Geobacillus Subterraneus Subsp. Aromaticivorans Subsp. Nov., a Novel Thermophilic and Alkaliphilic Bacterium Isolated from a Hot Spring in Sırnak, Turkey

Total Page:16

File Type:pdf, Size:1020Kb

Geobacillus Subterraneus Subsp. Aromaticivorans Subsp. Nov., a Novel Thermophilic and Alkaliphilic Bacterium Isolated from a Hot Spring in Sırnak, Turkey J. Gen. Appl. Microbiol., 58, 437‒446 (2012) Full Paper Geobacillus subterraneus subsp. aromaticivorans subsp. nov., a novel thermophilic and alkaliphilic bacterium isolated from a hot spring in Sırnak, Turkey Annarita Poli,1,* Kemal Guven,2 Ida Romano,1 Hamsi Pirinccioglu,2 Reyhan Gul Guven,3 Jean Paul Marie Euzeby,4 Fatma Matpan,2 Omer Acer,2 Pierangelo Orlando,5 and Barbara Nicolaus1 1 Consiglio Nazionale delle Ricerche (C.N.R.), Istituto di Chimica Biomolecolare (I.C.B.), Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy 2 Department of Biology, Faculty of Science, Dicle University, 21280, Diyarbakir, Turkey 3 Department of Science Teaching, Faculty of Ziya Gokalp Education, Dicle University, 21280, Diyarbakir, Turkey 4 Société de Bactériologie Systématique et Vétérinaire, France 5 Consiglio Nazionale delle Ricerche (C.N.R.), Istituto di Biochimica delle Proteine (I.B.P.), Via P. Castellino 111, 80131 Napoli, Italy (Received April 2, 2012; Accepted September 20, 2012) A new thermophilic spore-forming strain Ge1T was isolated from the Guclukonak hot spring in Sırnak, Turkey. The strain was identifi ed by using a polyphasic taxonomic approach. Strain Ge1T was Gram-positive, spore-forming, alkaliphilic rod-shaped, motile, occurring in pairs or fi lamen- tous. Growth was observed between 30 and 65°C (optimum 60°C) and at pH 5.5‒10.0 (optimum pH 9.0). It was capable of utilizing starch, growth was observed at 0‒3% NaCl (w/v) and was positive for catalase and urease. The major cellular fatty acids were iso-C15:0 and iso-C17:0, and the predominant lipoquinone found was menaquinone MK7 type. The DNA G+C content of the genomic DNA of strain Ge1T was 52.0%. Comparative 16S rRNA gene sequence studies showed that the isolate belonged to the genus Geobacillus. The DNA-DNA hybridization mean values between the representative strain Ge1T and the closely related species G. subterraneus, G. ther- modenitrifi cans, G. thermocatenulatus, G. vulcani and G. thermoleovorans were 69.3%, 57%, 37%, 27% and 26%, respectively. The results of DNA-DNA hybridization, physiological and bio- chemical tests allowed genotypic and phenotypic differentiation of strain Ge1T. Based on these results, we propose assigning a novel subspecies of Geobacillus subterraneus, to be named as Geobacillus subterraneus subsp. aromaticivorans subsp. nov. with the type strain Ge1T (DSM 23066 T= CIP 110341T). Key Words—DNA-DNA hybridization analysis; Geobacillus subterraneus subsp. aromaticivorans subsp. nov.; lipids; taxonomy; thermophile Introduction * Corresponding author: Dr. Annarita Poli, Consiglio Nazion- On the basis of physiological characteristics, the re- ale delle Ricerche (C.N.R.), Istituto di Chimica Biomolecolare sults of fatty acid analysis, DNA-DNA hybridization (I.C.B.), Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy. studies and 16S rRNA gene sequence analysis, Nazi- Tel: +390818675311 Fax: +390818041770 E-mail: apoli@icb.cnr.it na et al. (2001) proposed a new genus, Geobacillus The GenBank/EMBL/DDBJ accession number for the 16S gen. nov., containing subsurface isolates as two new rRNA gene sequence of strain Ge1T is HE613733. species, Geobacillus subterraneus sp. nov. and Geoba- 438 POLI et al. Vol. 58 cillus uzenensis sp. nov. They also proposed the trans- pared with its near neighbor and on the basis of fer of the validly described species of group 5, Bacillus DNA-DNA hybridization values and biochemical prop- stearothermophilus, Bacillus thermocatenulatus, Bacil- erties, we propose that it represents a novel subspe- lus thermoleovorans, Bacillus kaustophilus, Bacillus cies of Geobacillus subterraneus. thermoglucosidasius and Bacillus thermodenitrifi cans to