J. Gen. Appl. Microbiol., 52, 223–234 (2006)

Total Page:16

File Type:pdf, Size:1020Kb

J. Gen. Appl. Microbiol., 52, 223–234 (2006) J. Gen. Appl. Microbiol., 52, 223–234 (2006) Full Paper Geobacillus toebii subsp. decanicus subsp. nov., a hydrocarbon-degrading, heavy metal resistant bacterium from hot compost Annarita Poli,1 Ida Romano,1 Gaetano Caliendo,4 Giancarlo Nicolaus,3 Pierangelo Orlando,2 Antonio de Falco,4 Licia Lama,1 Agata Gambacorta,1 and Barbara Nicolaus1,* 1 Istituto di Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy 2 Istituto di Biochimica delle Proteine (IBP), CNR, Napoli, Italy 3 Istituto di Ricerche di Biologia Molecolare “P. Angeletti” IRBM, Pomezia, Rome, Italy 4 Pomigliano Ambiente s.p.a., Napoli, Italy (Received December 14, 2005; Accepted August 4, 2006) A thermophilic, spore-forming bacterial strain L1T was isolated from hot compost “Pomigliano Environment” s.p.a., Pomigliano, Naples, Italy. The strain was identified by using a polyphasic taxonomic approach. L1T resulted in an aerobic, gram-positive, rod-shaped, thermophilic with an optimum growth temperature of 68°C chemorganotrophic bacterium which grew on hydrocar- bons as unique carbon and energy sources and was resistant to heavy metals. The G؉C DNA content was 43.5 mol%. Phylogenetic analysis of 16S rRNA gene sequence and Random Ampli- fied Polymorphic DNA-PCR (RAPD-PCR) analysis of L1T and related strains showed that it forms within Geobacillus toebii, a separate cluster in the Geobacillus genus. The composition of cellu- lar fatty acids analyses by Gas-Mass Spectroscopy differed from that typical for the genus Geobacillus in that it is lacking in iso-C15 fatty acid, while iso-C16 and iso-C17 were predomi- nant. Isolates grew on a rich complex medium at temperatures between 55–75°C and presented a doubling time (td) of 2 h and 6 h using complex media and hydrocarbon media, respectively. Among hydrocarbons tested, n-decane (2%) was the more effective to support the growth (1 g/L of wet cells). The microorganism showed resistance to heavy metal tested during the growth. Furthermore, intracellular a-galactosidase and a-glucosidase enzymatic activities were de- tectable in the L1T strain. Based on phenotypic, phylogenetic, fatty acid analysis and results from DNA-DNA hybridization, we propose assigning a novel subspecies of Geobacillus toebii, to DSM؍) be named Geobacillus toebii subsp. decanicus subsp. nov., with the type strain L1T .(ATCC BAA 1004؍17041 Key Words——alkanes; DNA-DNA hybridization; fatty acid; Geobacillus; heavy metals; hot compost; lipid; PCR finger print; thermozymes Introduction * Address reprint requests to: Dr. Barbara Nicolaus, Istituto di Industrial composting is a microbial, aerobic, self- Chimica Biomolecolare (ICB), CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy. heating and solid-phase biodegradation process of Tel: ϩ39–081–8675245 Fax: ϩ39–081–8041770 organic-waste materials (Miller, 1996). During the ther- E-mail: [email protected] mogenic phase of the composting process, a large 224 POLI et al. Vol. 52 central zone remains at temperatures higher than caldoproteolyticus (Chen et al., 2004), G. gargensis 70°C for many weeks (Fugio and Kume, 1991; Strom, (Nazina et al., 2004), and G. jurassicus (Nazina et al., 1985a, b). In this “hot-zone” a high number of ther- 2005) were assigned to the Geobacillus group. mophilic bacteria, forming a different microbial commu- This paper describes the isolation of a new ther- nity, belonging to Thermus, Bacillus and Hy- mophilic Geobacillus strain, designated L1T, from ther- drogenobacter species were identified (Beffa et al., mogenic compost made from 12-week-old organic 1996; Blanc et al., 1999; Lyon et al., 2000; Strom, waste samples, able to grow at temperatures up to 1985a). 