Electric Vehicle Pre-Infrastructure Planning a Discussion of Social, Economic, and Technological Readiness of Prince Edward Island

Total Page:16

File Type:pdf, Size:1020Kb

Electric Vehicle Pre-Infrastructure Planning a Discussion of Social, Economic, and Technological Readiness of Prince Edward Island University of Prince Edward Island Electric Vehicle Pre-Infrastructure Planning A Discussion of Social, Economic, and Technological Readiness of Prince Edward Island Georgina Vardy 10/22/2012 A localized study, focused on Prince Edward Island, Canada, compiled to assist with determining social, economic and technological readiness for electric vehicles and the related infrastructure. The study used both a Christensen based disruptive technology framework approach and traditional marketing techniques to determine social and economic readiness. Residents showed an interest and aptitude for the social changes required however the financial affordability of the electric vehicles for residents was limited without nationally available, but locally deficient, incentives. A technology scan determined that electric vehicle battery chemical content and design are determining factors in effectively satisfying social needs and acceptance. The next stage includes localized marketing development for this unique location, vehicles sales and infrastructure. PERMISSION TO USE SIGNATURE PROJECT REPORT Title of Signature Project: Electric Vehicle Pre-Infrastructure Planning: A Discussion of Social, Economic, and Technological Readiness of Prince Edward Island Name of Author: Georgina Vardy Department: School of Business Degree: Master of Business Administration Year: 2012 Name of Supervisor(s): Tim Carroll In presenting this signature project report in partial fulfilment of the requirements for a Master of Business Administration degree from the University of Prince Edward Island, the author has agreed that the Robertson Library, University of Prince Edward Island, may make this signature project freely available for inspection and gives permission to add an electronic version of the signature project to the Digital Repository at the University of Prince Edward Island. Moreover the author further agrees that permission for extensive copying of this signature project report for scholarly purposes may be granted Dean of the School of Business. It is understood that any copying or publication or use of this signature permission. It is also understood that due recognition shall be given to the author and to the University P E I Address: UPEI School of Business 550 University Avenue Charlottetown, PE C1A 4P3 Summary of Findings................................................................................................................................. 5 Summary of Conclusions ........................................................................................................................... 5 Research Question .................................................................................................................................... 6 Electric Vehicles ........................................................................................................................................ 8 Vehicle Categories ................................................................................................................................. 8 Electric Vehicle History ......................................................................................................................... 8 The Environmental Perspective .............................................................................................................. 11 Electric Vehicle Technologies .................................................................................................................. 12 Technology Diffusion .......................................................................................................................... 12 Battery Technologies .......................................................................................................................... 13 Research Design and Methodology ........................................................................................................ 15 Technology Analysis Methodology ..................................................................................................... 15 Disruptive Technologies Framework ................................................................................................... 15 Consumer Analysis Methodology ....................................................................................................... 16 Environmental Propensity Framework ................................................................................................ 17 Consumer Purchase Decision Process .................................................................................................... 18 Automotive Industry ............................................................................................................................... 21 The Public Questionnaire ........................................................................................................................ 22 Marketing ................................................................................................................................................ 24 Forces that affect Market Growth ...................................................................................................... 24 EV Market Discussion .............................................................................................................................. 25 Market Growth ................................................................................................................................... 26 Global Market Overview ......................................................................................................................... 27 P E G ‘ “ E V ....................... 27 Canadian Market Overview .................................................................................................................... 31 Political Environment and Government.............................................................................................. 31 Non Government Associations ........................................................................................................... 33 Provincially: ......................................................................................................................................... 34 Characterizing Prince Edward Island ....................................................................................................... 35 PEI Environmental Propensity & Social Norms ....................................................................................... 36 Environmentally .................................................................................................................................. 36 Politically ............................................................................................................................................. 36 Socially ................................................................................................................................................ 37 Economically ....................................................................................................................................... 38 Prince Edward Island Personal Vehicle Sector ........................................................................................ 41 Cost Effectiveness of Electric Vehicles on Prince Edward Island ........................................................ 41 Mass Adoption Scenario ......................................................................................................................... 42 Power Generation Considerations ...................................................................................................... 42 Power Distribution Considerations ..................................................................................................... 42 Power Regulation Solutions ................................................................................................................ 43 Rollout strategy ....................................................................................................................................... 44 Recommendations .................................................................................................................................. 45 Possible Next Steps ................................................................................................................................. 46 Future Research ...................................................................................................................................... 48 Works Cited ............................................................................................................................................. 50 Appendices .................................................................................................................................................. 53 Table of Electric Vehicles ........................................................................................................................ 54 Clean Air Agenda Program Hierarchy ..................................................................................................... 57 Canadian Electric & Hybrid Vehicles Incentives ...................................................................................... 59 EPF Description of Segments and Recommendations ............................................................................ 63 Market Analysis ......................................................................................................................................
