Class vehicles focus on practicality and number of people in the car. Gearing up for the race, Berglund related, “We’ve been test driving a lot for the past few days and have been using your weather station for gathering accurate power to drive data for our car. -
Electric Vehicle Pre-Infrastructure Planning a Discussion of Social, Economic, and Technological Readiness of Prince Edward Island
University of Prince Edward Island Electric Vehicle Pre-Infrastructure Planning A Discussion of Social, Economic, and Technological Readiness of Prince Edward Island Georgina Vardy 10/22/2012 A localized study, focused on Prince Edward Island, Canada, compiled to assist with determining social, economic and technological readiness for electric vehicles and the related infrastructure. The study used both a Christensen based disruptive technology framework approach and traditional marketing techniques to determine social and economic readiness. Residents showed an interest and aptitude for the social changes required however the financial affordability of the electric vehicles for residents was limited without nationally available, but locally deficient, incentives. A technology scan determined that electric vehicle battery chemical content and design are determining factors in effectively satisfying social needs and acceptance. The next stage includes localized marketing development for this unique location, vehicles sales and infrastructure. PERMISSION TO USE SIGNATURE PROJECT REPORT Title of Signature Project: Electric Vehicle Pre-Infrastructure Planning: A Discussion of Social, Economic, and Technological Readiness of Prince Edward Island Name of Author: Georgina Vardy Department: School of Business Degree: Master of Business Administration Year: 2012 Name of Supervisor(s): Tim Carroll In presenting this signature project report in partial fulfilment of the requirements for a Master of Business Administration degree from the University of Prince Edward Island, the author has agreed that the Robertson Library, University of Prince Edward Island, may make this signature project freely available for inspection and gives permission to add an electronic version of the signature project to the Digital Repository at the University of Prince Edward Island. -
Next-Generation Solar Power Dutch Technology for the Solar Energy Revolution Next-Generation High-Tech Excellence
Next-generation solar power Dutch technology for the solar energy revolution Next-generation high-tech excellence Harnessing the potential of solar energy calls for creativity and innovative strength. The Dutch solar sector has been enabling breakthrough innovations for decades, thanks in part to close collaboration with world-class research institutes and by fostering the next generation of high-tech talent. For example, Dutch student teams have won a record ten titles in the World Solar Challenge, a biennial solar-powered car race in Australia, with students from Delft University of Technology claiming the title seven out of nine times. 2 Solar Energy Guide 3 Index The sunny side of the Netherlands 6 Breeding ground of PV technology 10 Integrating solar into our environment 16 Solar in the built environment 18 Solar landscapes 20 Solar infrastructure 22 Floating solar 24 Five benefits of doing business with the Dutch 26 Dutch solar expertise in brief 28 Company profiles 30 4 Solar Energy Guide The Netherlands, a true solar country If there’s one thing the Dutch are remarkably good at, it’s making the most of their natural circumstances. That explains how a country with a relatively modest amount of sunshine has built a global reputation as a leading innovator in solar energy. For decades, Dutch companies and research institutes have been among the international leaders in the worldwide solar PV sector. Not only with high-level fundamental research, but also with converting this research into practical applications. Both by designing and refining industrial production processes, and by developing and commercialising innovative solutions that enable the integration of solar PV into a product or environment with another function. -
Jun 3 0 2010 Libraries Archves