75°C. The characteristics of this isolate were com- Thermophiles isolated from compost in recent years pared with its nearest neighbor. Data on L1T strain have become extremely interesting from a technologi- ability to grow using hydrocarbons as unique carbon cal point of view (Lyon et al., 2000; Strom 1985b). sources and its resistance to heavy metals, were also Many are the studies undertaken for defining the prin- reported. cipal metabolic pathways and the peculiar properties of their molecules. Hot compost is considered to offer Materials and Methods a favorable habitat for thermophilic bacilli. Strom (1985b) isolated more than 750 heterotrophic spore- Compost characteristics. Compost samples were forming strains from compost. Most of these microor- from “Pomigliano Environment” s.p.a., Pomigliano ganisms grew under 60°C, and only Bacillus coagu- d’Arco (Campania Region, southern Italy). The first lans, Geobacillus stearothermophilus and Geobacillus step, in the bio-fermentation process, is essentially toebii were isolated at 65°C (Strom, 1985a; Sung et based on a static heap covered by a sandwich consti- al., 2002). Thermophilic bacteria related to the genus tuted of two supports of polyester with interposed a foil Geobacillus has been widely isolated from geothermal of Gore-Tex® and on a forced airing cycle-treatment of and man-made environments throughout the world 30 days. The process is monitored by a computerized (Maugeri et al., 2002; Nazina et al., 2001, 2005; Rhee system (BIOE® s.r.l, Milan, Italy) that checks the oxy- et al., 2002; Sung et al., 2002). gen, the temperature and the humidity levels. The tem- Thermophilic Bacillus species of the group 5 rRNA perature of the inner core of the heap is above 60°C. are a phenotypically and phylogenetic coherent group At 30 days from pretreatment, the pile is moved to the displaying very high similarity among their 16S rRNA threshing floor of maturation where, for a further 60 sequences (98.5–99.2%) (Ash et al., 1991; Rainey et days, it is turned weekly to favor the oxygenation and al., 1994; Sunna et al., 1997); this group was trans- consequently, the degradation of the more slowly ferred to a new genus Geobacillus that comprised biodegradable matrixes (lignin). The material is refined at that time 12 validated species G. stearother- through a phase of drum sifting by obtaining the “com- mophilus, G. thermocatenulatus, G. thermoleovorans, post.” The presence of heavy metals was determined G. kaustophilus, G. thermoglucosidasius, G. thermo- by atomic spectrometry (Shimadzu AA6200) (Poli et denitrificans, G. subterraneus, G. uzenensis, G. cal- al., 2005). Bacterial tests were performed by the meth- doxylosilyticus and G. toebii (Ahmad et al., 2000; ods of Koneman (Koneman, 1984). Claus and Berkeley, 1986; Fortina et al., 2001a, b; Sampling and isolation. Thirty grams of compost Golovacheva et al., 1975; Logan and Berkeley, 1984; (fresh wt) were placed in 200 ml of sterile water, ho- Manichini et al., 2000; Nazina et al., 2001; Priest et al., mogenized at room temperature on a shaker (150 rpm) 1988; Sung et al., 2002; Suzuki et al., 1983; Tomita et for 20 min, and serially diluted (10Ϫ2 to 10Ϫ10) in the TH al., 2003; White et al., 1993; Zarrilla and Perry, 1987). medium (8 g/L peptone (Oxoid), 4 g/L yeast extract Other thermophilic established species belonged to (Oxoid), 2 g/L NaCl (Applichem) at pH 7.0). For opti- Geobacillus group such as Bacillus thermantarcticus mum temperature determination the cultures were in- (Nicolaus et al., 1996) validated in Int. J. Syst. Evol. cubated without agitation from 50°C to 80°C for 1 to 6 Microbiol. 2002 and G. vulcani (Caccamo et al., 2000; days. The pH dependence of growth was tested in the Gugliandolo et al., 2003; Maugeri et al., 2001; Nazina pH range 4.0 to 10.0. Pure strains were isolated at et al., 2004). The asporogenous Saccharococcus ther- 68°C at pH of 7.2 on the TH medium solidified with mophilus representing a separate line of descent (Naz- agar (2%, wt/v). The first pure culture obtained was ina et al., 2001; Nystrand, 1984) and more recently G. called L1T and studied in detail. 