Recommended publications
  • Comment 1 for ZEV 2008 (Zev2008) - 45 Day
    Comment 1 for ZEV 2008 (zev2008) - 45 Day. First Name: Jim Last Name: Stack Email Address: [email protected] Affiliation: Subject: ZEV vehicles Comment: The only true ZEV vehicles are pure electric that chanrge on renewables Today 96% of the hydrogen is made from fossil fuels. This can be improved on but will take a long time. Today we already have very good Electric Vehicles liek the RAV4 with NiMH batteries that have lasted over 100,000 miles. Too bad Toyota stopped making it. We also have the Tesla and Ebox. Please do what is right. Jim Attachment: Original File Name: Date and Time Comment Was Submitted: 2008-02-16 11:19:59 No Duplicates. Comment 2 for ZEV 2008 (zev2008) - 45 Day. First Name: Star Last Name: Irvine Email Address: [email protected] Affiliation: NEV Owner Subject: MSV in ZEV regulations Comment: I as a NEV owner (use my OKA NEV ZEV about 3,000 miles annually) would like to see MSV (Medium Speed Vehicles) included in ZEV mandate so they can be available in California. I own two other vehicles FORD FOCUS and FORD Crown Vic. I my OKA NEV could go 35 MPH I would drive it at least twice as much as I currently do, and I would feel much safer doing so. 25 MPH top speed for NEV seriously limits its use and practicality for every day commuting. Attachment: Original File Name: Date and Time Comment Was Submitted: 2008-02-19 23:07:01 No Duplicates. Comment 3 for ZEV 2008 (zev2008) - 45 Day. First Name: Miro Last Name: Kefurt Email Address: [email protected] Affiliation: OKA AUTO USA Subject: MSV definition and inclusion in ZEV 2008 Comment: We believe that it is important that the ZEV regulations should be more specific in definition of "CITY" ZEV as to its capabilities and equipment.
    [Show full text]
  • Passenger Vehicle Greenhouse Gas and Fuel Economy Standards: a Global Update 2 Passenger Vehicle Greenhouse Gas and Fuel Economy Standards: a Global Update
    Cars and Climate Change Passenger Vehicle Greenhouse Gas and Fuel Economy Standards: A Global Update 2 Passenger Vehicle Greenhouse Gas and Fuel Economy Standards: A Global Update The goal of the International Council on Clean Transportation (ICCT) is to dramatically reduce conventional pollution and greenhouse gas emissions from personal, public, and goods transportation in order to improve air quality and human health, and mitigate climate change. The Council is made up of leading government officials and experts from around the world that participate as individuals based on their experience with air quality and transportation issues. The ICCT promotes best practices and comprehensive solutions to improve vehicle emissions and efficiency, increase fuel quality and sustainability of alternative fuels, reduce pollution from the in-use fleet, and curtail emissions from international goods movement. www.theicct.org Published by The International Council on Clean Transportation © July 2007 The International Council on Clean Transportation Designed by Big Think Studios Printed on 100% recycled paper with soy-based ink This document does not necessarily represent the views of organizations or government agencies represented by ICCT reviewers or participants. 3 Passenger Vehicle Greenhouse Gas and Fuel Economy Standards: A Global Update Authors: Feng An Innovation Center for Energy and Transportation Deborah Gordon Transportation Policy Consultant Hui He, Drew Kodjak, and Daniel Rutherford International Council on Clean Transportation Acknowledgments The authors would like to thank our many colleagues around the world that have generously contributed their time and insight in reviewing and commenting on the draft version of this report. We would like to thank the Hewlett and Energy Foundations for making this report possible through their vision, energy and resources.
