Building a Morbidostat: an Automated Continuous-Culture Device For

Total Page:16

File Type:pdf, Size:1020Kb

Building a Morbidostat: an Automated Continuous-Culture Device For PROTOCOL Building a morbidostat: an automated continuous- culture device for studying bacterial drug resistance under dynamically sustained drug inhibition Erdal Toprak1,2, Adrian Veres3, Sadik Yildiz2, Juan M Pedraza4, Remy Chait1, Johan Paulsson1,5 & Roy Kishony1,5 1Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA. 2Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey. 3Health Sciences and Technology Program, Harvard Medical School, Boston, Massachusetts, USA. 4Department of Physics, Universidad de los Andes, Bogotá, Colombia. 5School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA. Correspondence should be addressed to E.T. ([email protected]) or R.K. ([email protected]). Published online 21 February 2013; doi:10.1038/nprot.2013.021 We present a protocol for building and operating an automated fluidic system for continuous culture that we call the ‘morbidostat’. The morbidostat is used to follow the evolution of microbial drug resistance in real time. Instead of exposing bacteria to predetermined drug environments, the morbidostat constantly measures the growth rates of evolving microbial populations and dynamically adjusts drug concentrations inside culture vials in order to maintain a constant drug-induced inhibition. The growth rate measurements are done using an optical detection system that is based on measuring the intensity of back-scattered light from bacterial cells suspended in the liquid culture. The morbidostat can additionally be used as a chemostat or a turbidostat. The whole system can be built from readily available components within 2–3 weeks by biologists with some electronics experience or engineers familiar with basic microbiology. INTRODUCTION Antibiotic resistance is an important public health problem, ren- at a constant rate lower than the maximal growth rate of the popu- dering currently available drugs useless and threatening millions lation, the dilution rate of the morbidostat rdilution ≅ ∆V/(V·∆t) is of lives1–4. Evolution of resistance by spontaneous mutations can fixed. In steady state, the bacterial growth rate must reach a value be studied in the laboratory by exposing a bacterial culture to that matches this dilution rate. However, in contrast to a chemo- an environment in which growth is inhibited by antibiotics and stat, in which the bacterial growth is inherently limited by nutrient by characterizing the resistant mutants that emerge5,6. However, availability, in the morbidostat the cell density is kept low such that as bacteria are typically subjected to a fixed drug concentration, the population is not nutrient limited; instead, its growth rate is those studies are generally limited to only one or at most a few controlled by externally adjusting drug concentration. At the end Nature America, Inc. All rights reserved. Inc. Nature America, 3 mutational steps conferring resistance. Once such single mutations of each period ∆t, the growth rate (r, Fig. 1b, black lines) is calcu- emerge and sweep through the population, the inhibition by the lated on the basis of optical density (OD) measurements (Fig. 1b, gray dots). Next, depending on the calculated growth rate and the © 201 drug is relieved and there is no additional pressure to evolve higher levels of resistance. To be able to follow the evolution of resistance current OD of the culture, the morbidostat decides whether to add through sequential accumulation of multiple mutations, we must fresh medium or fresh medium plus drug (in either case, the same thus be able to keep increasing the drug concentration such that the fixed volume ∆V is added). Fresh medium with the drug is injected evolving bacterial population is constantly challenged. However, only if the OD exceeds a threshold (ODTHR) and if the growth rate carrying out experiments using environments in which drug con- is higher than the dilution rate (Fig. 1b, magenta filled circles); centrations are determined beforehand is almost impossible, as the in all other cases, fresh medium is injected. Drug concentrations phenotypic effects of emerging mutations on complex evolving inside the culture vials increase with drug injections and are gradu- populations cannot be predicted. Experimental systems that can ally reduced