Reservoir Characterization and Modeling of the Glorieta and the Clearfork Formations, Monahans Field, Permian Basin, Texas A

Total Page:16

File Type:pdf, Size:1020Kb

Reservoir Characterization and Modeling of the Glorieta and the Clearfork Formations, Monahans Field, Permian Basin, Texas A RESERVOIR CHARACTERIZATION AND MODELING OF THE GLORIETA AND THE CLEARFORK FORMATIONS, MONAHANS FIELD, PERMIAN BASIN, TEXAS A Thesis by RYAN DAVID YEATMAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2011 Major Subject: Geology RESERVOIR CHARACTERIZATION AND MODELING OF THE GLORIETA AND THE CLEARFORK FORMATIONS, MONAHANS FIELD, PERMIAN BASIN, TEXAS A Thesis by RYAN DAVID YEATMAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Michael C. Pope Committee Members, Wayne M. Ahr Walter B. Ayers Head of Department, Andreas Kronenberg August 2011 Major Subject: Geology iii ABSTRACT Reservoir Characterization and Modeling of the Glorieta and the Clearfork Formations, Monahans Field, Permian Basin, Texas. (August 2011) Ryan David Yeatman, B.S., Texas A&M University Chair of Advisory Committee: Dr. Michael C. Pope Monahans Field of the Permian Basin in West Texas is a complex carbonate reservoir due to the lateral heterogeneity caused by facies changes throughout the Lower Guadalupian Glorieta Formation and the Upper Leonardian Upper Clearfork Formation. A facies model, porosity model, and a siltstone model were generated in Petrel® to better characterize the Monahans Field reservoir. Interbedded impermeable siltstone beds in Monahans Field partition the reservoir making oil production and water injection difficult. The facies model indicates that during deposition, a tectonically uplifted area (island) influenced sedimentation and also shows that the Upper Clearfork Formation is mainly subtidal facies and the Glorieta Formation consists mainly of tidal flat facies. The porosity model shows the greatest porosity to be in the diagenetically altered supratidal deposits. The siltstone model identified siltstone barriers that prograded across the platform when sea level was low. 4th-order sequences occur within the larger 3rd-order sequence. The models identified multiple flow units in Monahans Field. Preferential injection of water within the reservoir compartments, horizontal drilling, and hydraulic fracture stimulation may all provide mechanisms to more efficiently sweep the remaining reserves from the reservoir. iv DEDICATION I would like to dedicate this thesis to my family and friends who helped me get through school. Without them I would not be where I am at today. v ACKNOWLEDGEMENTS I would like to thank my committee chair, Dr. Pope, and my committee members, Dr. Ahr, and Dr. Ayers, for their guidance and support throughout the course of this research. I would also like to give a special thanks to Occidental Petroleum for giving me the data set and to all at Occidental Petroleum who helped guide me through this thesis project. vi NOMENCLATURE API Weight of Oil Compared to Water Bbbl Billion Barrels Bbl Barrels BOPD Barrels of Oil per Day CBP Central Basin Platform K Permeability md Millidarcy MFS Maximum Flooding Surface MMBO Million Barrels of Oil MMBW Million Barrels of Water m.y. Million Years NPHI Neutron Porosity PHI_CORE Core Porosity QC Quality Check SGR Spectral Gamma Ray Log TD Total Depth TVDSS True Vertical Depth Sub-Sea UCF Upper Clearfork XPHITX Cross Plotted Neutron-Density Porosity Ф Porosity vii TABLE OF CONTENTS Page ABSTRACT.............................................................................................................. iii DEDICATION .......................................................................................................... iv ACKNOWLEDGEMENTS ...................................................................................... v NOMENCLATURE.................................................................................................. vi TABLE OF CONTENTS .......................................................................................... vii LIST OF FIGURES................................................................................................... ix LIST OF TABLES .................................................................................................... xi INTRODUCTION..................................................................................................... 1 Previous Studies in Monahans Field .......................................................... 1 Statement of Problems ............................................................................... 3 Objectives................................................................................................... 3 Methods...................................................................................................... 5 Data Set ...................................................................................................... 6 Field Location ............................................................................................ 7 Field History............................................................................................... 8 Reservoir Description................................................................................. 8 GEOLOGIC BACKGROUND ................................................................................. 10 Structural Evolution of the Permian Basin and CBP ................................. 10 Depositional Environment.......................................................................... 11 Third-Order Sequences .............................................................................. 11 Fourth-Order Sequences............................................................................. 