    [Show full text]
  • Coordinating Measures to Reduce Fuel Use and Greenhouse Gas Emissions from U.S
    Putting Policy in Drive: Coordinating Measures to Reduce Fuel Use and Greenhouse Gas Emissions from U.S. Light-Duty Vehicles by Christopher W. Evans B.Sc. Mechanical Engineering University Manitoba, 2004 Submitted to the Engineering Systems Division in Partial Fulfillment of the Requirements for the Degree of Master of Science in Technology and Policy at the Massachusetts Institute of Technology June 2008 © 2008 Massachusetts Institute of Technology All rights reserved Signature of Author................................................................................................................ Technology and Policy Program, Engineering Systems Division May 9, 2008 Certified by ............................................................................................................................ John B. Heywood Sun Jae Professor of Mechanical Engineering Director, Sloan Automotive Laboratory Thesis Supervisor Accepted by ........................................................................................................................... Dava J. Newman Professor of Aeronautics and Astronautics and Engineering Systems Director, Technology and Policy Program 2 Putting Policy in Drive: Coordinating Measures to Reduce Fuel Use and Greenhouse Gas Emissions from U.S. Light-Duty Vehicles by Christopher W. Evans Submitted to the Engineering Systems Division on May 9, 2008 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Technology and Policy Abstract The challenges of energy security and climate
    [Show full text]
  • Idaho Power Plan, Nov 1 2019
    LISA D. NORDSTROM Lead Counsel [email protected] November 1, 2019 Public Utility Commission of Oregon Filing Center 201 High Street SE, Suite 100 P.O. Box 1088 Salem, Oregon 97301 RE: UM ___ – Idaho Power Company’s Application for Transportation Electrification Plan Attention Filing Center: Pursuant to OAR 860-087-0020, Idaho Power Company (“Idaho Power” or “Company”) submits the enclosed Transportation Electrification Plan (“TE Plan”) for acceptance by the Public Utility Commission of Oregon (“Commission”). Idaho Power’s TE Plan contains the Company’s long-term strategy to accelerate TE in its Oregon service area. Given the current state of the TE market in Idaho Power’s Oregon service area, the Company’s TE Plan is largely focused on improving the visibility and awareness of electric vehicles (“EV”). Through education and awareness, Idaho Power aims to accelerate TE by contributing to increased adoption of EVs, and access to electricity as a form of transportation fuel. Idaho Power respectfully requests that the Commission issue an order finding that the Company’s TE Plan meets the requirements of OAR 860-087-0020. The Company also requests that the Commission waive (per OAR 860-087-0001) OAR 860-087-0020(2)(d), which requires Idaho Power to present its TE Plan at a public meeting, if the Commission finds that presentation of the Company’s modest TE Plan, reflecting the limited EV penetration in its Oregon service area, would not materially benefit the Commission. It is respectfully requested that all formal data requests to the Company regarding this filing be addressed to the following: By email (preferred): [email protected] By regular mail: Lisa Nordstrom Lead Counsel Idaho Power Company 1221 W.