by dilution with successive fresh medium injections automatically adjust drug concentrations to maintain a fixed level (Fig. 1c, magenta line). The value of ODTHR is chosen to be small of growth inhibition on evolving bacterial populations are therefore enough such that the population is never nutrient limited, typically 7 useful for studying the evolution of drug resistance . Such experi- ODTHR = 0.15. Choosing the values of ∆t, V and ∆V such that the mental systems become particularly important for studies that aim dilution rate rdilution is substantially lower than the maximal growth to quantify the evolutionary dynamics of bacterial populations in rate of the bacteria forces the system to adjust the drug concentra- different drugs or drug combinations8,9. tion to reduce the growth rate accordingly. Typically, for bacteria − 1 We recently introduced an automated continuous culture device, growing at a maximal rate of r0 = 0.8 h , the morbidostat is set to the morbidostat, for studying evolution of drug resistance in a con- V = 12 ml, ∆V = 1 ml and ∆t = 12 min, such that the dilution rate trolled environment containing an antibiotic at a concentration of the system is half of the growth rate of bacteria in the absence of − 1 that is dynamically adjusted such that the bacterial population is drugs (rdilution ≅ ∆V/(V·∆t) = 0.4 h ; Fig. 1b, green filled circles). constantly challenged (Fig. 1)5. The bacterial population is growing Throughout the entire experiment, the volumes of the cultures are in a fixed volume (V) with continuous stirring, and at fixed time kept constant using a suction pump (Fig. 1a). intervals (∆t) the culture is diluted by injection of a fixed amount As the bacterial population growth is limited by drug inhibi- (∆V) of fresh medium or fresh medium containing dissolved drugs. tion and not by nutrient depletion, the evolutionary changes Similar to a chemostat, in which cell cultures are periodically diluted occurring in the populations are likely to be associated with drug NATURE PROTOCOLS | VOL.8 NO.3 | 2013 | 555 PROTOCOL Figure 1 | The morbidostat is an automated a b 0.17 continuous-culture device that maintains a Media pump ODTHR constant level of growth inhibition on evolving Drug pump 0.15 bacterial populations. (a) The working algorithm Control algorithm Waste OD of the morbidostat. (b) Representative bacterial pump ∆OD Add �V r �V/V growth in the morbidostat. OD values are shown No Grow media V OD > ODTHR t with gray dots. Growth rates (r) of bacterial Detector & � LED for �t ∆OD > 0 Add �V populations are periodically calculated by fitting Yes 0.10 drug 52 53 54 exponential growth functions (black lines). Markers Time (h) with magenta and green colors represent dilutions with drug solution and fresh medium, respectively. c d 4 e ) (TMP) r (c) Final OD values at the end of each growth cycle. –1 0 3 h (d) Growth rates (blue) and drug concentrations 10–1 ( µ (magenta) between two consecutive drug solution 2 g ml OD injections. (e) The drug concentration that –1 50% growth 1 ) inhibits growth by 50% (IC50) is calculated by inhibition Growth rate (1 analyzing growth rates and corresponding drug IC50 10–2 0 0 concentrations. TMP, trimethoprim. 47 51 55 59 63 67 47 51 55 59 63 67 10–2 100 Time (h) Time (h) (TMP) (µg ml–1) resistance. Once the population evolves and becomes more resistant, it starts to grow faster in the presence of the drug, and in response the drug conventional selection techniques such as the disc diffusion assay concentration is adjusted such that the population is again inhib- or selection on agar plates or liquid with fixed drug concentrations, ited using a higher drug dose and the growth rate converges to which selects just once for bacteria capable of surviving particular the fixed dilution rate of the system. The continuous drug inhibi- drug levels, the morbidostat does not relax selection as the bacteria tion challenges the bacterial population to keep evolving by accu- become increasingly resistant7,9,10. Instead, it follows the changes mulating multiple resistance mutations. We typically continue in drug sensitivity and adjusts the drug concentration accordingly morbidostat experiments until a diminishing rate of increase to maintain bacterial growth inhibition (Fig. 1d). This feature in resistance is observed. For all three drugs used in our recent makes it possible to follow the evolution of multistep