Geobacillus as the new combinations G. stearother- Materials and Methods mophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. ther- Location of sampling. Bacteria were isolated from modenitrifi cans, respectively. The Geobacillus species the mud of Guclukonak hot spring in Sırnak which is a are a phenotypically and phylogenetically coherent city in the southeast of Turkey. The temperature and group of thermophilic bacilli. The 16S rRNA gene se- pH of the muddy water were 60°C and 6.9, respec- quence heterogeneity within the genus is 92.6% (Na- tively. The hot spring water contained Ca, Mg, SO4, Cl zina et al., 2001). At present, this genus includes the and hydrogen sulphide. following species: Geobacillus stearothermophilus Culture medium and growth condition. All samples (Nazina et al., 2001), G. thermocatenulatus (Golavache- were immediately incubated in the temperature range va et al., 1975), G. thermoleovorans (Zarilla and Perry, 25‒ 70°C in Nutrient Broth (NB medium, Oxoid). Cul- 1987), G. kaustophilus, G. thermoglucosidans (nom. tures were purifi ed from the samples grown in the solid corrig., formerly ‘thermoglucosidasius’) (Coorevits et NB medium, containing 2% agar (Oxoid), at 60°C. Af- al., 2011; Nazina et al., 2001), G. thermodenitrifi cans ter 1 week of incubation a number of cream colonies (Manachini et al., 2000), G. subterraneus and G. uzen- had developed. They were purifi ed using the repeated ensis (Nazina et al., 2001), G. toebii (Sung et al., 2002), serial dilution technique followed by re-streaking on G. lituanicus (Kuisiene et al., 2004), G. vulcani and G. the solid NB medium and the purity of the isolates was gargensis (Nazina et al., 2004), G. debilis (Banat et al., examined based on cell shape under a microscope 2004), G. tepidamans (Schäffer et al., 2004), G. cal- and colony homogeneity on the plates. Several iso- doxylosilyticus (Ahmad et al., 2000; Fortina et al., 2001) lates were selected and the taxonomic properties of and G. jurassicus (Nazina et al., 2005), which have strain Ge1T will be presented in this paper. Subcultur- growth temperatures ranging from 35 to 78°C. G. pal- ing was performed on the same medium for 24 h at lidus (Banat et al., 2004) has recently been transferred 60°C and isolates were maintained as glycerol stock at to the genus Aeribacillus (Miñana-Galbis et al., 2010). -70°C for further studies. Moreover, a recent study (Dinsdale et al., 2011) de- Geobacillus subterraneus DSM 13552T, G. thermod- scribed the emendation of G. thermoleovorans and G. enitrifi cans DSM 466T, G. thermocatenulatus DSM thermocatenulatus with the merger of G. kaustophilus, 730T, G. vulcani DSM 13174T, G. thermoleovorans DSM G. lituanicus, G. thermoleovorans subsp. strombolien- 5366T, G. stearothermophilus DSM22T, G. uzenensis sis and G. vulcani to G. thermoleovorans, and the DSM13551T, G. jurassicus DSM 15726T, G. gargensis merger of G. thermocatenulatus and G. gargensis to G. DSM 15378T, G. kaustophilus DSM 7263T and G. li- thermocatenulatus. In addition, Bacillus thermantarcti- tuanicus DSM 15325T were obtained from the Deutsche cus, proposed at fi rst with the name of the genus “Ba- Sammlung von Mikroorganismen und Zellkulturen, cillus” by Nicolaus et al. (1996), was recently trans- Brunschweig, Germany (DSMZ) and were grown ac- ferred to genus Geobacillus as G. thermantarcticus; cording to the DSMZ catalogue. moreover, the same authors transferred G. tepidamans Morphological and physiological tests. The tem- to Anoxybacillus as A. tepidamans (Coorevits et al., perature range for growth was determined by incubat- 2011). ing the isolate from 25 to 75°C. For the spore formation . With the ultimate goal of studying the microbial com- test, enrichment medium plus 0.001% (w/v) MnCl2 4H2O munity present in the Guclukonak hot spring in Sırnak, was used. The pH tolerance of strains was tested at located in the southeast of Turkey, some thermophilic 60°C at different pH values by using buffered NB me- bacilli from the mud were isolated. dium (50 mM MES, HEPES, TAPS and