    [Show full text]
  • Electric Vehicle Infrastructure for the Monterey Bay Area the Associa on of Monterey Bay Area Governments August 2013
    E V Electric Vehicle Infrastructure for the Monterey Bay Area The Associa on of Monterey Bay Area Governments August 2013 The prepara on of this document was funded by a grant awarded by the Monterey Bay Unifi ed Air Pollu on Control District (MUAPCD), as part of the AB2766 program. Project Staff Alan Romero, Monterey Bay Unifi ed Air Pollu on Control District (MBUAPCD) AMBAG Dawn Mathes, Monterey County Resource Management Agency (RMA) Paul Hierling, Planner Carl P. Holm, Monterey County RMA Cody Meyer, Planner Craig Spencer, Monterey County RMA Anais Schenk, Planner Mario Salazar, Monterey County RMA Jason Adelaars, GIS Michael Ricker, City of Salinas Ecology Ac on Veronica Lezama, San Benito Council of Piet Canin, Vice President, Transporta on Governments Group Tegan Speiser, Santa Cruz County RTC Emily Glanville, Program Specialist Michael Zeller, TAMC Monterey Bay Unifi ed Air James Wasserman, Zero Motorcycles, Plug- Pollu on Control District In America Alan Romero, Air Quality Planner III Megan Tolbert, CSU Monterey Bay EV Communi es Alliance Piet Canin, Ecology Ac on Richard Corcoran, PEV Owner Richard Schorske, CEO Teresa Buika, UC Santa Cruz Previous staff contributors Richard Schorske, EV Communi es Alliance John Doughty Randy Deshazo, Principal Planner Linda Meckel, Planner, Project Manager MBEVA Plug-In Electric Vehicle Coordina ng Council Sharon Sarris, Green Fuse Energy Kris Markey, Offi ce of Monterey County Supervisor Parker Andy Hartmann, Interna onal Brotherhood of Electrical Workers Cheryl Schmi , City of Santa Cruz For more informa on regarding this study, contact Anais Schenk at [email protected] 2 E V Electric Vehicle Infrastructure for the Monterey Bay Area Execu ve Summary..............................................................................................................................................
    [Show full text]
  • The Future of Liquid Biofuels for APEC Economies
    NREL/TP-6A2-43709. Posted with permission. The Future of Liquid Biofuels for APEC Economies Energy Working Group May 2008 Report prepared for the APEC Energy Working Group under EWG 01/2006A by: Anelia Milbrandt National Renewable Energy Laboratory (NREL) Golden, Colorado, USA Web site: www.nrel.gov Dr. Ralph P. Overend NREL Research Fellow (Retired) Ottawa, Ontario, Canada APEC#208-RE-01.8 Acknowledgments The authors would like to acknowledge and thank the project overseer Mr. Rangsan Sarochawikasit (Department of Alternative Energy Development and Efficiency, Thailand) for his leadership of this project. We also would like to thank Dr. Helena Chum (National Renewable Energy Laboratory, USA) for contributing materials, and providing review and feedback; and the chair of APEC Biofuels Task Force, Mr. Jeffrey Skeer, (Department of Energy, USA) for his support and guidance. The authors also greatly appreciate the time and valuable contributions of the following individuals: Ms. Naomi Ashurst and Ms. Marie Taylor, Department of Industry, Tourism and Resources, Australia Ms. Siti Hafsah, Office of the Minister of Energy, Brunei Darussalam Mr. Mark Stumborg, Agriculture and Agri-Food, Canada Ms. Corissa Petro, National Energy Commission, Chile Mr. Song Yanqin and Mr. Zhao Yongqiang, National Development and Reform Commission, China Mr. K.C. Lo, Electrical and Mechanical Service Department, Hong Kong, China Dr. Hom-Ti Lee, Industrial Technology Research Institute, Chinese Taipei Mr. Hendi Kariawan, Indonesia Biofuels Team, Indonesia Dr. Jeong-Hwan Bae, Korea Energy Economics Institute, Republic of Korea Mr. Diego Arjona-Arguelles, Secretariat for Energy (SENER), Mexico Mr. Angel Irazola and Mr. Diego de la Puente Consigliere, Agricola Del Chira S.A., Peru Mr.
    [Show full text]
  • Jun 3 0 2010 Libraries Archves
    Assessing the Viability of Level III Electric Vehicle Rapid-Charging Stations by Radu Gogoana SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTIUTE OF TECHNOLOGY JUNE 2010 JUN 3 0 2010 02010 Radu Gogoana. All rights reserved. LIBRARIES The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic ARCHVES copies of this thesis in whole or in part in any medium now known or hereafter created. Signature of Author: ...... Department of Mechanical Engineering May 10, 2010 7 / II 7 '/ Certified by:. (......... ..... John G. Kassakian >fessor of Electrical Engineering Thesis Supervisor Accepted by: ..... ...................... John H. Lienhard V Collins Professor of Mechanical Engineering Chairman, Undergraduate Thesis Committee ASSESSING THE VIABILITY OF LEVEL III ELECTRIC VEHICLE RAPID-CHARGING STATIONS by RADU GOGOANA Submitted to the Department of Mechanical Engineering on May 10, 2010 in partial fulfillment of the requirements for the Degree of Bachelor of Science in Engineering as recommended by the Department of Mechanical Engineering ABSTRACT This is an analysis of the feasibility of electric vehicle rapid-charging stations at power levels above 300 kW. Electric vehicle rapid-charging (reaching above 80% state-of-charge in less than 15 minutes) has been demonstrated, but concerns have been raised about the high levels of electrical power required to recharge a high-capacity battery in a short period of time. This economic analysis is based on an existing project run by MIT's Electric Vehicle Team, of building a 200-mile range battery electric sedan capable of recharging in 10 minutes.