increases in studies, all of the cultures attained high, steady resistance levels drug resistance in real time. In contrast, microbial selection experi- within 3 weeks5. ments that are carried out using antibiotic-containing agar plates Construction of the morbidostat involves assembly of the mor- or growth medium have the main advantage of relative simplicity bidostat culture vials, assembly of the optical detection system and compared with the morbidostat. However, bacterial mutants that assembly of a computer-controlled array of peristaltic pumps used are selected in constant drug environments tend to develop only for liquid transfer. Our design currently allows growing 15 inde- one mutation that will release the selection pressure, unlike clinical pendently controlled cultures in parallel
Recommended publications
  • METHODS & STANDARD OPERATING PROCEDURES (Sops)
    METHODS & STANDARD OPERATING PROCEDURES (SOPs) OF EMISSION TESTING IN HAZARDOUS WASTE INCINERATOR FOREWARD COVR PAGE TEAM CHAPTER TITLE PAGE NO Chapter - 1 Stack Monitoring – Material And Methodology For Isokinetic Sampling 1-28 Chapter - 2 Standard Operating Procedure (SOP) For Particulate Matter Determination 29-38 Chapter - 3 Determination Of Hydrogen Halides (Hx) And Halogens From Source Emission 39-54 Chapter - 4 Standard Operating Procedure For The Sampling Of Hydrogen Halides And Halogens From Source Emission 55-61 Determination Of Metals And Non Metals Emissions From Chapter - 5 Stationarysources 62-79 Standard Operating Procedure (Sop) For Sampling Of Metals And Non Chapter - 6 Metals & 80-97 Standard Operating Procedure (Sop) Of Sample Preparation For Analysis Of Metals And Non Metals Chapter - 7 Determination Of Polychlorinated Dibenzo-P-Dioxins And 98-127 Polychlorinated Dibenzofurans Standard Operating Procedure For Sampling Of Polychlorinated Chapter - 8 Dibenzo-P-Dioxins And Polychlorinated Dibenzofurans & 128-156 Standard Operating Procedure For Analysis Of Polychlorinated Dibenzo- P-Dioxins And Polychlorinated Dibenzofurans Project Team 1. Dr. B. Sengupta, Member Secretary - Overall supervision 2. Dr. S.D. Makhijani, Director - Report Editing 3. Sh. N.K. Verma, Ex Additional Director - Project co-ordination 4. Sh. P.M. Ansari, Additional Director - Report Finalisation 5. Dr. D.D. Basu, Senior Scientist - Guidance and supervision 6. Sh. Paritosh Kumar, Sr. Env. Engineer - Report processing 7. Sh. Dinabandhu Gouda, Env. Engineer - Data compilation, analysis and preparation of final report 8. Sh. G. Thirumurthy, AEE - - do - 9. Sh. Abhijit Pathak, SSA - - do - 10. Ms. Trapti Dubey, Jr. Professional (Scientist) - - do - 11. Er. Purushotham, Jr. Professional (Engineer) - - do - 12.
    [Show full text]
  • Laboratory Equipment Reference Sheet
    Laboratory Equipment Stirring Rod: Reference Sheet: Iron Ring: Description: Glass rod. Uses: To stir combinations; To use in pouring liquids. Evaporating Dish: Description: Iron ring with a screw fastener; Several Sizes Uses: To fasten to the ring stand as a support for an apparatus Description: Porcelain dish. Buret Clamp/Test Tube Clamp: Uses: As a container for small amounts of liquids being evaporated. Glass Plate: Description: Metal clamp with a screw fastener, swivel and lock nut, adjusting screw, and a curved clamp. Uses: To hold an apparatus; May be fastened to a ring stand. Mortar and Pestle: Description: Thick glass. Uses: Many uses; Should not be heated Description: Heavy porcelain dish with a grinder. Watch Glass: Uses: To grind chemicals to a powder. Spatula: Description: Curved glass. Uses: May be used as a beaker cover; May be used in evaporating very small amounts of Description: Made of metal or porcelain. liquid. Uses: To transfer solid chemicals in weighing. Funnel: Triangular File: Description: Metal file with three cutting edges. Uses: To scratch glass or file. Rubber Connector: Description: Glass or plastic. Uses: To hold filter paper; May be used in pouring Description: Short length of tubing. Medicine Dropper: Uses: To connect parts of an apparatus. Pinch Clamp: Description: Glass tip with a rubber bulb. Uses: To transfer small amounts of liquid. Forceps: Description: Metal clamp with finger grips. Uses: To clamp a rubber connector. Test Tube Rack: Description: Metal Uses: To pick up or hold small objects. Beaker: Description: Rack; May be wood, metal, or plastic. Uses: To hold test tubes in an upright position.