CAPSO) over In this paper, a novel member of the genus Geoba- these pH values: 5.0, 5.5, 6.0, 6.5, 7.5, 8.0, 8.5, 9.0, cillus is reported on the basis of a polyphasic ap- and 10.0. In order to study the utilization of single car- proach. The characteristics of this isolate are com- bon sources, the isolates were grown statically using 2012 Geobacillus subterraneus subsp. aromaticivorans 439 M162 minimal medium (Poli et al., 2006). The organic (Poli et al., 2012). compounds tested (1%, w/v) were D-glucose, D-lac- Lipid and fatty acid compositions. Polar lipids were tose, D-maltose, D-fructose, D-galactose, D-xylose, D- obtained from 3.0 g of freeze-dried cells grown in aer- mannose, D-trehalose, glycerol, D-cellobiose, sodium obic conditions on NB medium at 60°C and harvested acetate and sucrose. In order to test the capability to use at the stationary growth phase. Polar lipids were ex- hydrocarbons, the NB medium was diluted (15 times) tracted with CHCl3/MeOH/H2O (65:25:4, by vol.). and 1% (v/v) hydrocarbons were added and incubated The lipid extract was analyzed by thin layer chroma- for 72 h. All growth tests were done at 60°C and the tography (TLC) on silica gel (0.25 mm, F254, Merck) growth was scored positive if the A540nm was greater eluted with CHCl3/MeOH/H2O (65:25:4, by vol.). All than 0.300 after 3 days. Cellular morphology and mo- polar lipids were detected by spraying the plates with tility were determined by phase-contrast microscopy 0.1% (w/v) Ce(SO4)2 in 2 N H2SO4 followed by heating (Zeiss) and colony morphology was determined with a at 100°C for 5 min. Phospholipids and aminolipids Leica M8 stereomicroscope using cultures grown on were detected on the plates upon spraying with the media NB agar plates for 24 h at the optimal tempera- Dittmer-Lester and the ninhydrin reagents, respective- ture. Gram staining and KOH test were performed as ly, and glycolipids were visualized with α-naphtol (Ni- previously reported (Poli et al., 2009). colaus et al., 2001). Polar lipids were also identifi ed by Unless otherwise stated the strain was character- 1H-NMR spectra.
Recommended publications
  • Screening D'activités Hydrolytiques
    REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE MENTOURI-CONSTANTINE Institut de la Nutrition, de l’Alimentation et des Technologies Agro-alimentaires (INATAA) Département de Biotechnologie alimentaire N° d’ordre : Série : MEMOIRE Présenté en vue de l’obtention du diplôme de Magister en Sciences Alimentaires Option : Biotechnologie Alimentaire Screening d’activités hydrolytiques extracellulaires chez des souches bactériennes aérobies thermophiles isolées à partir de sources thermales terrestres de l’Est algérien Présenté par GOMRI Mohamed Amine Devant le jury composé de : Président : Pr. AGLI A. Professeur INATAA, UMC Rapporteur : Dr. KHARROUB K. Docteur INATAA, UMC Examinateurs : Pr. KACEM CHAOUACHE N. Professeur Faculté des SNV, UMC Dr. BARKAT M. Docteur INATAA, UMC Année universitaire 2011-2012 Remerciements Je rends grâce à Dieu, le miséricordieux, le tout puissant, pour ce miracle appelé vie, que sa lumière nous guide vers lui, et que son nom soit l’élixir de nos peines et douleurs. Tout d’abord, je tiens à remercier Madame KHARROUB Karima pour m’avoir donné la chance de travailler sous sa direction, pour sa confiance en moi et ses encouragements mais surtout pour sa générosité dans le travail, qu’elle trouve en ces mots toute ma gratitude. Mes remerciements sont adressés aux membres du Jury qui ont pris sur leur temps et ont bien voulu accepter de juger ce modeste travail : Mr le professeur AGLI qui m’a fait l’honneur de présider ce Jury Mr le professeur KACEM-CHAOUCH E qui a eu l’amabilité de participer à ce Jury Mme BARKAT qui a bien voulu examiner ce travail Je tiens à remercier Mlle AYAD Ryma, Mesdames ZOUBIRI Lamia et DJABALI Saliha, Messieurs ZOUAOUI Nassim, BOUGUERRA Ali, SLIMANI Zakaria et FARHAT Chouaib pour leur aide inestimable, mais aussi pour leur amitié précieuse, qu’ils trouvent ici les plus sincères marques d’affection.