    [Show full text]
  • Transportation Milestones
    TRANSPORTATION MILESTONES The following is a list of transportation milestones that have occurred since the birth of our nation. Blue type indicates milestones for which a poster has been prepared in advance for your use. If time does not allow you to use all of the events listed, it is recommended the ones with an asterisk (*) be given highest priority— these are the ones provided on the sample timeline. Consider adding notable events that are of importance to your region— for example, Californians might want to include the Golden Gate Bridge while New Yorkers will probably add the Brooklyn Bridge. 1776 Propellor Submarine - Turtle (David Bushness, USA) 1779 Iron Bridge (Abraham Darby, England) 1781 Steam Engine Thomas Newcomen, England and James Watt, Scotland) 1781 Ornithopter (Karl Friedrich Meerwein, Germany) 1783 Hot Air Balloon (Joseph Michel and Jacques Étienne Montgolfier, France) 1787 Steamboat (John Fitch, USA— John Fitch is given credit for the first recorded steam-powered ship in the U.S. Connecticut and James The first successful trial of his boat was on the Delaware River in 1787. Delegates Rumsey, USA—West from the Constitutional Convention witnessed the event. The same year, James Virginia) Rumsey exhibited a steamboat on the Potomac River After a battle with Rumsey, Fitch was granted a U.S. patent for his steamboat in 1791—the men had similar designs. Fitch continued to build boats. While they were mechanically successful, Fitch failed to pay sufficient attention to construction and operating costs and was unable to justify the economic benefits of steam navigation. This was left to others.
    [Show full text]
  • Two Drive Modes for the Vehicle Rajat Ganechari, Prashant Bhandarkavthekar, Aditya Dudka, Ajay Rathod, Dr
    International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 1 ISSN 2229-5518 Two drive modes for the vehicle Rajat Ganechari, Prashant Bhandarkavthekar, Aditya Dudka, Ajay Rathod, Dr. Shriniwas Metan, Vikram Birangane Abstract— Looking at the current fuel price hike, private transport is progressively getting to be unviable for the normal man. Fuel consumption of bikes increases when you are driving on a slope and in substantial rush hour traffic where you have to switch the gear over and over again, also driving the bike in the lower gear. In the event that you change over to battery mode in these street conditions, this issue can be survived. The driver will have the choice of utilizing either battery-run front wheel drive or engine run rear wheel drive. When running on a non-conventional fuel (electricity in this case) we benefit our environment through less pollution and zero noise. To achieve this, we used a trial and error method to make a bar link that would sustain the load of the hub motor mounted on the front wheel. To control the speed of the hub motor, we fit the controller just above the headlight assembly. We also provided a switch in the boot space to turn on the electric drive mode also mounted the batteries just below the footrest. To accelerate the vehicle we fitted the accelerator, which is connected to the controller, on the left side of the bar handle. We made some demo runs of the vehicle, calculated the data and proved that two drive modes for the vehicle are more efficient and environmentally friendly than a normal gasoline powered vehicle.