12 PETROPHYSICAL ANALYSIS.............................................................................. 13 Quality Checking (QC) Log Data .............................................................. 13 Porosity Cutoffs.......................................................................................... 13 viii Page Log Normalization ..................................................................................... 13 PHI-CORE Logs ........................................................................................ 14 XPHITX Logs ............................................................................................ 14 NPHI Logs.................................................................................................. 15 Siltstone Logs............................................................................................. 17 PETREL MODELING.............................................................................................. 19 Petrel Methodology.................................................................................... 19 Grid Construction....................................................................................... 19 Log Correlations......................................................................................... 19 Layering ..................................................................................................... 22 Property Modeling...................................................................................... 22 Facies Logs................................................................................................. 22 Facies Modeling ......................................................................................... 23 Variogram Analysis.................................................................................... 24 RESULTS ................................................................................................................. 27 UCF Formation Facies Model.................................................................... 27 Glorieta Formation Facies Model .............................................................. 28 UCF Formation Siltstone Model ................................................................ 29 Glorieta Formation Siltstone Model........................................................... 30 Sequences ................................................................................................... 31 SUMMARY .............................................................................................................. 33 Eolian Siltstone Compartments.................................................................. 33 Preferential Injection .................................................................................. 34 Horizontal Drilling and Fracturing............................................................. 37 Further Infill Drilling ................................................................................. 38 Data Required............................................................................................. 39 Conclusions ................................................................................................ 40 REFERENCES CITED ............................................................................................. 41 VITA ......................................................................................................................... 44 ix LIST OF FIGURES Page Figure 1 Stratigraphic Column ................................................................................ 4 Figure 2 Workflow Outline ..................................................................................... 6 Figure 3 Location Map ............................................................................................ 7 Figure 4 Drilling Base Map ....................................................................................
Recommended publications
  • 1 Running Head: SEQUENCE STRATIGRAPHY of TEXAS
    Running Head: SEQUENCE STRATIGRAPHY OF TEXAS MIDDLE PERMIAN PLATFORM CARBONATES OUTCROP-BASED CHARACTERiZATION OF LEONARDIAN PLATFORM CARBONATE IN WEST TEXAS: IMPLICATIONS FOR SEQUENCE STRATIGRAPHIC STYLES IN TRANSITIONAL ICEHOUSE-GREENHOUSE SETTINGS Stephen C. Ruppel, W. Bruce Ward1, and Eduardo E. Ariza Bureau of Economic Geology The University of Texas at Austin 1 Current address: Earthworks LLC, P.O. Box 178, Newtown, CT 06470-0178 1 ABSTRACT The Sierra Diablo Mountains of West Texas contain world class exposures of lower and middle Permian platform carbonates. As such these outcrops offer key insights into the products of carbonate deposition in the transitional icehouse/greenhouse setting of the early-mid Permian that are available in few other places in the world. They also afford an excellent basis for examing how styles of facies and sequence development vary between platform tops and platform margins. Using outcrop data and observations from over 2 mi (3 km) of continuous exposure, we collected detailed data on the facies composition and architecture of high frequency (cycle-scale) and intermediate frequency (high frequency sequence scale) successions within the Leonardian. We used these data to define facies stacking patterns along depositional dip across the platform in both low and high accommodation settings and to document how these patterns vary systematically between and within sequences . These data not only provide a basis for interpreting similar Leonardian platform successions from less well constrained outcrop and subsurface data sets but also point out some important caveats that should be considered serve as an important model for understanding depositional processes during the is part of the Permian worldwide.