    [Show full text]
  • Phylogenetic Study of Thermophilic Genera Anoxybacillus, Geobacillus
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.449068; this version posted June 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 bioRxiv 2 Article Type: Research article. 3 Article Title: Phylogenetic study of thermophilic genera Anoxybacillus, Geobacillus, 4 Parageobacillus, and proposal of a new classification Quasigeobacillus 5 gen. nov. 6 Authors: Talamantes-Becerra, Berenice1-2*; Carling, Jason2; Blom, Jochen3; 7 Georges, Arthur1 8 Affiliation: 1Institute for Applied Ecology, University of Canberra ACT 2601 9 Australia. 10 2Diversity Arrays Technology Pty Ltd, Bruce, Canberra ACT 2617 11 Australia. 12 3Bioinformatics & Systems Biology, Justus-Liebig-University Giessen, 13 35392 Glessen, Hesse, Germany 14 *Correspondence: Berenice Talamantes Becerra, Institute for Applied Ecology, 15 University of Canberra ACT 2601 Australia. Email: 16 [email protected] 17 Running head: Phylogenetic study of thermophilic bacteria. 18 Word Count: Abstract: 178 Main body: 3709 References: n= 60 19 20 21 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.449068; this version posted June 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 23 Abstract 24 A phylogenetic study of Anoxybacillus, Geobacillus and Parageobacillus was performed using 25 publicly available whole genome sequences. A total of 113 genomes were selected for 26 phylogenomic metrics including calculation of Average Nucleotide Identity (ANI) and 27 Average Amino acid Identity (AAI), and a maximum likelihood tree was built from alignment 28 of a set of 662 orthologous core genes.
    [Show full text]
  • Isolation and Identification of Thermophilic Amylolytic Bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia
    BIODIVERSITAS ISSN: 1412-033X Volume 22, Number 6, June 2021 E-ISSN: 2085-4722 Pages: 3326-3332 DOI: 10.13057/biodiv/d220638 Isolation and identification of thermophilic amylolytic bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia ELVY LIKE GINTING1,♥, LETHA L. WANTANIA2, EMMA MAUREN MOKO3, REINY A. TUMBOL1, MAYSE S. SIBY1, STENLY WULLUR1 1Faculty of Fisheries and Marine Science, Universitas Sam Ratulangi. Jl. Kampus Unsrat, Manado 95115, North Sulawesi, Indonesia. Tel./fax.: +62-431-868027, email: [email protected] 2Faculty of Mathematics and Natural Sciences, Bonn University. D-53012 Bonn, Germany 3Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Manado. Jl. Raya Tondano, Minahasa 95618, North Sulawesi, Indonesia Manuscript received: 1 April 2021. Revision accepted: 24 May 2021. Abstract. Ginting EL, Wantania LL, Moko EM, Tumbol RA, Siby MS, Wulur S. 2021. Isolation and identification of thermophilic amylolytic bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia. Biodiversitas 22: 3326-3332. The aims of the research were to isolate and identify the amylase-producing thermophilic bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia. The bacteria were characterized based on the colony and cell morphology and subsequently screened for their amylase activities. The bacterial isolates were identified based on 16S rRNA gene sequences. There were 12 thermophilic bacteria isolates from Likupang Marine Hydrothermal that were able to produce amylase. Two selected isolates (L3 and L9) had an amylolytic index value in the range of 3.04-3.52 at 55oC. The colonies of L3 and L9 are circular, and they are Gram positive, rod-shaped, and motile bacteria.