    [Show full text]
  • 2.3 Car Sharing and End of Life Vehicles
    Ref. Ares(2018)4965112 - 27/09/2018 Research and Innovation action H2020-MG-2016-2017 Review of the Impacts on the Automotive Industry Deliverable D3.3 Version n° 1 Authors: Peter Wells (CU), Haokun Liu (CU), Stefano Beccaria (GM) www.stars-h2020.eu This project has received funding from the Horizon 2020 programme under the grant agreement n°769513 The growth of car sharing in a business as usual scenario DISCLAIMER The content of this deliverable reflect only the author’s view. The European Commission and INEA are not responsible for any use that may be made of the information it contains. GA n°769513 Page 2 of 61 The growth of car sharing in a business as usual scenario Document Information Grant Agreement 769513 Project Title Shared mobility opporTunities And challenges foR European citieS Project Acronym STARS Project Start Date 01 October 2017 Related work package WP 3 – Business model innovation to enable car sharing Related task(s) Task 3.3 – Review of the impacts on the automotive industry Lead Organisation CU Submission date 30 September 2018 Dissemination Level Public History Date Submitted by Reviewed by Version (Notes) 31 August Cristian Peter Wells (CU) First preliminary version (full deliverable) 2018 Santibanez (LGI) 8 September Peter Wells (CU) Ben Waller (ICDP) Second full deliverable version 2018 Andrea Chicco 25 September Peter Wells (CU) (POLITO), Marco Formatting adjustments and last revision 2018 Diana (POLITO) 27 September Marco Diana Submission of the final Deliverable 3.3 2018 (POLITO) GA n°769513 Page 3 of 61 The growth of car sharing in a business as usual scenario Table of contents SUMMARY .............................................................................................................................
    [Show full text]
  • 01 Front–054
    Energy Myths and Realities Energy Myths and Realities: Bringing Science to the Energy Policy Debate Vaclav Smil The AEI Press Publisher for the American Enterprise Institute WASHINGTON, D.C. Distributed by arrangement with the Rowman & Littlefield Publishing Group, 4501 Forbes Boulevard, Suite 200, Lanham, Maryland 20706. To order call toll free 1-800-462-6420 or 1-717-794-3800. For all other inquiries please contact AEI Press, 1150 Seventeenth Street, N.W. Washington, D.C. 20036 or call 1-800-862-5801. Library of Congress Cataloging-in-Publication Data Smil, Vaclav. Energy myths and realities : bringing science to the energy policy debate / Vaclav Smil. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-8447-4328-8 ISBN-10: 0-8447-4328-3 1. Renewable energy sources. 2. Energy policy. I. Title. TJ808.S639 2010 333.79'4—dc22 2010009437 14 13 12 11 10 1 2 3 4 5 6 7 © 2010 by the American Enterprise Institute for Public Policy Research, Wash- ington, D.C. All rights reserved. No part of this publication may be used or repro- duced in any manner whatsoever without permission in writing from the American Enterprise Institute except in the case of brief quotations embodied in news articles, critical articles, or reviews. The views expressed in the publications of the American Enterprise Institute are those of the authors and do not neces- sarily reflect the views of the staff, advisory panels, officers, or trustees of AEI. Printed in the United States of America Homines libenter quod volunt credunt Men believe what they want to —Publius Terentius v Contents LIST OF FIGURES xi KEY TO UNITS OF MEASURE xiii INTRODUCTION 1 Lost Opportunities 2 Persistent Myths 6 Challenging the Myths 11 PART I: LESSONS FROM THE PAST 15 1.
    [Show full text]
  • Auto Industry and Market Policy
    A Strong Canadian Auto Industry in a Fuel Efficient Future A Strong Canadian Auto Industry in a Fuel Efficient Future A commentary on automotive industry policy in the context of climate change, vehicle fuel efficiency regulations and carbon-constrained markets Prepared by: Bob Oliver Transportation Programme Director Pollution Probe December 2007 Pollution Probe 17 A Strong Canadian Auto Industry in a Fuel Efficient Future About this Commentary Pollution Probe believes that Canada needs a long-term vision and strategy to build a strong and globally competitive auto sector for the future. The auto manufacturing industry in Canada is composed of vehicle assembly operations and component producers. Generally, these facilities supply foreign automotive markets, exporting mainly to the US, generating significant wealth for Canada. The consumer market for automobiles in Canada is mainly supplied with imported models, thus expanding choice for Canadians. The right mix of industry policies and consumer market policies could help create the conditions for the long-term success of Canada’s auto industry. A crucial element of this success will be the capacity for this industry to build products that are consistent with the goals of environmental and economic sustainability. This commentary begins with a discussion of why fuel efficiency standards are needed and why governments around the world are implementing regulations. Aspects of the auto manufacturing industry and the consumer automobile market in Canada are then presented, followed by a discussion
    [Show full text]