    [Show full text]
  • Eight New Filter Bags from Whirl-Pak® Three New Hydrated Sponge
    NEW PRODUCTS Eight new filter bags from whirl-pak® Specially designed for use with homogenizer blenders. Extra-heavy PET film and special features for easier and more efficient testing. Additional sizes and styles on page 11. Vertical Filter Bags Bags use a special laminated PET film for durability and a vertical nonwoven filter to separate solids for easy pipetting of the liquid sample. Available with or without a closure, each bag contains a 250 micron polyester filter adhered vertically along the side of the 3 mil (0.76 mm) bag. Easy-pour side seal allows you to simply pour liquid out of the bag without also emptying solids. Hydrated PolySponge™ Bags B01586 — 55 oz. With Closure three new Hydrated sponge products from whirl-pak® Make environmental surface sampling faster and easier with these pre-moistened bags. Durable high-density polyurethane sponge is ready to use and resists tearing and fraying. Each is hydrated with HiCap™ Neutralizing Broth. Additional information on page 12. Hydrated PolyProbe™ HiCap™ is a registered trademark of World Bioproducts, LLC. ctured under a ufa qua n li Whirl-Pak® Bags are manufactured under a quality management system certified to ISO9001, except B01299, B01350, a t y M m o , , , , , , , and which require an additional processing step an t B01392 B01422 B01423 B01475 B01478 B01590 B01591 B01592 age fied ISO9001ment system certi done outside of regular production. • Standard Methods Says — Standard Methods (18th edition, 1992, section 9060A, sample containers) states “For some applications, samples may be collected in pre-sterilized plastic bags.” Whirl-Pak® bags meet this description.
    [Show full text]
  • Corning Life Sciences Selection Guide Issue 6
    www.corning.com/lifesciences Corning Life Sciences Selection Guide Issue 6 Trust Corning for Your Research For superior quality and performance in life science research tools, you can count on Corning. Our comprehensive line of advanced products and technologies is designed to meet your evolving needs in cell-based and genomics research. To learn more, please visit www.corning.com/lifesciences, or call 1.800.492.1110. Customers outside the U.S., please call 1.978.442.2200 or contact your local support office (listed below). Corning Incorporated Worldwide India Taiwan United Kingdom Life Sciences Support Offices t 91-124-235 7850 t 886 2-2716-0338 t 0800 376 8660 f 91-124-401 0207 f 886 2-2716-0339 f 0800 279 1117 Corning BV Life Sciences ASIA/PACIFIC Japan All Other European EUROPE Koolhovenlaan 12 Australia t 81 (0) 3-3586 1996/1997 Countries 1119 NE Schiphol Rijk t 61 2-9416-0492 f 81 (0) 3-3586 1291/1292 France t 31 (0) 20 659 60 51 The Netherlands f 61 2-9416-0493 Korea t 0800 916 882 f 31 (0) 20 659 76 73 f 0800 918 636 Corning Incorporated China t 82 2-796-9500 f 82 2-796-9300 Germany LATINAMERICA Life Sciences t 86 21-3222-4666 t 0800 101 1153 Brasil Tower 2, 4th Floor f 86 21-6288-1575 Singapore f 0800 101 2427 t (55-11) 3089-7419 900 Chelmsford St. Hong Kong t 65 6733-6511 The Netherlands f (55-11) 3167-0700 Lowell, MA 01851 t 852-2807-2723 f 65 6861-2913 Mexico t 800.492.1110 f 852-2807-2152 t 31 20 655 79 28 New! t (52-81) 8158-8400 t 978.442.2200 f 31 20 659 76 73 f (52-81) 8313-8589 f 978.442.2476 www.corning.com/lifesciences Online ordering now available 6/08 6M APC CLS–PSG–001-A4-REV6 Corning, Costar, CellBIND, CellCube, CellSTACK, DNA-BIND, Lambda, Octapette, Spin-X, Stripette, Stripwell, Thermowell, Transtar-96, Transwell,, 8-Pette, and 12-Pette are registered trademarks of Corning Incorporated, Corning, NY.