    [Show full text]
  • Geobacillus and Hydrocarbon Utilization R
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ulster University's Research Portal 21 The Genus Geobacillus and Hydrocarbon Utilization R. Marchant . I. M. Banat* School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, Northern Ireland, UK *[email protected] 1 Introduction . .................................................................... 1888 2 The Degradation of Hydrocarbons by Geobacilli . ................................ 1889 3 The Molecular Basis of Thermophily . ............................................. 1891 4 Growth and Survival of Geobacilli Under Different Conditions . ......... 1892 5 Distribution and Ecology of Geobacilli ............................................. 1894 6 Potential Commercial Exploitation and Research Needs . ................... 1894 K. N. Timmis (ed.), Handbook of Hydrocarbon and Lipid Microbiology, DOI 10.1007/978-3-540-77587-4_138, # Springer-Verlag Berlin Heidelberg, 2010 1888 21 The Genus Geobacillus and Hydrocarbon Utilization Abstract: The members of the Gram-positive endospore-forming bacteria that made up the genus Bacillus have been gradually subdivided, during the last few years, into a number of new genera such as Alicyclobacillus, Aneuribacillus, Brevibacillus, Gracilibacillus, Paenibacillus, Salibacillus, Ureibacillus, and Virgibacillus. Nazina et al. in 2001 created the genus Geobacillus based around Bacillus (now Geobacillus) stearothermophilus DSM22 as the type strain. The description included two new species of hydrocarbon-oxidizing bacteria isolated from high- temperature oilfields, and the transfer of six members of genetic group 5 thermophilic species of Bacillus to the new genus. Other additions followed and, most of these species, shared the ability to grow at elevated temperatures and degrade hydrocarbons. The taxonomy of geoba- cilli, hydrocarbon degradation, molecular basis of thermophily, survival, and ecological roles in the environment and possible exploitation potential will be reviewed in this chapter.
    [Show full text]
  • Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2010 Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi South Dakota School of Mines and Technology Shariff Osman Lawrence Berkeley National Laboratory Ravi K. Kukkadapu Pacific Northwest National Laboratory, [email protected] Mark Engelhard Pacific Northwest National Laboratory Parag A. Vaishampayan California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Rastogi, Gurdeep; Osman, Shariff; Kukkadapu, Ravi K.; Engelhard, Mark; Vaishampayan, Parag A.; Andersen, Gary L.; and Sani, Rajesh K., "Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota" (2010). US Department of Energy Publications. 170. https://digitalcommons.unl.edu/usdoepub/170 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Gurdeep Rastogi, Shariff Osman, Ravi K. Kukkadapu, Mark Engelhard, Parag A. Vaishampayan, Gary L. Andersen, and Rajesh K. Sani This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdoepub/170 Microb Ecol (2010) 60:539–550 DOI 10.1007/s00248-010-9657-y SOIL MICROBIOLOGY Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi & Shariff Osman & Ravi Kukkadapu & Mark Engelhard & Parag A.
    [Show full text]
  • Patterns of Horizontal Gene Transfer Into the Geobacillus Clade
    Imperial College London London Institute of Medical Sciences Patterns of Horizontal Gene Transfer into the Geobacillus Clade Alexander Dmitriyevich Esin September 2018 Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy of Imperial College London For my grandmother, Marina. Without you I would have never been on this path. Your unwavering strength, love, and fierce intellect inspired me from childhood and your memory will always be with me. 2 Declaration I declare that the work presented in this submission has been undertaken by me, including all analyses performed. To the best of my knowledge it contains no material previously published or presented by others, nor material which has been accepted for any other degree of any university or other institute of higher learning, except where due acknowledgement is made in the text. 3 The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 4 Abstract Horizontal gene transfer (HGT) is the major driver behind rapid bacterial adaptation to a host of diverse environments and conditions. Successful HGT is dependent on overcoming a number of barriers on transfer to a new host, one of which is adhering to the adaptive architecture of the recipient genome.