    [Show full text]
  • Theuniversityoftexasbul
    THEUNIVERSITYOFTEXASBULLETIN No. 3027: July 15, 1930 THE GEOLOGY OF STONEWALL COUNTY, TEXAS By L. T. PATTON Bureau of Economic Geology J. A. Udden, Director £. H. Sellards, Associate Director PUBLISHED BY TOE UNIVERSITY OF TEXAS AUSTIN Publications of The University of Texas Publications Committees GENERAL: Frederic Duncalf Mrs.F. A. Perry J. F.Dobie C. H. Slover J. L.Henderson G. W. Stumberg H. J.Muller A.P. Winston official E. J. Mathews Killis Campbell C. F. Arrowood C.D.Simmons E. C.H.Bantel Bryant Smith The University publishes bulletins four times a month, so numbered that the first two digits of the number show the year of issue and the last two the position in the yearly series. (For example, No. 3001is the first bulletin of the year 1930.) These bulletins comprise the official publica- tions of the University, publications on humanistic and scientific subjects, and bulletins issued from time to time by various divisions of the University. The following bureaus and divisions distribute bulletins issued by them; communications concerning bulletins in these fields should be addressed to TheUniversity of Texas,Austin,Texas,care of the bureau or division issuing the bulletin: Bureau of Business Research, Bureau of Economic Geology, Bureau of Engineering Research, Interscholastic League Bureau, andDivision of Extension. Communications concerning all other publications of the University should be addressed to University Publications,TheUniversity of Texas,Austin. Additionalcopies of this publicationmaybeprocuredfrom the Bureau of Economic Geology, The University of Texas, Austin, Texas THE UNIVERSITY OFTEXAS PREM, AUSTUI THEUNIVERSITYOF TEXASBULLETIN No. 3027: July 15, 1930 THE GEOLOGY OF STONEWALL COUNTY, TEXAS By L.
    [Show full text]
  • Speleogenesis and Delineation of Megaporosity and Karst
    Stephen F. Austin State University SFA ScholarWorks Electronic Theses and Dissertations 12-2016 Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas Jon T. Ehrhart Stephen F. Austin State University, [email protected] Follow this and additional works at: https://scholarworks.sfasu.edu/etds Part of the Geology Commons, Hydrology Commons, and the Speleology Commons Tell us how this article helped you. Repository Citation Ehrhart, Jon T., "Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas" (2016). Electronic Theses and Dissertations. 66. https://scholarworks.sfasu.edu/etds/66 This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/66 Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas By Jon Ehrhart, B.S. Presented to the Faculty of the Graduate School of Stephen F. Austin State University In Partial Fulfillment Of the requirements For the Degree of Master of Science STEPHEN F.
    [Show full text]
  • Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin
    Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities Final Report Reporting Period Start Date: January 14, 2002 Reporting Period End Date: May 13, 2004 Shirley P. Dutton, Eugene M. Kim, Ronald F. Broadhead, Caroline L. Breton, William D. Raatz, Stephen C. Ruppel, and Charles Kerans May 2004 Work Performed under DE-FC26-02NT15131 Prepared by Bureau of Economic Geology John A. and Katherine G. Jackson School of Geosciences The University of Texas at Austin University Station, P.O. Box X Austin, TX 78713-8924 and New Mexico Bureau of Geology and Mineral Resources New Mexico Institute of Mining and Technology Socorro, NM 87801-4681 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability for responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. iii ABSTRACT The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 × 109 m3) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 × 105 m3).
    [Show full text]
  • Catalogueoftypes22brun.Pdf
    UNIVERSITY OF ILLINOIS LIBRARY AT URBANACHAMPAIGN GEOLOGY JUL 7 1995 NOTICE: Return or renew all Library Materials! The Minimum Fee for •adi Lost Book is $50.00. The person charging this material is responsible for its return to the library from which it was withdrawn on or before the Latest Date stamped below. Thett, mutilation, and underlining of books are reasons for discipli- nary action and may result in dismissal from the University. To renew call Telephone Center, 333-8400 UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN &S.19J6 L161—O-1096 'cuLUuy LIBRARY FIELDIANA Geology NEW SERIES, NO. 22 A Catalogue of Type Specimens of Fossil Vertebrates in the Field Museum of Natural History. Classes Amphibia, Reptilia, Aves, and Ichnites John Clay Bruner October 31, 1991 Publication 1430 PUBLISHED BY FIELD MUSEUM OF NATURAL HISTORY Information for Contributors to Fieldiana General: Fieldiana is primarily a journal for Field Museum staff members and research associates, althouj. manuscripts from nonaffiliated authors may be considered as space permits. The Journal carries a page charge of $65.00 per printed page or fraction thereof. Payment of at least 50% of pag< charges qualifies a paper for expedited processing, which reduces the publication time. Contributions from staff, researcl associates, and invited authors will be considered for publication regardless of ability to pay page charges, however, the ful charge is mandatory for nonaffiliated authors of unsolicited manuscripts. Three complete copies of the text (including titl< page and abstract) and of the illustrations should be submitted (one original copy plus two review copies which may b machine-copies).