Assessing the Viability of Level III Electric Vehicle Rapid-Charging Stations by Radu Gogoana SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTIUTE OF TECHNOLOGY JUNE 2010 JUN 3 0 2010 02010 Radu Gogoana. All rights reserved. LIBRARIES The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic ARCHVES copies of this thesis in whole or in part in any medium now known or hereafter created. Signature of Author: ...... Department of Mechanical Engineering May 10, 2010 7 / II 7 '/ Certified by:. (......... ..... John G. Kassakian >fessor of Electrical Engineering Thesis Supervisor Accepted by: ..... ...................... John H. Lienhard V Collins Professor of Mechanical Engineering Chairman, Undergraduate Thesis Committee ASSESSING THE VIABILITY OF LEVEL III ELECTRIC VEHICLE RAPID-CHARGING STATIONS by RADU GOGOANA Submitted to the Department of Mechanical Engineering on May 10, 2010 in partial fulfillment of the requirements for the Degree of Bachelor of Science in Engineering as recommended by the Department of Mechanical Engineering ABSTRACT This is an analysis of the feasibility of electric vehicle rapid-charging stations at power levels above 300 kW. Electric vehicle rapid-charging (reaching above 80% state-of-charge in less than 15 minutes) has been demonstrated, but concerns have been raised about the high levels of electrical power required to recharge a high-capacity battery in a short period of time. This economic analysis is based on an existing project run by MIT's Electric Vehicle Team, of building a 200-mile range battery electric sedan capable of recharging in 10 minutes. -
The History of Solar
Solar technology isn’t new. Its history spans from the 7th Century B.C. to today. We started out concentrating the sun’s heat with glass and mirrors to light fires. Today, we have everything from solar-powered buildings to solar- powered vehicles. Here you can learn more about the milestones in the Byron Stafford, historical development of solar technology, century by NREL / PIX10730 Byron Stafford, century, and year by year. You can also glimpse the future. NREL / PIX05370 This timeline lists the milestones in the historical development of solar technology from the 7th Century B.C. to the 1200s A.D. 7th Century B.C. Magnifying glass used to concentrate sun’s rays to make fire and to burn ants. 3rd Century B.C. Courtesy of Greeks and Romans use burning mirrors to light torches for religious purposes. New Vision Technologies, Inc./ Images ©2000 NVTech.com 2nd Century B.C. As early as 212 BC, the Greek scientist, Archimedes, used the reflective properties of bronze shields to focus sunlight and to set fire to wooden ships from the Roman Empire which were besieging Syracuse. (Although no proof of such a feat exists, the Greek navy recreated the experiment in 1973 and successfully set fire to a wooden boat at a distance of 50 meters.) 20 A.D. Chinese document use of burning mirrors to light torches for religious purposes. 1st to 4th Century A.D. The famous Roman bathhouses in the first to fourth centuries A.D. had large south facing windows to let in the sun’s warmth. -
Mit Solar Electric Vehicle Team
MIT SOLAR ELECTRIC VEHICLE TEAM The MIT Solar Electric Vehicle Team (SEVT) TEAM GOALS: is a student organization dedicated to • Facilitate continuous demonstrating the viability of alternative innovation and deve- energy-based transportation. The team was lopment in all fields founded in 1985 and since 1993 has worked related to solar under the auspices of MIT’s Edgerton electric vehicles Center. through international participation and We build each vehicle from the ground competition up, allowing us to apply our theoretical knowledge while gaining hands-on • Give our sponsors manufacturing experience and project publicity through management skills. Team members work positive exposure and with professors and industry to overcome press coverage. the design and fabrication challenges • Provide members of inherent to this complex project. Since the MIT community its creation, the SEVT has built nearly 15 with incomparable vehicles and competed successfully in experience in engin- national and international races, most eering, management, recently the 2015 World Solar Challenge in marketing, and Austrailia. We are currently constructing business. our newest race vehicle for competition in the 2017 World Solar Challenge. • Be active in the com- munity, promoting We share our enthusiasm for applied alternative energy and engineering and renewable technologies by transportation. actively reaching out to local schools and • Inspire children the Greater Boston community. Through to pursue careers our interactions, we hope to educate in science and the public about alternative energy and engineering. transportation, as well as inspire the next generations of innovators. WHAT IS SOLAR RACING? In a solar car race, highly specialized Each solar car is accompanied by provement in efficiency and perfor- vehicles that run entirely on solar lead and chase vehicles to provide mance of their vehicles. -
Two Drive Modes for the Vehicle Rajat Ganechari, Prashant Bhandarkavthekar, Aditya Dudka, Ajay Rathod, Dr