    [Show full text]
  • Isolation and Diversity of Sediment Bacteria in The
    bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Isolation and Diversity of Sediment Bacteria in the 2 Hypersaline Aiding Lake, China 3 4 Tong-Wei Guan, Yi-Jin Lin, Meng-Ying Ou, Ke-Bao Chen 5 6 7 Institute of Microbiology, Xihua University, Chengdu 610039, P. R. China. 8 9 Author for correspondence: 10 Tong-Wei Guan 11 Tel/Fax: +86 028 87720552 12 E-mail: [email protected] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 29 Abstract A total of 343 bacteria from sediment samples of Aiding Lake, China, were isolated using 30 nine different media with 5% or 15% (w/v) NaCl. The number of species and genera of bacteria recovered 31 from the different media significantly varied, indicating the need to optimize the isolation conditions. 32 The results showed an unexpected level of bacterial diversity, with four phyla (Firmicutes, 33 Actinobacteria, Proteobacteria, and Rhodothermaeota), fourteen orders (Actinopolysporales, 34 Alteromonadales, Bacillales, Balneolales, Chromatiales, Glycomycetales, Jiangellales, Micrococcales, 35 Micromonosporales, Oceanospirillales, Pseudonocardiales, Rhizobiales, Streptomycetales, and 36 Streptosporangiales), including 17 families, 41 genera, and 71 species.
    [Show full text]
  • Isolation and Diversity of Sediment Bacteria in The
    bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Isolation and Diversity of Sediment Bacteria in the 2 Hypersaline Aiding Lake, China 3 4 Tong-Wei Guan, Yi-Jin Lin, Meng-Ying Ou, Ke-Bao Chen 5 6 7 Institute of Microbiology, Xihua University, Chengdu 610039, P. R. China. 8 9 Author for correspondence: 10 Tong-Wei Guan 11 Tel/Fax: +86 028 87720552 12 E-mail: [email protected] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 29 Abstract A total of 343 bacteria from sediment samples of Aiding Lake, China, were isolated using 30 nine different media with 5% or 15% (w/v) NaCl. The number of species and genera of bacteria recovered 31 from the different media significantly varied, indicating the need to optimize the isolation conditions. 32 The results showed an unexpected level of bacterial diversity, with four phyla (Firmicutes, 33 Actinobacteria, Proteobacteria, and Rhodothermaeota), fourteen orders (Actinopolysporales, 34 Alteromonadales, Bacillales, Balneolales, Chromatiales, Glycomycetales, Jiangellales, Micrococcales, 35 Micromonosporales, Oceanospirillales, Pseudonocardiales, Rhizobiales, Streptomycetales, and 36 Streptosporangiales), including 17 families, 41 genera, and 71 species.
    [Show full text]
  • I INVESTIGATING the OIL BIOREMEDIATION CAPACITIES of THERMOPHILIC BACTERIA by Michael Mol (788559) Dissertation Submitted In
    INVESTIGATING THE OIL BIOREMEDIATION CAPACITIES OF THERMOPHILIC BACTERIA by Michael Mol (788559) Dissertation Submitted in fulfilment of the requirements for the degree Master of Science in Molecular and Cell Biology in the Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa Supervisor: Dr. Pieter De Maayer Co-supervisor: Prof. Don A. Cowan February 2020 i DECLARATION I declare that this thesis is my own, unaided work. It is being submitted for the Degree of Master of Science at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination at any other University. _______________________________________ (Signature of candidate) 4th day of February 2020 at the University of the Witwatersrand ii Abstract Crude oil and petroleum derivatives are released, both inadvertently and actively, into vulnerable environments in vast amounts. As such the development and application of effective remediation approaches are major research imperatives. In particular, the development of environmentally friendly remediation approaches, such as bioremediation are focal points. One promising approach is the bioremediation of oil hydrocarbons using thermophilic bacteria. In Chapter 1 we have reviewed pertinent literature characterising crude oil and petroleum derivatives, their major environmental releases, remediation approaches and contextualised the application of thermophiles in bioremediation. In Chapter 2 we conducted plate- and liquid-based screening assays on a substantial collection of thermophilic bacteria, identifying numerous strains capable of degrading used- motor oil. Furthermore, we identified a number of thermophilic taxa which are capable of oil displacement, most likely linked to the production of biosurfactants. In Chapter 3 we further characterised the oil hydrocarbon degradation capacity of three strains belonging to the genus Geobacillus.