2006 Geobacillus toebii subsp. decanicus subsp. nov. 225 Reference strains and media. The reference (10 U), chloramphenicol (10, 50), kanamycin (5, 30), strains used were as follows: Geobacillus toebii DSM tylosin (10, 30), ampicillin (25), gentamicin (10, 30), 14590T (Sung et al., 2002), Geobacillus thermoleovo- novobiocin (30), nystatin (100), cycloheximide (30), rans ATCC 43513T (Zarrilla and Perry, 1987) and bacitracin (10 U), lincomycin (15), fusidic acid (10), Geobacillus caldoxylosilyticus ATCC 42125T. The vancomycin (30), streptomycin (25) and tetracycline media utilized were: TH medium; TH agar medium, (30, 50) (Nicolaus et al., 2000). containing (g/L) 20.0 agar (Oxoid); YN medium, con- Biochemical analysis. For the enzymatic assays, taining (g/L) 6.0 yeast extract, 6.0 NaCl at pH 6.5. cells grown in YN medium were collected during sta- Other media were prepared as follows: M162 min- tionary growth phase by centrifugation at 9,000ϫg for eral medium containing: (g/L) 4.0 NaCl (Applichem), 30 min. Wet cells (about 2.0 g) were suspended in 0.53 NH4Cl (J.T. Baker), Solution A 60 ml/L, Solution B 20 mM Tris-HCl at pH 8.0, lysed by ultrasonic treatment 20 ml/L, Solution C 100 ml/L; Solution A: (g/L) 35.58 (Heat System Instrument) for 4 min, and centrifuged at ϫ Na2HPO4 ·2H2O (Applichem); Solution B: (g/L) 27.19 15,000 g for 20 min. The supernatant (crude extract) KH2PO4 (Carlo Erba); Solution C: (g/L) 1.0 Nitrilotri- was assayed for a-galactosidase and a-glucosidase acetic acid (Applichem), 0.4 CaSO4 ·6H2O (Carlo enzymatic activities, by incubating for 10 min at 68°C a Erba), 2.0 MgCl2 ·6H2O (Applichem), 2.5 Ferric citrate reaction mixture containing in 1 ml final volume: 0.1 ml (Carlo Erba), Nitsch’s trace elements 5.0 ml/L. of the crude extract, 40 mM Tris-HCl pH 7.0 and 1 mM Minimal media were prepared using M162 medium of the following substrates: p-nitrophenyl-a-D-(glucopy- plus either 1% glycerol, glucose, lactose, Na-acetate, ranoside, galactopyranoside, maltoside, arabinoside); mannose, xylose, galactose, sucrose, cellobiose, ri- p-nitrophenyl-b -(glucopyranoside, xylopyranoside, bose, maltose, fructose, ethanol, EDTA, sorbose, raffi- galactopyranoside, lactopyranoside, maltoside); p-ni- nose, malic acid, citric acid or trehalose as sole carbon trophenyl N-acetyl-b-D-glucosamide and 2-nitrophenyl- sources, at pH 7.2 (Maugeri et al., 2002).
Recommended publications
  • Identification and Sequence Analyses of Novel Lipase Encoding Novel
    Shahinyan et al. BMC Microbiology (2017) 17:103 DOI 10.1186/s12866-017-1016-4 RESEARCH ARTICLE Open Access Identification and sequence analyses of novel lipase encoding novel thermophillic bacilli isolated from Armenian geothermal springs Grigor Shahinyan1, Armine Margaryan1,2, Hovik Panosyan2 and Armen Trchounian1,2* Abstract Background: Among the huge diversity of thermophilic bacteria mainly bacilli have been reported as active thermostable lipase producers. Geothermal springs serve as the main source for isolation of thermostable lipase producing bacilli. Thermostable lipolytic enzymes, functioning in the harsh conditions, have promising applications in processing of organic chemicals, detergent formulation, synthesis of biosurfactants, pharmaceutical processing etc. Results: In order to study the distribution of lipase-producing thermophilic bacilli and their specific lipase protein primary structures, three lipase producers from different genera were isolated from mesothermal (27.5–70 °C) springs distributed on the territory of Armenia and Nagorno Karabakh. Based on phenotypic characteristics and 16S rRNA gene sequencing the isolates were identified as Geobacillus sp., Bacillus licheniformis and Anoxibacillus flavithermus strains. The lipase genes of isolates were sequenced by using initially designed primer sets. Multiple alignments generated from primary structures of the lipase proteins and annotated lipase protein sequences, conserved regions analysis and amino acid composition have illustrated the similarity (98–99%) of the lipases with true lipases (family I) and GDSL esterase family (family II). A conserved sequence block that determines the thermostability has been identified in the multiple alignments of the lipase proteins. Conclusions: The results are spreading light on the lipase producing bacilli distribution in geothermal springs in Armenia and Nagorno Karabakh.