International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 1 ISSN 2229-5518 Two drive modes for the vehicle Rajat Ganechari, Prashant Bhandarkavthekar, Aditya Dudka, Ajay Rathod, Dr. Shriniwas Metan, Vikram Birangane Abstract— Looking at the current fuel price hike, private transport is progressively getting to be unviable for the normal man. Fuel consumption of bikes increases when you are driving on a slope and in substantial rush hour traffic where you have to switch the gear over and over again, also driving the bike in the lower gear. In the event that you change over to battery mode in these street conditions, this issue can be survived. The driver will have the choice of utilizing either battery-run front wheel drive or engine run rear wheel drive. When running on a non-conventional fuel (electricity in this case) we benefit our environment through less pollution and zero noise. To achieve this, we used a trial and error method to make a bar link that would sustain the load of the hub motor mounted on the front wheel. To control the speed of the hub motor, we fit the controller just above the headlight assembly. We also provided a switch in the boot space to turn on the electric drive mode also mounted the batteries just below the footrest. To accelerate the vehicle we fitted the accelerator, which is connected to the controller, on the left side of the bar handle. We made some demo runs of the vehicle, calculated the data and proved that two drive modes for the vehicle are more efficient and environmentally friendly than a normal gasoline powered vehicle. -
01 Front–054
Energy Myths and Realities Energy Myths and Realities: Bringing Science to the Energy Policy Debate Vaclav Smil The AEI Press Publisher for the American Enterprise Institute WASHINGTON, D.C. Distributed by arrangement with the Rowman & Littlefield Publishing Group, 4501 Forbes Boulevard, Suite 200, Lanham, Maryland 20706. To order call toll free 1-800-462-6420 or 1-717-794-3800. For all other inquiries please contact AEI Press, 1150 Seventeenth Street, N.W. Washington, D.C. 20036 or call 1-800-862-5801. Library of Congress Cataloging-in-Publication Data Smil, Vaclav. Energy myths and realities : bringing science to the energy policy debate / Vaclav Smil. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-8447-4328-8 ISBN-10: 0-8447-4328-3 1. Renewable energy sources. 2. Energy policy. I. Title. TJ808.S639 2010 333.79'4—dc22 2010009437 14 13 12 11 10 1 2 3 4 5 6 7 © 2010 by the American Enterprise Institute for Public Policy Research, Wash- ington, D.C. All rights reserved. No part of this publication may be used or repro- duced in any manner whatsoever without permission in writing from the American Enterprise Institute except in the case of brief quotations embodied in news articles, critical articles, or reviews. The views expressed in the publications of the American Enterprise Institute are those of the authors and do not neces- sarily reflect the views of the staff, advisory panels, officers, or trustees of AEI. Printed in the United States of America Homines libenter quod volunt credunt Men believe what they want to —Publius Terentius v Contents LIST OF FIGURES xi KEY TO UNITS OF MEASURE xiii INTRODUCTION 1 Lost Opportunities 2 Persistent Myths 6 Challenging the Myths 11 PART I: LESSONS FROM THE PAST 15 1. -
2021 Team Manager's GUIDE
2021 team manager’s GUIDE Document Control The purpose of the manual is to provide information about the important logistical challenges of attending the Bridgestone World Solar Challenge. It may be updated by the issue of further editions. Release version 1 issued 19 June 2020 Copyright statement The Government of South Australia supports and encourages the dissemination and exchange of public sector information and endorses the use of Creative Commons Licenses by its agencies. With the exception of the Piping Shrike emblem, images, and other material or devices protected by a trademark and subject to review by the Government of South Australia at all times, the content of this document is licensed under the Creative Commons Australia Attribution 4.0 Licence. All other rights are reserved. Where specific licence terms (such as Creative Commons) are applied to this document, those licence terms shall prevail over any inconsistent provisions in this statement. The Government of South Australia has undertaken reasonable enquiries to identify material owned by third parties and secure permission for its reproduction. Permission may need to be obtained from third parties to reuse their material. When using content from this document that is licensed under a Creative Commons Licence you are required to attribute the work in the manner specified in the licence (but not in any way that suggests that the Government of South Australia endorses you or your use of the work) and the Government of South Australia requires that you use the following form of attribution. The Government of South Australia, >>title of works<>insert date the content was sourced<>insert URL< IMPORTANT This printed version may not contain all updates and bulletins. -
World Solar Challenge!