    [Show full text]
  • Advances in Medicine and Biology. Volume
    ADVANCES IN MEDICINE AND BIOLOGY ADVANCES IN MEDICINE AND BIOLOGY VOLUME 114 No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. ADVANCES IN MEDICINE AND BIOLOGY Additional books in this series can be found on Nova’s website under the Series tab. Additional e-books in this series can be found on Nova’s website under the eBooks tab. ADVANCES IN MEDICINE AND BIOLOGY ADVANCES IN MEDICINE AND BIOLOGY VOLUME 114 LEON V. BERHARDT EDITOR Copyright © 2017 by Nova Science Publishers, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher. We have partnered with Copyright Clearance Center to make it easy for you to obtain permissions to reuse content from this publication. Simply navigate to this publication’s page on Nova’s website and locate the “Get Permission” button below the title description. This button is linked directly to the title’s permission page on copyright.com.
    [Show full text]
  • J. Gen. Appl. Microbiol., 52, 223–234 (2006)
    J. Gen. Appl. Microbiol., 52, 223–234 (2006) Full Paper Geobacillus toebii subsp. decanicus subsp. nov., a hydrocarbon-degrading, heavy metal resistant bacterium from hot compost Annarita Poli,1 Ida Romano,1 Gaetano Caliendo,4 Giancarlo Nicolaus,3 Pierangelo Orlando,2 Antonio de Falco,4 Licia Lama,1 Agata Gambacorta,1 and Barbara Nicolaus1,* 1 Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy 2 Istituto di Biochimica delle Proteine (IBP), CNR, Napoli, Italy 3 Istituto di Ricerche di Biologia Molecolare “P. Angeletti” IRBM, Pomezia, Rome, Italy 4 Pomigliano Ambiente s.p.a., Napoli, Italy (Received December 14, 2005; Accepted August 4, 2006) A thermophilic, spore-forming bacterial strain L1T was isolated from hot compost “Pomigliano Environment” s.p.a., Pomigliano, Naples, Italy. The strain was identified by using a polyphasic taxonomic approach. L1T resulted in an aerobic, gram-positive, rod-shaped, thermophilic with an optimum growth temperature of 68°C chemorganotrophic bacterium which grew on hydrocar- bons as unique carbon and energy sources and was resistant to heavy metals. The G؉C DNA content was 43.5 mol%. Phylogenetic analysis of 16S rRNA gene sequence and Random Ampli- fied Polymorphic DNA-PCR (RAPD-PCR) analysis of L1T and related strains showed that it forms within Geobacillus toebii, a separate cluster in the Geobacillus genus. The composition of cellu- lar fatty acids analyses by Gas-Mass Spectroscopy differed from that typical for the genus Geobacillus in that it is lacking in iso-C15 fatty acid, while iso-C16 and iso-C17 were predomi- nant. Isolates grew on a rich complex medium at temperatures between 55–75°C and presented a doubling time (td) of 2 h and 6 h using complex media and hydrocarbon media, respectively.
    [Show full text]
  • Insights Into the Geobacillus Stearothermophilus Species Based on Phylogenomic Principles S
    Burgess et al. BMC Microbiology (2017) 17:140 DOI 10.1186/s12866-017-1047-x RESEARCH ARTICLE Open Access Insights into the Geobacillus stearothermophilus species based on phylogenomic principles S. A. Burgess1,4*, S. H. Flint1, D. Lindsay2, M. P. Cox3 and P. J. Biggs3,4* Abstract Background: The genus Geobacillus comprises bacteria that are Gram positive, thermophilic spore-formers, which are found in a variety of environments from hot-springs, cool soils, to food manufacturing plants, including dairy manufacturing plants. Despite considerable interest in the use of Geobacillus spp. for biotechnological applications, the taxonomy of this genus is unclear, in part because of differences in DNA-DNA hybridization (DDH) similarity values between studies. In addition, it is also difficult to use phenotypic characteristics to define a bacterial species. For example, G. stearothermophilus was traditionally defined as a species that does not utilise lactose, but the ability of dairy strains of G. stearothermophilus to use lactose has now been well established. Results: This study compared the genome sequences of 63 Geobacillus isolates and showed that based on two different genomic approaches (core genome comparisons and average nucleotide identity) the Geobacillus genus could be divided into sixteen taxa for those Geobacillus strains that have genome sequences available thus far. In addition, using Geobacillus stearothermophilus as an example, we show that inclusion of the accessory genome, as well as phenotypic characteristics, is not suitable for defining this species. For example, this is the first study to provide evidence of dairy adaptation in G. stearothermophilus - a phenotypic feature not typically considered standard in this species - by identifying the presence of a putative lac operon in four dairy strains.
    [Show full text]