    [Show full text]
  • Screening D'activités Hydrolytiques
    REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L’ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE MENTOURI-CONSTANTINE Institut de la Nutrition, de l’Alimentation et des Technologies Agro-alimentaires (INATAA) Département de Biotechnologie alimentaire N° d’ordre : Série : MEMOIRE Présenté en vue de l’obtention du diplôme de Magister en Sciences Alimentaires Option : Biotechnologie Alimentaire Screening d’activités hydrolytiques extracellulaires chez des souches bactériennes aérobies thermophiles isolées à partir de sources thermales terrestres de l’Est algérien Présenté par GOMRI Mohamed Amine Devant le jury composé de : Président : Pr. AGLI A. Professeur INATAA, UMC Rapporteur : Dr. KHARROUB K. Docteur INATAA, UMC Examinateurs : Pr. KACEM CHAOUACHE N. Professeur Faculté des SNV, UMC Dr. BARKAT M. Docteur INATAA, UMC Année universitaire 2011-2012 Remerciements Je rends grâce à Dieu, le miséricordieux, le tout puissant, pour ce miracle appelé vie, que sa lumière nous guide vers lui, et que son nom soit l’élixir de nos peines et douleurs. Tout d’abord, je tiens à remercier Madame KHARROUB Karima pour m’avoir donné la chance de travailler sous sa direction, pour sa confiance en moi et ses encouragements mais surtout pour sa générosité dans le travail, qu’elle trouve en ces mots toute ma gratitude. Mes remerciements sont adressés aux membres du Jury qui ont pris sur leur temps et ont bien voulu accepter de juger ce modeste travail : Mr le professeur AGLI qui m’a fait l’honneur de présider ce Jury Mr le professeur KACEM-CHAOUCH E qui a eu l’amabilité de participer à ce Jury Mme BARKAT qui a bien voulu examiner ce travail Je tiens à remercier Mlle AYAD Ryma, Mesdames ZOUBIRI Lamia et DJABALI Saliha, Messieurs ZOUAOUI Nassim, BOUGUERRA Ali, SLIMANI Zakaria et FARHAT Chouaib pour leur aide inestimable, mais aussi pour leur amitié précieuse, qu’ils trouvent ici les plus sincères marques d’affection.
    [Show full text]
  • Phylogenetic Study of Thermophilic Genera Anoxybacillus, Geobacillus
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.449068; this version posted June 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 bioRxiv 2 Article Type: Research article. 3 Article Title: Phylogenetic study of thermophilic genera Anoxybacillus, Geobacillus, 4 Parageobacillus, and proposal of a new classification Quasigeobacillus 5 gen. nov. 6 Authors: Talamantes-Becerra, Berenice1-2*; Carling, Jason2; Blom, Jochen3; 7 Georges, Arthur1 8 Affiliation: 1Institute for Applied Ecology, University of Canberra ACT 2601 9 Australia. 10 2Diversity Arrays Technology Pty Ltd, Bruce, Canberra ACT 2617 11 Australia. 12 3Bioinformatics & Systems Biology, Justus-Liebig-University Giessen, 13 35392 Glessen, Hesse, Germany 14 *Correspondence: Berenice Talamantes Becerra, Institute for Applied Ecology, 15 University of Canberra ACT 2601 Australia. Email: 16 [email protected] 17 Running head: Phylogenetic study of thermophilic bacteria. 18 Word Count: Abstract: 178 Main body: 3709 References: n= 60 19 20 21 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.449068; this version posted June 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 23 Abstract 24 A phylogenetic study of Anoxybacillus, Geobacillus and Parageobacillus was performed using 25 publicly available whole genome sequences. A total of 113 genomes were selected for 26 phylogenomic metrics including calculation of Average Nucleotide Identity (ANI) and 27 Average Amino acid Identity (AAI), and a maximum likelihood tree was built from alignment 28 of a set of 662 orthologous core genes.