    [Show full text]
  • Play Analysis of Major Oil Reservoirs in the New Mexico Part of the Permian Basin: Enhanced Production Through Advanced Technologies by Ronald F
    Play Analysis of Major Oil Reservoirs in the New Mexico Part of the Permian Basin: Enhanced Production Through Advanced Technologies by 1 2 3 Ronald F. Broadhead , Zhou Jianhua and William D. Raatz 1New Mexico Bureau of Geology and Mineral Resources, a division of New Mexico Tech, Socorro NM 87801 2Department of Computer Sciences, New Mexico Tech, Socorro NM 87801 3New Mexico Bureau of Geology and Mineral Resources, present address OxyPermian, Houston, TX From R.L. Martin and K.F. Hickey West Texas Geological Society, 2002 Open File Report 479 New Mexico Bureau of Geology and Mineral Resources, A division of New Mexico Tech Socorro, NM 87801 Peter A. Scholle, Director July 2004 DISCLAIMER This open-file report was prepared with the support of the U.S. Department of Energy, under Award No. DE-FC26-02NT15131. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implicit, or assumes any legal liability for the responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • Subsurface Petroleum Geology of Santa Rosa Sandstone (Triassic), Northeast New Mexico
    COVER—Well-developed primary porosity in Santa Rosa sandstone, 800-810 ft, Husky Oil Co. and General Crude Oil Co. No. 1 Hanchett State, Sec. 16, T. 8 N., R. 24 E., Guadalupe County, New Mexico. Circular 193 New Mexico Bureau of Mines & Mineral Resources A DIVISION OF NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY Subsurface petroleum geology of Santa Rosa Sandstone (Triassic), northeast New Mexico by Ronald F. Broadhead New Mexico Bureau of Mines & Mineral Resources SOCORRO 1984 111 Contents A B S T R A C T 5 DOCKUM SEDIMENTOLOGY 13 INTRODUCTION 5 STRUCTURE 15 PETROLEUM METHODS OF INVESTIGATION 5 OCCURRENCES 17 STRATIGRAPHY 9 PETROGRAPHY AND RESERVOIR SAN ANDRES FORMATION (PERMIAN: GE OL O G Y 1 7 LEONARDIAN) 9 LOWER SANDSTONE UNIT OF SANTA ROSA ARTESIA GROUP (PERMIAN: GUADALUPIAN) 9 SANDSTONE 19 Grayburg-Queen unit 9 UPPER SANDSTONE UNIT OF SANTA ROSA Seven Rivers Formation 10 SANDSTONE 19 Yates-Tansill unit 10 CUERVO MEMBER OF CHINLE FORMATION 19 BERNAL FORMATION PETROLEUM POTENTIAL OF SANTA ROSA (PERMIAN: GUADALUPIAN) 10 SANDSTONE AND CUERVO MEMBER OF DOCKUM GROUP (TRIASSIC) 11 CHINLE FORMATION 20 Santa Rosa Sandstone 11 SANTA ROSA SANDSTONE 20 Lower sandstone unit 12 CUERVO MEMBER OF CHINLE Middle mudstone unit 12 FORMATION 21 REFERENCES 21 Upper sandstone unit 12 Chinle Formation 13 Lower shale member 13 Cuervo Sandstone Member 13 Upper shale member 13 Redonda Formation 13 Figures 1—Study area and locations of tar-sand deposits 6 2—Stratigraphic chart of Upper Permian and Triassic rocks in northeast New Mexico 9 3—(in pocket)—East-west
    [Show full text]
  • Outcropping Permian Shelf Formations of Eastern New Mexico Vincent C
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/23 Outcropping Permian shelf formations of eastern New Mexico Vincent C. Kelley, 1972, pp. 72-78 in: East-Central New Mexico, Kelley, V. C.; Trauger, F. D.; [eds.], New Mexico Geological Society 23rd Annual Fall Field Conference Guidebook, 236 p. This is one of many related papers that were included in the 1972 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Capitan Reef Complex Structure and Stratigraphy
    Capitan Reef Complex Structure and Stratigraphy Report by Allan Standen, P.G. Steve Finch, P.G. Randy Williams, P.G., Beronica Lee-Brand, P.G. Assisted by Paul Kirby Texas Water Development Board Contract Number 0804830794 September 2009 TABLE OF CONTENTS 1. Executive summary....................................................................................................................1 2. Introduction................................................................................................................................2 3. Study area geology.....................................................................................................................4 3.1 Stratigraphy ........................................................................................................................4 3.1.1 Bone Spring Limestone...........................................................................................9 3.1.2 San Andres Formation ............................................................................................9 3.1.3 Delaware Mountain Group .....................................................................................9 3.1.4 Capitan Reef Complex..........................................................................................10 3.1.5 Artesia Group........................................................................................................11 3.1.6 Castile and Salado Formations..............................................................................11 3.1.7 Rustler Formation