    [Show full text]
  • Manual on Laboratory Testing of Fishery Products
    ISSN: 1995-4875 CRFM Special Publication. No.14 Manual on Laboratory Testing of Fishery Products The SPS Project is funded by the European Union under the 10th Economic Development Fund and is being implemented by the Inter-American Institute for Cooperation on Agriculture (IICA) with the following regional Partners: the CARICOM Secretariat, the Caribbean Regional Fisheries Mechanism (CRFM), El Comité Nacional para la Aplicació n de Medidas Sanitarias y Fitosanitarias de la Repú blica Dominicana (CNMSF) and CARIFORUM. Manual on Laboratory Testing of Fisheries Products Copyright © 2016 by Caribbean Regional Fisheries Mechanism (CRFM) All rights reserved. Reproduction, dissemination and use of material in this publication for educational or non- commercial purposes are authorized without prior written permission of the CRFM, provided the source is fully acknowledged. No part of this publication may be reproduced, disseminated or used for any commercial purposes or resold without the prior written permission of the CRFM. Prepared by: Christine Froese, Megapesca Lda., December 2016, under contract to the Inter- American Institute for Cooperation on Agriculture (IICA), through the 10th EDF funded Sanitary and Phytosanitary Project Correct Citation: Froese, C, 2016. Manual on Laboratory Testing of Fishery Products. CRFM Special Publication. No.14. 89pp. ISSN: 1995-4875 ISBN: 978-976-8257-38-3 Cover Photo: Fishery Product Testing Laboratory, Saint Vincent Contents 1 INTRODUCTION ...............................................................................................................................
    [Show full text]
  • Microbiology. Applied to Protecting the Line
    3M Food Safety Division Microbiology. Applied to protecting the line www.3M.com/foodsafety/us Increase Productivity & Profitability to Your Business by 3M Food Safety Product Cost 45% Product Cost Saving Increase Productivity • 45% Reducing labor cost, saving utilities • Ability to increase productivity in food processing. and equipments of sample preparation 3M rapid solution help to detect contamination, • The shelf-stable, thin design takes up 85% less space faster time to results. Making faster decision. than agar dishes, freeing incubator and storage space and significantly reducing biohazardous waste • Control the production process better than ever. Higher product quality and Reduce overall costs, such as reducing waste, reducing Break down. OFF ON Fas te ISO r HACCP GMP Brand Protection Inventory Management • Establish brand credibility. Reliable • Release product to the hands of consumers faster. testing results with the global standard Company faster gaining profit • Reduce risk of product from the Recall • Reduce cost of storage inventory concerns. and Reject. Making trust from business partners. 2 Increase Laboratory Productivity by 3M Food Safety Product Product 3M Food Safety Cost 45% Cost Saving Accuracy • 45% Reduce the cost of labor, • Provide accurate results to Make decisions saving utilities and equipments correctly. Increase effectiveness of laboratory for sample preparation. • Build the credibility of laboratory with your • Reduce the cost of acquisition lab partners and auditors with the international equibments or the expansion of the method standards laboratory. Space less than 85% of Agar. Time 50% Software Time • Faster time to result.The product is designed to reduce steps and timing compared to the traditional method.
    [Show full text]
  • 32-9-2.5.2 Stop TB Global Drug Facility Diagnostics Catalog [.Pdf]
    OCTOBER 2019 DIAGNOSTICS CATALOG GLOBAL DRUG FACILITY (GDF) PHOTO: MAKA AKHALAIA PHOTO: Ensuring an uninterrupted supply of quality-assured, affordable tuberculosis (TB) medicines and diagnostics to the world. stoptb.org/gdf Stop TB Partnership | Global Drug Facility Global Health Campus – Chemin du Pommier 40 1218 Le Grand-Saconnex | Geneva, Switzerland Email: [email protected] Last verion's date: 08 October 2019. Stop TB Partnership/Global Drug Facility licensed this product under an Attribution-NonCommercial-NoDerivatives 4.0 International License. (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode GLOBAL DRUG FACILITY DIAGNOSTICS CATALOG OCTOBER 2019 GDF is the largest global provider of quality-assured tuberculosis (TB) medicines, diagnostics, and laboratory supplies to the public sector. Since 2001, GDF has facilitated access to high-quality TB care in over 130 countries, providing treatments to over 30 million people with TB and procuring and delivering more than $200 million worth of diagnostic equipment. As a unit of the Stop TB Partnership, GDF provides a full range of quality-assured products to meet the needs of any TB laboratory globally. GDF provides more than 500 diagnostics products, including the latest WHO-approved TB diagnostic devices and reagents, together with the consumables and ancillary devices required to ensure a safe working environment. These products cater to all levels of laboratories, ranging from peripheral health centers to centralized reference laboratories, and provide countries with the latest WHO-recommended technologies for detecting TB and drug resistance. To place an order for any diagnostics product, please follow the step-by-step guide available on the GDF website.