    [Show full text]
  • Complete Genome Sequence of Geobacillus Thermoglucosidasius
    Brumm et al. Standards in Genomic Sciences (2015) 10:73 DOI 10.1186/s40793-015-0031-z SHORT GENOME REPORT Open Access Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park Phillip J. Brumm1,3*, Miriam L. Land2 and David A. Mead1,3 Abstract Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). The genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G + C content of 43.93 %. G. thermoglucosidasius C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. This cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. One plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins. Keywords: Geobacillus thermoglucosidasius C56-YS93, Hot springs, Biomass, Xylan, Prophage Introduction new enzyme-producing aerobic organisms from Yellow- Identification of new organisms that produce biomass- stone hot springs. degrading enzymes is of considerable interest.
    [Show full text]
  • Isolation and Identification of Thermophilic Amylolytic Bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia
    BIODIVERSITAS ISSN: 1412-033X Volume 22, Number 6, June 2021 E-ISSN: 2085-4722 Pages: 3326-3332 DOI: 10.13057/biodiv/d220638 Isolation and identification of thermophilic amylolytic bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia ELVY LIKE GINTING1,♥, LETHA L. WANTANIA2, EMMA MAUREN MOKO3, REINY A. TUMBOL1, MAYSE S. SIBY1, STENLY WULLUR1 1Faculty of Fisheries and Marine Science, Universitas Sam Ratulangi. Jl. Kampus Unsrat, Manado 95115, North Sulawesi, Indonesia. Tel./fax.: +62-431-868027, email: [email protected] 2Faculty of Mathematics and Natural Sciences, Bonn University. D-53012 Bonn, Germany 3Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Manado. Jl. Raya Tondano, Minahasa 95618, North Sulawesi, Indonesia Manuscript received: 1 April 2021. Revision accepted: 24 May 2021. Abstract. Ginting EL, Wantania LL, Moko EM, Tumbol RA, Siby MS, Wulur S. 2021. Isolation and identification of thermophilic amylolytic bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia. Biodiversitas 22: 3326-3332. The aims of the research were to isolate and identify the amylase-producing thermophilic bacteria from Likupang Marine Hydrothermal, North Sulawesi, Indonesia. The bacteria were characterized based on the colony and cell morphology and subsequently screened for their amylase activities. The bacterial isolates were identified based on 16S rRNA gene sequences. There were 12 thermophilic bacteria isolates from Likupang Marine Hydrothermal that were able to produce amylase. Two selected isolates (L3 and L9) had an amylolytic index value in the range of 3.04-3.52 at 55oC. The colonies of L3 and L9 are circular, and they are Gram positive, rod-shaped, and motile bacteria.
    [Show full text]
  • Extremophiles, a Nifty Tool to Face Environmental Pollution: from Exploitation of Metabolism to Genome Engineering
    International Journal of Environmental Research and Public Health Review Extremophiles, a Nifty Tool to Face Environmental Pollution: From Exploitation of Metabolism to Genome Engineering Giovanni Gallo 1,2 , Rosanna Puopolo 1 , Miriam Carbonaro 1, Emanuela Maresca 1 and Gabriella Fiorentino 1,2,* 1 Department of Biology, University of Naples Federico II, Via Cinthia 21, 80126 Napoli, Italy; [email protected] (G.G.); [email protected] (R.P.); [email protected] (M.C.); [email protected] (E.M.) 2 Consiglio Nazionale delle Ricerche CNR, Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli, Italy * Correspondence: fi[email protected] Abstract: Extremophiles are microorganisms that populate habitats considered inhospitable from an anthropocentric point of view and are able to tolerate harsh conditions such as high temperatures, extreme pHs, high concentrations of salts, toxic organic substances, and/or heavy metals. These microorganisms have been broadly studied in the last 30 years and represent precious sources of biomolecules and bioprocesses for many biotechnological applications; in this context, scientific efforts have been focused on the employment of extremophilic microbes and their metabolic pathways to develop biomonitoring and bioremediation strategies to face environmental pollution, as well as to improve biorefineries for the conversion of biomasses into various chemical compounds. This review gives an overview on the peculiar metabolic features of certain
    [Show full text]
  • Geobacillus and Hydrocarbon Utilization R