TROTTEMANT 11/26/03 4:55 PM Page 52 Education Nuna II Breaks All Records to Win the World Solar Challenge! Eric Trottemant favourite because of its use – like its Education Office, ESA Directorate of forerunner Nuna in 2001 – of advanced Administration, ESTEC, space technology provided to the team via Noordwijk, The Netherlands ESA’s Technology Transfer Programme, which gives the car a theoretical top speed of 170 km per hour. he Dutch solar car ‘Nuna II’, using The aerodynamically optimised outer ESA space technology, again shell consists of space-age plastics to keep Tfinished first in the 2003 World it light and strong. The main body is made Solar Challenge, a 3010 km race from from carbon fibre, reinforced on the upper north to south across Australia for cars side and on the wheels’ mudguards with powered only by solar energy. Having set aramide, better known under the trade off from Darwin on Sunday 19 October, name of Twaron. The latter is used in Nuna II crossed the finishing line in satellites as protection against micro- Adelaide on Wednesday 22 October in a meteorite impacts, and nowadays also in new record-breaking time of 30 hours 54 high-performance protective clothing like minutes, 1 hour and 43 minutes ahead of its bulletproof vests. nearest rival and beating the previous The car’s shell is covered with the best record of 32 hours 39 minutes set by its triple-junction gallium-arsenide solar cells, predecessor Nuna in 2001. developed for satellites. These cells The average speed of Nuna II, nick- harvest 10% more energy from the Sun named the ‘Flying Dutchman’ by the than those used on Nuna for the 2001 race. -
Finding Aid for the Henry Austin Clark Jr. Photograph Collection, 1853-1988
Finding Aid for HENRY AUSTIN CLARK JR. PHOTOGRAPH COLLECTION, 1853-1988 Accession 1774 Finding Aid Published: May 2014 Benson Ford Research Center, The Henry Ford 20900 Oakwood Boulevard ∙ Dearborn, MI 48124-5029 USA [email protected] ∙ www.thehenryford.org Henry Austin Clark Jr. Photograph collection Accession 1774 OVERVIEW REPOSITORY: Benson Ford Research Center The Henry Ford 20900 Oakwood Blvd Dearborn, MI 48124-5029 www.thehenryford.org [email protected] ACCESSION NUMBER: 1774 CREATOR: Clark, Henry Austin, Jr., 1917-1991 TITLE: Henry Austin Clark Jr. Photograph collection INCLUSIVE DATES: 1853-1988 QUANTITY: 25.6 cubic ft. and 185 oversize boxes LANGUAGE: The materials are in English ABSTRACT: The photograph collection of Henry Austin Clark Jr. collector, museum owner and devotee, documents the history of the automobile in Europe and the United States. Page 2 of 67 Updated 5.16.2014 Henry Austin Clark Jr. Photograph collection Accession 1774 ADMINISTRATIVE INFORMATION ACCESS RESTRICTIONS: The collection is open for research TECHNICAL RESTRICTIONS: Access to original motion pictures is restricted. Digital copies are available for use in the Benson Ford Research Center Reading Room. COPYRIGHT: Copyright has been transferred to the Henry Ford by the donor. Copyright for some items in the collection may still be held by their respective creator(s). ACQUISITION: Donated, 1992 RELATED MATERIAL: Related material held by The Henry Ford includes: - Henry Austin Clark Jr. papers, Accession 1764 - Henry Austin Clark Jr. Automotive-related programs collection, Accession 1708 PREFERRED CITATION: Item, folder, box, Accession 1774, Henry Austin Clark Jr. photograph collection, Benson Ford Research Center, The Henry Ford PROCESSING INFORMATION: Collection processed by Benson Ford Research Center staff, 1992-2005 DESCRIPTION INFORMATION: Original collection inventory list prepared by Benson Ford Research Center staff, 1995-2005, and published in January, 2011. -
Stability Considerations V1.0.Pages
Notes on stability considera0ons for solar cars Version 1.1, 23 May 2020 John Storey Background The goal for BWSC solar car designers is to design a highly efficient vehicle. An efficient vehicle will be lightweight, have low rolling resistance and low aerodynamic drag. However, the most important consideraBon, overriding everything else, is that the car be stable and controllable in all foreseeable weather condiBons. High wind speeds are common on parBcular parts of the course, with gusts regularly exceeding 70 km/h. Many solar cars are capable of sustained travel at speeds approaching or even exceeding the open-road speed limits of 130 km/h in the Northern Territory and 110 km/h in South Australia. Solar car designers must always keep their team’s drivers fully informed about the vehicle’s handling limits, so drivers can drive at a speed appropriate for the condiBons and with safety as a priority. This document is intended to be a non-exhausBve list of design decisions that, in my opinion, teams should think carefully about. It is most emphaBcally not a “How-to-do-it” prescripBon; that would reQuire at least one text book, and probably several. It is my view that the Science Faculty are not here to teach people how to build the most efficient solar car. Rather, they aim to draT a set of regulaBons for the event organisers that will create a broad framework within which teams can exercise a maximum of design freedom, building vehicles for the future that no-one has imagined before and—most importantly—without any need to compromise safety.