    [Show full text]
  • Oil Production from the Guadalupe Series in Eddy County, New Mexico Vilas P
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/5 Oil production from the Guadalupe series in Eddy County, New Mexico Vilas P. Sheldon, 1954, pp. 150-159 in: Southeastern New Mexico, Stipp, T. F.; [ed.], New Mexico Geological Society 5th Annual Fall Field Conference Guidebook, 209 p. This is one of many related papers that were included in the 1954 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • "Geology & Ground-Water Conditions in Southern Lea County, New
    ItI *1. I.4 GROUND-WTATER REPORT 6 an4 A.; Geology and Ground-Water 54 Conditions in Southern I Lea County, New Mexico by ALEXANDER NICHOLSON, Jr. C,'I and ALFRLD CLEBSCH, JR. UN!TED STATES GEOLOGICAL SUR'VEY i I I i i I i I' ;it it. STATE BUREAU OF MINES AND MINERAL RESOURCES .t64 NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY CAMPUS STATION SOCORRO, NEW MEXICO Contents Page NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY ABSTRACT ............................................. 1 E. J. Workman, President INTRODUCTION ....................................... 2 Location and area ....................................... 2 History and scope of investigation ......................... 2 STATE BUREAU OF MINES AND MINERAL RESOURCES Previous investigations and acknowledgments ............... 4 Well-numbering system ................................. 5 Alvin J. Thompson, Direclor GEOGRAPHY ............... 7 Topography and drainage ................................ 7 Mescalero Ridge and High Plains ....................... 7 THE REGENTS Querecho Plains and Laguna Valley ..................... 9 Grama Ridge area ..................................... 11 MEEMBERS Ex OFFICIO Eunice Plain ......................................... 12 Monument Draw ................................... 12 TheHonorable Edwin L. Mechern ...... Governor of New Mexico Rattlesnake Ridge area ................................ 13 Tom Wiley ............. Superintendent of Public Instruction San Simon Swale ...................................... 13 Antelope Ridge area .................................
    [Show full text]
  • Ground-Water Resources of Haskell and Knox Counties, Texas
    TEXAS WATER CO~lMISSION Joe D. Carter, Chairman O. F. Dent, Commissioner H. A. Beckwith, Commissioner BULLETIN 6209 GROUND-WATER RESOURCES OF HASKELL AND KNOX COUNrIES, TEXAS By William Ogilbee, Geologist United States Geological Survey and F. L. Osborne, Jr., Geologist Texas Water Commission Prepared in cooperation with the Geological Survey United States Department of the Interior August 1962 TABLE OF CONTEm'S Page ABSTRACT. .. ...... .•.. .. .•. .... .•.. .. .•. .... ... .. ..... .. ... ..... 1 INTRODUCTION .. " ...............•......••.....•......•.... ," .. .•... .. 3 Purpose and Scope.................................................. 3 Location and Economic Development........•...... ,.................. 3 Well·Numbering System.............................................. 5 Previous Investigations.......•....•.....•......•.....•......•. , .. , 6 Acknowledgments ,, , ,•... .• .... .• . 6 Topography and Drainage............................................ 6 Climate ..... , ............................•......•.....•.......... ,. 7 GENERAL GEOLOGY... ......................................... •• .•....•.... 7 GEOLOGIC FORMATIONS AND THEIR WATER-BEARING PROPERTIES..... .•.... .•..... 15 Permian System..................................................... 15 Wichita Group .................•......•.....•........ ,......... 15 Clyde Formation.............•...•.•..........•.......... , 15 Lueders Limestone ........•..... ,......................... 15 Clear Fork Group ..............•......•.....•.. ,............... 16 Arroyo Formation........................................
    [Show full text]