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ulster University's Research Portal 21 The Genus Geobacillus and Hydrocarbon Utilization R. Marchant . I. M. Banat* School of Biomedical Sciences, University of Ulster, Coleraine, County Londonderry, Northern Ireland, UK *[email protected] 1 Introduction . .................................................................... 1888 2 The Degradation of Hydrocarbons by Geobacilli . ................................ 1889 3 The Molecular Basis of Thermophily . ............................................. 1891 4 Growth and Survival of Geobacilli Under Different Conditions . ......... 1892 5 Distribution and Ecology of Geobacilli ............................................. 1894 6 Potential Commercial Exploitation and Research Needs . ................... 1894 K. N. Timmis (ed.), Handbook of Hydrocarbon and Lipid Microbiology, DOI 10.1007/978-3-540-77587-4_138, # Springer-Verlag Berlin Heidelberg, 2010 1888 21 The Genus Geobacillus and Hydrocarbon Utilization Abstract: The members of the Gram-positive endospore-forming bacteria that made up the genus Bacillus have been gradually subdivided, during the last few years, into a number of new genera such as Alicyclobacillus, Aneuribacillus, Brevibacillus, Gracilibacillus, Paenibacillus, Salibacillus, Ureibacillus, and Virgibacillus. Nazina et al. in 2001 created the genus Geobacillus based around Bacillus (now Geobacillus) stearothermophilus DSM22 as the type strain. The description included two new species of hydrocarbon-oxidizing bacteria isolated from high- temperature oilfields, and the transfer of six members of genetic group 5 thermophilic species of Bacillus to the new genus. Other additions followed and, most of these species, shared the ability to grow at elevated temperatures and degrade hydrocarbons. The taxonomy of geoba- cilli, hydrocarbon degradation, molecular basis of thermophily, survival, and ecological roles in the environment and possible exploitation potential will be reviewed in this chapter.
    [Show full text]
  • Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Department of Energy Publications U.S. Department of Energy 2010 Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi South Dakota School of Mines and Technology Shariff Osman Lawrence Berkeley National Laboratory Ravi K. Kukkadapu Pacific Northwest National Laboratory, [email protected] Mark Engelhard Pacific Northwest National Laboratory Parag A. Vaishampayan California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/usdoepub Part of the Bioresource and Agricultural Engineering Commons Rastogi, Gurdeep; Osman, Shariff; Kukkadapu, Ravi K.; Engelhard, Mark; Vaishampayan, Parag A.; Andersen, Gary L.; and Sani, Rajesh K., "Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota" (2010). US Department of Energy Publications. 170. https://digitalcommons.unl.edu/usdoepub/170 This Article is brought to you for free and open access by the U.S. Department of Energy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Department of Energy Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Gurdeep Rastogi, Shariff Osman, Ravi K. Kukkadapu, Mark Engelhard, Parag A. Vaishampayan, Gary L. Andersen, and Rajesh K. Sani This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ usdoepub/170 Microb Ecol (2010) 60:539–550 DOI 10.1007/s00248-010-9657-y SOIL MICROBIOLOGY Microbial and Mineralogical Characterizations of Soils Collected from the Deep Biosphere of the Former Homestake Gold Mine, South Dakota Gurdeep Rastogi & Shariff Osman & Ravi Kukkadapu & Mark Engelhard & Parag A.
    [Show full text]
  • Patterns of Horizontal Gene Transfer Into the Geobacillus Clade
    Imperial College London London Institute of Medical Sciences Patterns of Horizontal Gene Transfer into the Geobacillus Clade Alexander Dmitriyevich Esin September 2018 Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy of Imperial College London For my grandmother, Marina. Without you I would have never been on this path. Your unwavering strength, love, and fierce intellect inspired me from childhood and your memory will always be with me. 2 Declaration I declare that the work presented in this submission has been undertaken by me, including all analyses performed. To the best of my knowledge it contains no material previously published or presented by others, nor material which has been accepted for any other degree of any university or other institute of higher learning, except where due acknowledgement is made in the text. 3 The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 4 Abstract Horizontal gene transfer (HGT) is the major driver behind rapid bacterial adaptation to a host of diverse environments and conditions. Successful HGT is dependent on overcoming a number of barriers on transfer to a new host, one of which is adhering to the adaptive architecture of the recipient genome.