    [Show full text]
  • Laboratory Equipment Used in Filtration
    KNOW YOUR LAB EQUIPMENTS Test tube A test tube, also known as a sample tube, is a common piece of laboratory glassware consisting of a finger-like length of glass or clear plastic tubing, open at the top and closed at the bottom. Beakers Beakers are used as containers. They are available in a variety of sizes. Although they often possess volume markings, these are only rough estimates of the liquid volume. The markings are not necessarily accurate. Erlenmeyer flask Erlenmeyer flasks are often used as reaction vessels, particularly in titrations. As with beakers, the volume markings should not be considered accurate. Volumetric flask Volumetric flasks are used to measure and store solutions with a high degree of accuracy. These flasks generally possess a marking near the top that indicates the level at which the volume of the liquid is equal to the volume written on the outside of the flask. These devices are often used when solutions containing dissolved solids of known concentration are needed. Graduated cylinder Graduated cylinders are used to transfer liquids with a moderate degree of accuracy. Pipette Pipettes are used for transferring liquids with a fixed volume and quantity of liquid must be known to a high degree of accuracy. Graduated pipette These Pipettes are calibrated in the factory to release the desired quantity of liquid. Disposable pipette Disposable transfer. These Pipettes are made of plastic and are useful for transferring liquids dropwise. Burette Burettes are devices used typically in analytical, quantitative chemistry applications for measuring liquid solution. Differing from a pipette since the sample quantity delivered is changeable, graduated Burettes are used heavily in titration experiments.
    [Show full text]
  • Chemistry 2A Lab Manual Standard Operating Procedures Winter Quarter 2018
    Chemistry 2A Lab Manual Standard Operating Procedures Winter Quarter 2018 Department of Chemistry University of California - Davis Davis, CA 95616 Student Name Locker # Laboratory Information Teaching Assistant’s Name Laboratory Section Number Laboratory Room Number Dispensary Room Number 1060 Sciences Lab Building Location of Safety Equipment Nearest to Your Laboratory Safety Shower Eye Wash Fountain Fire Extinguisher Fire Alarm Safety Chemicals Revision Date 12/1/2017 Preface Chemistry is an experimental science. Thus, it is important that students of chemistry do experiments in the laboratory to more fully understand that the theories they study in lecture and in their textbook are developed from the critical evaluation of experimental data. The laboratory can also aid the student in the study of the science by clearly illustrating the principles and concepts involved. Finally, laboratory experimentation allows students the opportunity to develop techniques and other manipulative skills that students of science must master. The faculty of the Chemistry Department at UC Davis clearly understands the importance of laboratory work in the study of chemistry. The Department is committed to this component of your education and hopes that you will take full advantage of this opportunity to explore the science of chemistry. A unique aspect of this laboratory program is that a concerted effort has been made to use environmentally less toxic or non-toxic materials in these experiments. This was not only done to protect students but also to lessen the impact of this program upon the environment. This commitment to the environment has presented an enormous challenge, as many traditional experiments could not be used due to the negative impact of the chemicals involved.
    [Show full text]
  • Solution Bottles NEW 500Ml Square Media Bottle Erlenmeyer & Fernbach Flasks
    Erlenmeyer & Fernbach Flasks Solution Bottles • Compatible with 1 bottle top filters or for use as solution storage 1 containers (Bottle Top Filters sold separately, see page 35) 1 Solution bottle neck size is 45mm 2 Curved bottle design 3 2 for easy handling 2 SOLUTION BOTTLES S, R/D F, NP, USP, PS Working Pack Qty/ Part No. Product Description volume Description Case 229781 150mL Solution Bottle 150mL 1/Bag 24 229782 250mL Solution Bottle 250mL 1/Bag 24 229784 500mL Solution Bottle 500mL 1/Bag 24 4 229785 1000mL Solution Bottle 1000mL 1/Bag 24 • Designed for mammalian suspension culture applications as well as bacterial & yeast culture NEW 500mL Square Media Bottle • Conveniently pre-sterilized 1 70mm opening