    [Show full text]
  • The Genotypic Diversity and Lipase Production of Some Thermophilic Bacilli from Different Genera
    Brazilian Journal of Microbiology 46, 4, 1065-1076 (2015) Copyright © 2015, Sociedade Brasileira de Microbiologia ISSN 1678-4405 www.sbmicrobiologia.org.br DOI: http://dx.doi.org/10.1590/S1517-838246420140942 Research Paper The genotypic diversity and lipase production of some thermophilic bacilli from different genera Melih Koc1, Cumhur Cokmus2, Arzu Coleri Cihan1 1Biology Department, Faculty of Science, Ankara University, Ankara, Turkey. 2Konya Food & Agriculture University, Dede Korkut Mah., Konya, Turkey. Submitted: November 13, 2014; Approved: April 12, 2015. Abstract Thermophilic 32 isolates and 20 reference bacilli were subjected to Rep-PCR and ITS-PCR finger- printing for determination of their genotypic diversity, before screening lipase activities. By these methods, all the isolates and references could easily be differentiated up to subspecies level from each other. In screening assay, 11 isolates and 7 references were found to be lipase producing. Their extracellular lipase activities were measured quantitatively by incubating in both tributyrin and olive oil broths at 60 °C and pH 7.0. During the 24, 48 and 72-h period of incubation, the changes in the lipase activities, culture absorbance, wet weight of biomass and pH were all measured. The activity was determined by using pNPB in 50 mM phosphate buffer at pH 7.0 at 60 °C. The lipase production of the isolates in olive oil broths varied between 0.008 and 0.052, whereas these values were found to be 0.002-0.019 (U/mL) in the case of tyributyrin. For comparison, an index was established by divid- ing the lipase activities to cell biomass (U/mg).
    [Show full text]
  • Isolation and Diversity of Sediment Bacteria in The
    bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Isolation and Diversity of Sediment Bacteria in the 2 Hypersaline Aiding Lake, China 3 4 Tong-Wei Guan, Yi-Jin Lin, Meng-Ying Ou, Ke-Bao Chen 5 6 7 Institute of Microbiology, Xihua University, Chengdu 610039, P. R. China. 8 9 Author for correspondence: 10 Tong-Wei Guan 11 Tel/Fax: +86 028 87720552 12 E-mail: [email protected] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 29 Abstract A total of 343 bacteria from sediment samples of Aiding Lake, China, were isolated using 30 nine different media with 5% or 15% (w/v) NaCl. The number of species and genera of bacteria recovered 31 from the different media significantly varied, indicating the need to optimize the isolation conditions. 32 The results showed an unexpected level of bacterial diversity, with four phyla (Firmicutes, 33 Actinobacteria, Proteobacteria, and Rhodothermaeota), fourteen orders (Actinopolysporales, 34 Alteromonadales, Bacillales, Balneolales, Chromatiales, Glycomycetales, Jiangellales, Micrococcales, 35 Micromonosporales, Oceanospirillales, Pseudonocardiales, Rhizobiales, Streptomycetales, and 36 Streptosporangiales), including 17 families, 41 genera, and 71 species.
    [Show full text]
  • Isolation and Diversity of Sediment Bacteria in The
    bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Isolation and Diversity of Sediment Bacteria in the 2 Hypersaline Aiding Lake, China 3 4 Tong-Wei Guan, Yi-Jin Lin, Meng-Ying Ou, Ke-Bao Chen 5 6 7 Institute of Microbiology, Xihua University, Chengdu 610039, P. R. China. 8 9 Author for correspondence: 10 Tong-Wei Guan 11 Tel/Fax: +86 028 87720552 12 E-mail: [email protected] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 29 Abstract A total of 343 bacteria from sediment samples of Aiding Lake, China, were isolated using 30 nine different media with 5% or 15% (w/v) NaCl. The number of species and genera of bacteria recovered 31 from the different media significantly varied, indicating the need to optimize the isolation conditions. 32 The results showed an unexpected level of bacterial diversity, with four phyla (Firmicutes, 33 Actinobacteria, Proteobacteria, and Rhodothermaeota), fourteen orders (Actinopolysporales, 34 Alteromonadales, Bacillales, Balneolales, Chromatiales, Glycomycetales, Jiangellales, Micrococcales, 35 Micromonosporales, Oceanospirillales, Pseudonocardiales, Rhizobiales, Streptomycetales, and 36 Streptosporangiales), including 17 families, 41 genera, and 71 species.
    [Show full text]