for easy filling and dispensing (Erlenmeyer & Fernbach) 2 2 Over-sized vent area in cap for improved gas exchange (Erlenmeyer & Fernbach) • Ideal for media prep and storage of laboratory reagents and biological buffers 3 Fernbach flask shape increases surface area to volume ratio • Square design saves valuable shelf space and is ideal for 4 Baffled bottom improves mixing and aeration stacking, such as in a refrigerator • Plain bottom also available Part No. 229896 - Transfer Assembly • Unique individually bagged packaging allows opening one at a time ERLENMEYER & FERNBACH FLASKS S, NP, USP, A, PC 1 • PETG material reduces gas permeability Cap Bottom Max. Pack Qty/ Part No. Product Description Type Type Volume Description Case 1 Molded graduations on two sides 229850 2L Erlenmeyer Flask Vent Plain 2200mL 1/Bag 6 229855 2L Erlenmeyer Flask
    [Show full text]
  • Corning Cell Culture Selection Guide Corning Is Helping to Make Your Research Possibilities Real with New and Innovative Products
    Corning Cell Culture Selection Guide Corning is helping to make your research possibilities real with new and innovative products. Introduction We have recently advanced our microplate line to include many enhancmements and new products. Check out the Corning is pleased to present our Life Sciences Selection Guide. In this guide, you will find a selection of our newest, new 384 well solid, low-volume and Poly-D-Lysine micro- most innovative and most requested products. plates, as well as 384 and 1536 well microplates with generic bar codes in the Microplates Section. For more than 150 years, Corning Incorporated has leveraged its materials science and process engineering expertise to For up-to-date information on Corning Life Sciences’ collaborate closely with customers worldwide — turning comprehensive range of products and services, go to what were once only possibilities into breakthrough realities. www.corning.com/lifesciences where you can access: Q New Products Information One such reality is the Corning® Epic® System, a high- throughput label-free screening platform based on optical Q Technical Information including: biosensor technology.The system performs both biochemical - Application Notes and cell-based drug discovery applications and offers drug - Instruction Manuals developers the ability to evaluate promising new drug - Product Bulletins targets. It also allows for the observation of direct biological Q Educational Opportunities interactions not previously detectable in high-throughput Q Product Catalog Information applications. Q Product Literature For hard-to-attach cell lines, Corning offers a number of Q Complete Distributor Information modified or synthetic surfaces including Corning CellBIND® Surface, Ultra-Low Attachment, and Ultra-Web™ Surfaces.
    [Show full text]
  • Organic Chemistry Laboratory Experiments for Organic Chemistry Laboratory 860-121-02 Mw 1:00-4:00
    ORGANIC CHEMISTRY LABORATORY EXPERIMENTS FOR ORGANIC CHEMISTRY LABORATORY 860-121-02 MW 1:00-4:00 WRITTEN, COMPILED AND EDITED BY LINDA PAAR JEFFREY ELBERT KIRK MANFREDI SPRING 2008 TABLE OF CONTENTS SYNTHESIS OF ASPIRIN 1 MELTING POINT AND CRYSTALLIZATION 2 DISTILLATION 8 EXTRACTION 11 TLC AND CHROMATOGRAPHY 14 NATURAL PRODUCTS: ISOLATION OF LIMONENE 23 FREE RADICAL CHLORINATION 24 SN1 AND SN2 REACTIONS 27 DEHYDRATION REACTIONS 30 GRIGNARD SYNTHESIS 32 COMPUTATIONAL CHEMISTRY 36 MULTIPLE STEP SYNTHESIS 38 ORGANIC CHEMISTRY 121 EXPERIMENT 1 SYNTHESIS OF ASPIRIN FROM SALICYLIC ACID Aspirin is one of the oldest and most common drugs in use today. It is both an analgesic (pain killer) and antipyretic (reduces fever). One method of preparation is to react salicylic acid (1 ) with acetic anhydride (2) and a trace amount of acid (equation 1). O OH CH3 O COOH COOH + H + CH3COOH + (CH3CO)2O 3 4 1 2 The chemical name for aspirin is acetylsalicylic acid (3) PROCEDURE Place 3.00 g of salicylic acid in a 125 ml Erlenmeyer flask. Cautiously add 6 ml of acetic anhydride and then 5 drops of concentrated H2SO4. Mix the reagents and heat the flask in a beaker of water warmed to 80-90°C, for 10 minutes. Remove the Erlenmeyer flask and allow it to cool to room temperature. Add 40 ml of H2O and let the sample crystallize in an ice-water bath.* Filter and wash the crystals with cold water. Allow them to air dry overnight and weigh the product. What is the percent yield? One drawback to this synthetic procedure is that there is the possibility of some left over salicylic acid.
    [Show full text]